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Abstract. Refinement mining has been inspired by process mining tech-
niques and aims to refine an abstract non-deterministic model by sifting
it using event logs as a sieve until a reasonably concise model is achieved.
FormalMiner is a formal framework that implements model mining us-
ing Maude, a modelling language based on rewriting logic. Once the final
formal model is attained, it can be used, within the same rewriting-logic
framework, to predict the future evolution of the behaviour through sim-
ulation, to carry out further validation or to analyse properties through
model checking. In this paper we focus on the refinement mining capabil-
ity of FormalMiner and we illustrate it using a case study from ecology.
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1 Introduction

The use of large repositories to collect data in various domains of social sciences,
physical sciences and life sciences offers great opportunities for systematic anal-
ysis. Data mining aims to extract meaningful information from data and exploit
it to describe and understand the processes that have generated such data.

More recently, the scope of data mining enlarged from the description of
properties of the data organisation, such as clustering and classification, to the
description of the actual process that led to the creation and organisation of the
data. Process mining, which emerged in the field of business process manage-
ment (BPM), has been used to extract information from event logs consisting
of activities and then produce a graphical representation of the process control
flow, detect relations between components involved in the process and infer data
dependencies between process activities [19]. This is achieved through either the
discovery of an a posteriori process model or the extension of a pre-existing a
priori model, or the comparison of the a priori model with the event logs using
a technique called conformance analysis [14]. However, these three approaches
cannot be automatically integrated, but require the analyst to compare them
manually [12]. Therefore, process mining is used for descriptive purposes, aim-
ing at the discovery of some aspects of the past behaviour, that is, the dynamics
that produced the event log.
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Although there are a number of works in the areas of synthesis of programs
[9, 16, 17] and synthesis of biological and probabilistic systems from data [6, 10,
13], to our knowledge, the only attempt to integrate process mining and formal
verification is a work by van der Aalst, de Beer and van Dongen’s, which aims at
verifying whether an event log satisfies a property expressed in linear temporal
logic (LTL) [18]. However, such an approach still has a descriptive purpose: the
formal characterisation of properties of the event logs from past behaviour. The
construction of a formal model within a framework equipped with automatic
verification tools, instead, enable prediction of future behaviour.

In our previous work [5] we have taken a step forward and exploited real
data in a constructive rather than descriptive way by integrating techniques
from the realm of process mining with modelling approaches. The technique we
developed, which we called model mining, supports the synthesis of a formal
model from a dataset and enables the formal analysis of such a model in order
to predict the future behaviour and characterise its properties. The synthesised
model is not a mere representation of the unfolded behaviour, but comprises,
instead, a set of formal transition rules for generating the system behaviour,
thus supporting powerful predictive capabilities. The set of transition rules can
be either inferred directly from the events logs (constructive mining) [5] or refined
by sifting a plausible a priori model using the event logs as a sieve until a
reasonably concise model is achieved (refinement mining) [4, 5]. To this purpose,
events are partitioned into two classes, environmental events, which allow us to
update the system state, and target events, which are used in refinement mining
to sift a non-deterministic model by possibly invalidating one of its deterministic
instances.

We use equational logic [8] to define the Model Mining Formal Framework
(MMFF) [4, 5], which provides a formal description of the events, the system
state and the transition rules that change the system state accoding to the event
occurrences. Rewriting logic [11] is then used to manipulate the data struc-
tures defined in MMFF in order to implement the constructive mining algo-
rithm, which exploits a list of events to build a set of transition rules, and the
refinement mining algorithm, which exploits a list of events to refine an a priori
model consisting of sets of alternative transition rules by reducing the possible
alternatives (thus reducing non-determinism) [5].

In this tool paper we introduce FormalMiner, which implements MMFF and
the two model mining algorithms using the Maude rewrite system [7]. Maude is
a high-performance modelling and analysis system based on a reflexive language
that supports both equational and rewriting logic.

