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Abstract. Deterministic finite automaton (DFA) is a fundamental con-
cept in the theory of computation. The NP-hard DFA identification prob-
lem can be efficiently solved by translation to the Boolean satisfiability
problem (SAT). Previously we developed a technique to reduce the prob-
lem search space by enforcing DFA states to be enumerated in breadth-
first search (BFS) order. We proposed symmetry breaking predicates,
which can be added to Boolean formulae representing various automata
identification problems. In this paper we continue the study of SAT-based
approaches. First, we propose new predicates based on depth-first search
order. Second, we present three methods to identify all non-isomorphic
automata of the minimum size instead of just one — the #P-complete
problem which has not been solved before. Third, we revisited our im-
plementation of the BFS-based approach and conducted new evaluation
experiments. It occurs that BFS-based approach outperforms all other
exact algorithms for DFA identification and can be effectively applied
for finding all solutions of the problem.

Keywords: Grammatical inference, automata identification, symmetry
breaking, Boolean satisfiability

1 Introduction

A variety of models exists in automata theory but a deterministic finite au-

tomaton (DFA) is the basic one and among the most important ones. DFA is
a model that recognizes regular languages [1]. The essence of the DFA identifi-
cation (induction, learning, synthesis) problem is to find a minimum-size DFA
(a DFA with the minimum number of states) that is consistent with a given
set of labeled examples — positive-labeled strings that must be accepted by the
built DFA and negative-labeled strings that must be rejected. A smaller DFA
is simpler and, because of well-known Occam’s razor principle, it is a model
which better explains the observed examples. Thus the DFA learning problem
is to find the regular language that most likely was used to generate a set of
labeled examples. This problem is among the best-explored ones in grammatical
inference [2].

This problem was shown to be NP-hard in [3]. Nevertheless, several efficient
DFA learning approaches were developed, see, e.g., [2]. DFA identification using



evolutionary computation methods is one of historically the first and effective
approaches, see, e.g., [4, 5]. Subsequent research resulted in development of a
method for evolving DFA using a multi-start random hill climber, see, e.g., [6].

Later approaches are based on heuristic algorithms. The evidence driven

state-merging algorithm (EDSM) is the most commonly used and the only one
which can handle large-sized target DFA [7]. This algorithm is greedy and works
in polynomial time. Despite its efficiency in terms of solving time this approach
usually finds only a local optimum but not a global one. The performance of
EDSM was several times improved by using specialized search procedures, see,
e.g., [8, 9]. In [6] Lucas and Reynolds compared the EDSM algorithm and the evo-
lutionary algorithm (EA) mentioned above. They found that the EDSM-based
approach outperforms the EA in terms of solving time on almost all instances.

The methods mentioned above are not exact — they cannot guarantee that
the found DFA is one of the minimum-sized ones. Heule and Verwer proposed
so-called translation-to-SAT approach which can be applied to DFA identifica-
tion [10]. This approach, as it can be obtained from the name, is based on the
translation the original problem to well-studied Boolean satisfiability problem

(SAT). The performance of SAT solvers has significantly improved over the last
decade. This computational strength can be used in other problems by trans-

lating these problems into SAT instances, and subsequently running a modern
SAT solver on them. This approach was shown to be very competitive for some
problems, see, e.g., [11–14]. The authors have shown that translation-to-SAT is
effective for solving DFA identification as well. The SAT-based method is exact
as opposed to EA and EDSM algorithms, which is important because of the
mentioned Occam’s razor principle,. The authors also proposed a combined ap-
proach, which used a few EDSM steps as a preprocessing step, and won the first
prize at the StaMInA competition [15]. We do not consider of this step in our
paper because EDSM is not an exact algorithm.

There are symmetries in many combinatorial problems. Symmetry breaking

predicates can be added as constraints to SAT formula with purpose of elimi-
nation some or all symmetries and thus reduce the search space, see, e.g., [16].
When we talk about DFA the most obvious symmetries are groups of isomor-
phic automata. Heule and Verwer in [10] proposed simple but effective greedy
maximal clique (max-clique) algorithm. It allows reducing the amount of iso-
morphic automata in each group from n! to (n − k)!, where n is the size of
the DFA and k is the size of the found clique. We proposed symmetry break-
ing predicates which enforce DFA states to be enumerated in the breadth-first
search (BFS) order in [17]. These predicates can be added to a Boolean formula
before passing it to a SAT solver. This approach allows to reduce the amount
of isomorphic automata in each group from n! to only one representative — the
BFS-enumerated one. The results for the exact case still were not very good
in our previous paper. However, the BFS-based approach is more flexible than
max-clique — we demonstrated its flexibility by developing a modification of
the noiseless translation-to-SAT technique for the noisy case (some examples
are wrong-labeled).



In this paper we propose new symmetry breaking predicates based on depth-
first search (DFS) order. This is the modification of our previous BFS-based
approach. BFS-based predicates were not good enough to compete with the
max-clique algorithm in DFA identification in our previous paper. Therefore we
revisited our implementation of this technique. It occurs that both BFS-based
and DFS-based approaches clearly outperform current state-of-the-art DFASAT
from [10]. We also propose a method based on these techniques for solving the
problem of finding all automata (find-all) with the minimum number of states
which are consistent with a given set of examples. This problem has not been
solved efficiently before. Moreover, none of the existing approaches for the DFA
learning are applicable, even with slight modifications, to solve the find-all prob-
lem due to their nature. We use two ways of launching SAT solvers: relaunching
a non-incremental solver and using an incremental solver. We also developed
the heuristic backtracking method (almost similar to the one presented in the
paper [18]) as a baseline for comparing it with SAT-based ones.

2 Preliminaries and Previous Work

2.1 Encoding DFA Identification into SAT

We assume the reader to be familiar with the theory of languages and automata.
The purpose of the DFA identification problem is to find the minimum DFA
which is consistent with two given sets of strings: a set of positive examples
(S+) and is a set of negative examples (S−). In other words, the desired DFA
must accept all strings from S+ and reject all strings from S−. In this paper
it is assumed that DFA states are numbered from 1 to C and the start state
has number 1. The example of the minimum DFA for S+ = {aba, bb, bba} and
S− = {b, ba} is shown in Fig. 1a.

We briefly describe the current state-of-the-art approach for solving the con-
sidered problem. The first step of the technique proposed by Heule and Verwer
in [10] is to build an augmented prefix tree acceptor (APTA) from the given sets
S+ and S−. An APTA is a tree-shaped automaton based on a prefix tree for the
sets S+ and S− but with labeled states. It is called augmented because it may
contain states which are not accepting or rejecting. The APTA for S+ and S−

mentioned above is shown in Fig. 1b.
The second step is to construct the consistency graph (CG) for the built

APTA. The set of the CG vertices is the same as the APTA vertices set. Two
vertices in the CG are adjacent if their merging in the APTA and subsequent de-
terminization process will cause an inconsistency: a situation when an accepting
state is merged with a rejecting one. The CG for APTA from Fig 1b is shown
in Fig. 1c.

The third step of the method is to divide the CG vertices set into C disjoint
sets. Each set has to contain all vertices equivalent to the corresponding APTA
states which will be merged into one state in the resulting DFA. If such a sepa-
ration can be made, then the automaton with C states consistent with the given
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Fig. 1. An example of an APTA and its consistency graph

sets of strings exists and it can be easily built. C can be iterated from 1 and until
such a partition is found. Thus it is guaranteed that the found C-sized DFA is