The focus of this paper is the use of FormalMiner in performing refinement
mining. Section 2 introduce rewriting logic and Maude and briefly overview the
Maude syntax to enable the reader to understand the examples in this paper
and refer them to the Maude code that implements FormalMiner and the case
study used throughout the paper. The Maude code is available at

https://cs-sst.github.io/faculty/cerone/modellingfromdata.
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Section 3 presents the architecture of FormalMiner and illustrates the data struc-
tures of MMFF and the the general functions for manipulating them. Section 4
describes how refinement mining is carried out and introduces the sifting met-
ric, which is used to evaluate the validity of alternative instances of the model.
Finally, Section 5 discusses strategies for carrying out model mining as well as
future work.

2 Rewriting Logic and the Maude System

Rewriting logic [11] is based on rewite rules of the form t =⇒ t′, with t and t′

expressions in a given language. A rewrite rule can be interpreted both computa-
tionally, as a local transition in a concurrent system, and logically, as an inference
rule. Therefore, rewriting logic can be considered both a computational theory
and a logical theory.

Maude [7] is a modelling language based on rewriting logic. It also provides
model-checking capabilities, thus supporting the analysis of the modelled system.
In this work we only use Core Maude, whose syntax we briefly overview in this
section. There are two types of modules in Core Maude, functional modules,
which are restricted to equational logic: declaration of sorts (with keyword sort

for one sort, or sorts for many) and operations (with keyword op or ops) on
them and the definition of such operation using equations (with keyword eq, or
ceq in case of conditional equation), and system modules, which also support
rewriting logic, by additionally including the definition of rewrite rules (with
keyword rl, or crl in case of conditional rewrite rules). A number of flags
can be used while defining an operation. For example flag ctor designates the
operation as a constructor.

A sort A is specified as a subsort of a sort B by ‘subsort A < B’. Keyword
subsorts is used in case of multiple subsorts. Variables denote indefinite values
for sorts to be used within equations or rewrite rules. They are declared with
keyword var or vars. Constants are basically operations with no arguments
and are defined through equations. Maude has several predefined sorts for basic
values, including the obvious sorts Bool, Nat, Int, Rat, and a sort Qid for quoted
identifiers, which are sequences of characters starting with the character ’’’. All
constructs of the Maude language, apart from the toplevel module construct,
end with a space followed by a dot (‘.’).

3 FormalMiner Core: Events, States and Evolution

In order to be successfully processed with the purpose of extracting process
control flow information, event logs have first to be semantically interpreted
according to the purpose of the model we aim to devise, so that such inter-
pretation can drive their structuring and clustering. Structural and semantical
organisation can be attained by applying text mining techniques, in particular
semantic indexing, in combination with an appropriate ontology from the given
application domain. This approach is commonly used in process mining, which
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is thus applied to a set of pre-processed event logs. For the purpose of model
mining we assume to have already pre-processed events organised as a sequence
of structured entities, which are ordered based on their occurrence times.

In this section we show the basic data structures that make up MMFF and
how they are implemented in FormalMiner. For this purpose we refer to the
FormalMiner architecture described in Fig. 1, where squared boxes represent
functional modules and oval boxes represent the system modules. An arrow
between module M1 and module M2 denotes that M2 imports all declarations and
definitions in M1. The FormalMiner Core implements MMFF data structures
and the general functions to manipulate them. It consists of three functional
modules: EVENT, STATE and EVOLUTION. System module ENGINE, which comprises
the rewrite rules that implement the model mining algorithms, and functional
module CONTROL, which control FormalMiner output, are also part of the MMFF
implementation.

Outside the FormalMiner core, modules VALUE and TIME contain declarations
of generic sorts, whereas constructors and operation declaration and definition
are depending on the value and time domains considered for the specific applica-
tion. Thus, although the structure of these two modules is standard and includes
generic sorts Value, Time and Age, such sorts need to be instantiated for each
specific application.

Also outside the FormalMiner core, functional module APPL-DATA and sys-
tem module APPL-MODEL are application specific. Module APPL-DATA contains
the dataset, in the form of a defined timed list of events. Module APPL-MODEL

contains the definition of the initial configuration, which includes the initial state
of the system and the plausible model to refine. The names for these two modules
provided here and in Fig. 1 are just placeholders and can be changed to best
describe the application. This is consistent with the fact that these two modules
are not imported by any other module.

Our goal is to model how environmental events affect a target event. En-
vironmental events act on the system by changing its state and such changes
are normally visible through target events. Since the system consists of several
components, which we call domains, we need to define a local notion of state for
each of such domains. We denote such a notion of local state as domain state.

3.1 Environmental and Target Events

Environmental and target events are modelled in the EVENT module. An event
is defined as a triple consisting of

– the time at which the event occurs;
– the event name;
– a concrete value value represented as a set {t1(vV1

1 ), . . . , tn(vVn
n )} of typed

basic values, with ti being the type name and vVi
i belonging to value domain

Vi, for i = 1. . . . , n.

In previous work [1] we modelled the dynamic of a population of Aedes albopic-
tus, a mosquito species known as “tiger mosquito”, which is endemic in Asian
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Fig. 1. Architecture of the FormalMiner tool in terms of Maude modules.
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eq May = env[| time(1) , ’Temp : ’avg(val(18)) |] --- 8 May
&> target[| time(1) , ’Aedes : ’adult(val(4)) |]
&> env[| time(2) , ’Temp : ’avg(val(19)) |] --- 9 May

...
&> env[| time(22) , ’Temp : ’avg(val(20)) |] --- 29 May
&> env[| time(23) , ’Temp : ’avg(val(20)) |] --- 30 May
&> env[| time(24) , ’Temp : ’avg(val(22)) |] . --- 31 May

...
eq August = env[| time(96) , ’Temp : ’avg(val(28)) |] --- 1 August

&> env[| time(97) , ’Temp : ’avg(val(31)) |] --- 2 August
&> env[| time(98) , ’Temp : ’avg(val(31)) |] --- 3 August
&> env[| time(99) , ’Temp : ’avg(val(34)) |] --- 4 August
&> env[| time(100) , ’Temp : ’avg(val(33)) |] . --- 5 August

eq Data = May &> June &> July &> August .

Fig. 2. Sequence of events describing changes of temperature and sampling of the
mosquito population.

regions, where it is a carrier of dengue fever, and now widespread also in Eu-
rope. The model developed in that work is based on biological aspects of the
mosquito and considers the impact of changes in the environmental conditions
on such biological aspects to simulate the population dynamics. Among rele-
vant environmental conditions are average temperature and rain amount. The
simulation made use of data on the size of the mosquito population collected
during May–November 2009 in the province of Massa-Carrara (Tuscany, Italy)
using CO2 mosquito traps. We will use this case study throughout the paper to
illustrate FormalMiner.

Fig. 2 shows fragments of a sequence of events over a period of 100 days from
8 May to 5 August 2009. Constructors env and target denote environmental and
target events respectively. Constructor &> sequentialises events. There are only
one kind of environmental event, named Temp and describing daily temperature
changes, and one kind of target event, named Aedes and describing the sampling
of the mosquito population on a specific day. In both kinds of events the concrete
value is a singleton describing the average value for temperature changes and the
values for the sampling of the mosquito adult population. A richer concrete value
for temperature would have also values for minimum and maximum temperature,
for example:

env[| time(1), ’Temp: ’min(val(13)) ’avg(val(18)) ’max(val(20)) |]

3.2 Domain State and Global State

Differently from events, which are concrete entities that accurately represent
the reality, states, modelled in module STATE, refer to the model rather than the
reality. They are thus abstract entities, whose values are abstract values.

A domain state is defined as a quadruple consisting of

– the domain name;
– the set of specifiers for the domain;
– the abstract value that refers to the domain and its specifiers;
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– the state age, i.e. the amount of time that the state has persisted with un-
changed abstract value.

Similarly to events, states may be environmental and target. Environmental
states are changed by the occurrence of environmental events (i.e. by the data
as event occurrences), whereas target states are changed according to the model
(i.e. by the model execution) and will be then validated against the target events.
The global state of the system we are modelling consists of the current time and
a set of environmental and target states.

For example, we may consider four possible abstract values for the size of the
adult Aedes population: low for low, med for medium, high for high and extr
for extreme and the first three also for average temperatures. Then

env<| ’Temp,’avg,’med,age(2) |> target<| ’Aedes,’adult,’med,age(5) |>

at time(0)

is the global state describing the initial day (time(0)) in which the average
temperature has a medium value (med) that persisted for 2 days (age(2)) and
the adult mosquito population has a medium value (med) that persisted for 5
days (age(5)).

3.3 Environment-driven Evolution

In this section we describe how concrete values of environmental events are
mapped to abstract values, which then determine the evolution of environmental
states.

Although in our example we have used the same name for corresponding
events and states, in general events may be defined with no explicit reference
to the affected domains. The evolution of environmental states is described by
an impact relation, which is implemented by sort Impact, whose elements are
sets of impact associations of sort Association. These sorts are declared in
module EVOLUTION, where Association < Impact denotes that Association is
a subsort of Impact, and defined by the equations in application-specific system
module APPL-MODEL.

An impact association defines, under a given condition on the concrete value
of the environmental event, which environmental state is affected by the occur-
rence of the event and how it is affected. The syntax of an impact association

{ 〈EventName〉 , 〈CondLabel〉 | 〈FuncLabel〉 | 〈StateName〉 , 〈Specifiers〉 }

defines that an event named 〈EventName〉

– is associated with a state named 〈StateName〉 and having 〈Specifiers〉 as
set of specifiers, and

– determines a state transition defined by label 〈FuncLabel〉, which represents
an evolution function (not a Maude function!),

when the condition labelled as 〈CondLabel〉 is true.
The impact relation for our case study consists of the following three impact

associations
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State Condition Condition Function Evolution Event Concrete
Name Label Value Label for any AV Name Value

CL eval(CL,V) CL applyFunc(CL , AV )

lowTempCond 0 ≤ V < 20 lowCond constant low

Temp medTempCond 20 ≤ V < 25 medCond constant med Temp avg(V)

highTempCond 25 ≤ V < 36 highCond constant high

Table 1. Conditions and evolution functions of the impact relation for the mosquito
case study

{ ’Temp , ’lowTempCond | ’lowTemp | ’Temp , ’avg }

{ ’Temp , ’medTempCond | ’medTemp | ’Temp , ’avg }

{ ’Temp , ’highTempCond | ’highTemp | ’Temp , ’avg }

Actual conditions and model functions are defined by Maude functions eval and
applyFunc in module APPL-MODEL. For example, in our case study

eq eval(’lowTempCond , V) = 0 <= V and V < 20 .

defines that condition labelled as lowTempCond is true when average temperature
is less than 20 degrees, and

eq applyFunc(’lowTemp , AV ) = ’low .

defines that the function represented by label lowTemp is the constant function
low, independently of the previous abstract value AV of the average temperature.
Actual conditions and evolution functions of the impact relation for our case
study are given in Table 1.

Although this approach may seem cumbersome for the simple case study we
consider in this paper, it supports a general form of modelling. For example,

{ ’Rainfall , ’low2medCond | ’low2med | ’Water , ’moisture }

eq eval(’low2medCond , amount(A) intensity(I)) = A*K/I>=2 and A*K/I<10 .

eq applyFunc(’low2med , ’low ) = ’med .

describes the impact of the rain on a soil with permeability characterised by
parameter K: a rainfall with amount A in millimetres and intensity I determines
an increase of soil moisture from low to medium if 2 ≤ A*K/I < 10. The fact
that the higher the intensity of the rainfall the faster water tends to flow and the
less it is absorbed, thus resulting in a lower level of soil moisture, is described
by A*K/I. Obviously, an environmental event for this example needs two types
of basic value, amount and intensity to make a concrete value, for example

env[| time(5), ’Rainfall: ’amount(val(13)) ’intensity(val(2)) |]

3.4 Model-driven Evolution

In this section we describe how the plausible model determines the transition
of target states. The mapping from concrete values of target events to abstract
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Event Name Typed Basic Value Condition on Concrete Value V Abstract Value

0 ≤ V < 100 low

Aedes adult(V) 100 ≤ V < 250 med

250 ≤ V < 500 high

V > 500 extr

Table 2. Abstract relation for the mosquito case study

values of target states is defined by function abstraction declared in functional
module EVOLUTION and defined by the equations given in functional module
APPL-DATA. For example, the abstraction for our case study, given in Table 2 is
defined by

eq abstraction(’Aedes , ’adult , V) =

if 0 <= V and V < 100 then ’low else

if 100 <= V and V < 250 then ’med else

if 250 <= V and V < 500 then ’high else ’extr fi fi fi .

The transition of target states is modelled by transition rules whose compo-
nents are declared in module EVOLUTION. The rule precondition is defined by
sort RulePre, which is a set of preconditions of sort Precondition, where each
precondition states the existence in the global state of an environmental state
of given domain and set of specifier such that the age of the abstract value has
a given relation with a given threshold. For example

( ’Temp , ’avg , ’med | >= age(10) >>)

denotes that a medium abstract value of the average temperature has persisted
(relation >= between age and threshold) for at least 10 days (threshold expressed
by age(10)). The rule postcondition is defined by sort RulePost. For example

(<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>)

denotes an increase of the mosquito adult population from low to medium. Given
an appropriate abstraction of concrete values, it may be obvious that the per-
sistence of a medium temperature for a certain number of days results in an
increase of the adult mosquito population from low to medium. However, it is
not clear how many days are needed for such an increase. Therefore, we nor-
mally need to have, within the same model, distinct transition rules with the
same postcondition but preconditions which are not mutually exclusive. A good
strategy is to initially include two rules corresponding to what we expect to be
reasonable lower and upper bound limits. In our specific case, we may expect
the population increase to occur on the same day as the temperature increase
or within up to 10 days:

( ’Temp , ’avg , ’med | >= age(0) >>)

=> (<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>)

( ’Temp , ’avg , ’med | >= age(10) >>)

=> (<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>)
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We might even not be sure that the population size can change within these 10
days. Then we also add transition rules

( ’Temp , ’avg , ’med | >= age(0) >>)

=> (<< ’Aedes , ’adult | ’low -- ’stable -> ’low >>)

( ’Temp , ’avg , ’med | >= age(10) >>)

=> (<< ’Aedes , ’adult | ’low -- ’stable -> ’low >>)

These four rules are grouped together in a set called option set, which de-
scribes a form of non-determinism, called option-related non-determinism, which
we expect to be reduced by sifting out those transition rules that are invalidated
by the data. Therefore, refinement mining exploits data, in the form of event
logs consisting of target events, to reduce option-related non-determinism.

However, not all determinism may be reduced using refinement mining. For
example, in ecology, there might be alternative forms of behaviour of individuals
which are dictated by their free will. Such alternatives must be modelled by
transition rules of distinct option sets. This form of non-determinism, which
we call model-related non-determinism is intrinsic to the model and cannot be
reduced using refinement mining. Finally, the impact of environmental events on
environmental states may depend on unknown or only partially known factors.
Or it may depend on known factors, which, however, we may have chosen not
to model or we cannot model because they depend, in turn, on factors which
are either unknown or too complex to include in the model. For example, soil
moisture may also depend on desiccation, which, however, we may have chosen
not to model or we may not be sure how to model. We call this third form
of non-determinism impact-related non-determinism and we model it by impact
associations whose conditions are not mutually exclusive.

We can thus define a plausible model as a set of option sets. The plausi-
ble model for our case study is given in Fig. 3. It consists of 10 option sets,
numbered 1 to 10. Option set 4 consists of the 4 alternative transition rules
illustrated above. Some option sets consist of just one transition rules. This is
the case for option sets 1–3, due to the belief that a low temperature will always
cause a decrease of the adult mosquito population to low on the same day, inde-
pendently of the size of the initial population. Similar beliefs are that a medium
temperature will always cause a decrease of the adult mosquito population from
extreme to high on the same day (option set 6). The other option sets consist of
two rules corresponding to the same day as the lower bound and what we expect
to be a reasonable upper bound.

4 Plausible Model Refinement

In order to check which transition rules are invalidated by the data, each transi-
tion rule of an option set has to be consistently checked against the entire dataset.
To this purpose, the plausible model is decomposed in all possible option-free
models, that is, models without option-related non-determinism; each model is
then used to perform a simulation, during which the results of simulation steps
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[1] < { 1 | ( ’Temp , ’avg , ’low | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’extr -- ’decrease -> ’med >>) } >

[2] < { 1 | ( ’Temp , ’avg , ’low | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’high -- ’decrease -> ’low >>) } >

[3] < { 1 | ( ’Temp , ’avg , ’low | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’med -- ’decrease -> ’low >>) } >

[4] < { 1 | ( ’Temp , ’avg , ’med | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>) }

{ 2 | ( ’Temp , ’avg , ’med | >= age(10) >>)
=> (<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>) }

{ 3 | ( ’Temp , ’avg , ’med | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’low -- ’stable -> ’low >>) }

{ 4 | ( ’Temp , ’avg , ’med | >= age(10) >>)
=> (<< ’Aedes , ’adult | ’low -- ’stable -> ’low >>) } >

[5] < { 1 | ( ’Temp , ’avg , ’med | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’high -- ’decrease -> ’med >>) }

{ 2 | ( ’Temp , ’avg , ’med | >= age(4) >>)
=> (<< ’Aedes , ’adult | ’high -- ’decrease -> ’med >>) } >

[6] < { 1 | ( ’Temp , ’avg , ’med | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’extr -- ’decrease -> ’high >>) } >

[7] < { 1 | ( ’Temp , ’avg , ’high | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>) }

{ 2 | ( ’Temp , ’avg , ’high | >= age(4) >>)
=> (<< ’Aedes , ’adult | ’low -- ’increase -> ’med >>) } >

[8] < { 1 | ( ’Temp , ’avg , ’high | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’med -- ’increase -> ’high >>) }

{ 2 | ( ’Temp , ’avg , ’high | >= age(4) >>) $\!\!\!\!\!\!\!$
=> (<< ’Aedes , ’adult | ’med -- ’increase -> ’high >>) } >

[9] < { 1 | ( ’Temp , ’avg , ’high | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’med -- ’increase -> ’extr >>) }

{ 1 | ( ’Temp , ’avg , ’high | >= age(16) >>)
=> (<< ’Aedes , ’adult | ’med -- ’increase -> ’extr >>) } >

[10] < { 1 | ( ’Temp , ’avg , ’high | >= age(0) >>)
=> (<< ’Aedes , ’adult | ’high -- ’increase -> ’extr >>) }

{ 2 | ( ’Temp , ’avg , ’high | >= age(2) >>)
=> (<< ’Aedes , ’adult | ’high -- ’increase -> ’extr >>) } >

Fig. 3. Plausible model for the mosquito case study.

are compared with the target events. For each option-free model, the model re-
finement engine records the number of times the model is invalidated by a target
event and, for each transition rule used within that model, it also records the
number of times the rule is applied through simulation. Finally, the recorded
information on the number of times the model is invalidated and its rules are
applied is combined into a sifting metric that is associated with that specific
model in order to provide a measure of model validation.

For each option-free model considered, the refinement mining returns a set
Ψ of option references representing the selected transition rule for each option
set and providing the number of times such a rule is applied. These references
are formally defined as follows.

Definition 1. An option reference is defined as a Maude term [k : i(j)]
where

– k is a reference to the option set whose identification number is k;
– i is a reference to the transition rule whose identification number is i within

the option set identified by k;
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– j is the number of times the referred transition rule has been applied during
the current simulation.

For example, in the following list of option references represented as a Maude
term

[1 : 1(0)] [&> [2 : 1(0)] [&> [3 : 1(1)] [&>

[4 : 2(1)] [&> [5 : 1(0)] [&> [6 : 1(2)] [&>

[7 : 1(0)] [&> [8 : 1(1)] [&> [9 : 2(0)] [&> [10 : 1(3)] (1)

rule 1 of option set 3, rule 2 of option set 4 and rule 1 of option set 8 are applied
once, rule 1 of option set 6 is applied twice and rule 1 of option set 10 is applied
three times, whereas all other selected rules are never applied.

4.1 Sifting Metric

Definition 2. A model reference is defined as a Maude term { µ, ω | Ψ },
where

– Ψ = [1 : i1(j1)] [&> . . . [&> [n : in(jn)] is a list of n option refer-
ences, one for each option set;

– ω is the number of times the model is invalidated by a target event;

– µ is the measure of model validation, which is calculated using the following
sifting metric

µ =
(1− c · ωη ) ·

∑n
k=1 jk

σ

in which

• η is the number of target events against which the model is checked during
simulation;

• c ≤ η is a positive constant that assigns a fixed weight to all invalidations;

• σ is the number of environmental state changes due to the occurrences
of environmental events.

For example, the model reference corresponding to the list of option references
represented as Maude term (1) above is

{ 8/17 , 0 | [1 : 1( 0)][&> [2 : 1(0)][&> [3 : 1(1)] [&>

[4 : 2(1)][&> [5 : 1(0)][&> [6 : 1(2)] [&>

[7 : 1(0)][&> [8 : 1(1)][&> [9 : 2(0)][&> [10 : 1(3)] }

where µ = 8/17 ' 0.47 is the value provided by the sifting metric and ω = 0
denotes that the model was never invalidated.

Definition 3. A refinement is a set of model references { µ, ω | Ψ }, such
that µ > 0.
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refinement no. models µ ω
∑n

k=1 jk

32 32 8/17 ' 0.471 0 8
models for 64 0 1 8 or 10
c = 10 = η 32 −10/17 ' −0.588 2 10

96 32 8/17 ' 0.471 0 8
models for 32 1/17 ' 0.059 1 10
c = 9 < η 32 4/85 ' 0.047 1 8

32 −8/17 ' −0.471 2 10

128 32 9/17 ' 0.529 1 10
models for 32 8/17 ' 0.471 0 8
c = 1 < η 32 8/17 ' 0.471 2 10

32 36/85 ' 0.424 1 8

Table 3. Results from applying refinement mining to the plausible model in Fig. 3
(128 option-free models, η = 10 and σ = 17).

The probability that the model is invalidated by a target event is given by ω
η .

Thus, for c = 1, term 1 − c · ωη gives the probability that the model is not
invalidated by a target event. The higher such a value, the more accurate the
model. The role of constant c is to take noise into account. We choose c < η in
situations in which noise may invalidate correct models. In this case the higher
the noise, the smaller should c be chosen. Unfortunately, the sifting metric cannot
help in situations in which noise may validate incorrect models. In the absence
of noise we could choose c = η, which includes in the refinement only the models
that are never invalidated, but would exclude possible models invalidated by
noise. In our previous work [4] we sifted out a model at the first invalidation.
This can be reproduced in our more general framework by choosing c = η.

Term (
∑n
k=1 jk) gives the total number of transition rules applications. Since

transition rules are only applied after an environmental state changes due to the
occurrence of an environmental event, term (

∑n
k=1 jk)/σ gives the probability

of application of transition rules after an environmental change. This provides
a measure of how frequently the model evolves in response to environmental
changes. Therefore metric µ combines the fact that the model is validated by
the target events (term 1− c · ωη ) with the responsiveness of the model to envi-

ronmental events (term (
∑n
k=1 jk)/σ).

Table 3 shows the results of applying refinement mining to our case study.
In absence of noise, for c = η = 10, the refinement comprises 32 out of 128
option-free models, i.e. all option-free models that are not invalidated (ω = 0).
However, for c = 9 < η, the number of option-free models in the refinement
increases to 96 and, for c = 1 < η, the refinement actually comprises all 128
option-free models, with some models with 1 invalidation (ω = 1) being better
than all models with 0 invalidations (ω = 0). In fact, the negative effect of ω on
metric µ is directly proportional to constant c and inversely proportional to the
number η of target events. Thus, in our case study, the small number of target
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events η = 10 makes the effect of ω decrease quickly when c decreases: a small
η cannot effectively validate the model against noise.

5 Conclusion and Future Work

In this tool paper we have presented the architecture of FormalMiner and de-
scribed how refinement mining is carried out on a real case study from ecology.
With respect to our previous work [4, 5], we emphasised on practical aspects
such as the sifting metric, which is used to evaluate the validity of alternative
option-free instances of the model. In particular, the sifting metric was simpli-
fied by removing the dependency from the number of option sets. The definition
of refinement was also simplified by removing the notion of a threshold. These
simplifications led to a more informative output of FormalMiner, which allows
us to improve the refinement mining strategy as discussed below.

In our previous work [5] we discussed the complexity of model mining and
presented the results of timing testing. In term of complexity, we observed that
the number of transition rule applications grows linearly with respect to the size
of the dataset. Moreover, the complexity of the refinement mining algorithm is
subquadratic with respect to both the size of the dataset and the number of
option-free models.

The main problem is that the total number of option-free models grows expo-
nentially with the number of options per option set. In this sense the complexity
is exponential with respect to the level of option-related non-determinism. It is
therefore a good strategy to apply refinement mining repeatedly on plausible
models which contain only a small number of options per option set. In this way,
we may get some ideas on which combinations of transition rules are incompat-
ible and then test them in separate runs of the refinement mining algorithm. In
particular, in Sect. 3.4, we suggested to initially include two rules corresponding
to what we expect to be reasonable lower and upper bound limits for the per-
sistence of a domain state. In this way, after running refinement mining once,
we can select the models that are part of the refinement (those for which µ > 0)
and then combine them in a new plausible model such that

1. when only one of the two rules of a pair with lower and upper bound limits
was excluded from the refinement, while the other rule was applied at least
once, a modified version of the former rule with limit closer to the bound of
the latter rule may be introduced;

2. when both rules of a pair with lower and upper bound limits were included
in the refinement, the more stringent rule may be eliminated;

3. when both rules of a pair with lower and upper bound limits were excluded
from the refinement, either their bound limits may be relaxed or both rules
may be eliminated, depending on whether or not we find these two rules
consistent with the rest of the plausible model.

Obviously pairs of rules that are included in the refinement but are never applied
require further data in order to be validated.
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For example, let us consider the option-free model defined by the list of
option references reppresented by Maude term (1) in Sect. 4, which is part of
the refinement for any choice of constant c. Since rule 2 was included in and rule
1 was excluded from option set 4 in the refinement, following item 1 above, we
may make the lower bound closer to the upper bound and run the refinement
mining again, thus finding out that for lower bounds between 6 and 9 also rule 1
is included in the refinement. This means that we can replace the two rules of the
pairs with just one rule with a persistence of 6 days as a condition. Since both
rules 1 and 2 of option set 8 were included in the refinement and applied once,
following item 2 above, we may eliminate rule 2, which requires a persistence of
4 days and is therefore more stringent than rule 1. Rules 3 and 4 of option set 4
were both excluded from the refinement. Following item 3 above, they may be
eliminated due to their inconsistency with rules 1 and 2 of option set 4. Finally,
rules in option sets 5, 7 and 9, which are never applied, require further target
events in order to be validated.

In our future work, we intend to automate the combination of option-free
models that are comprised by the refinement into a new plausible model. More-
over, we are planning to apply refinement mining to other case studies from
ecology and from other areas [2] such as human-computer interaction [3] and
emergency management [15].
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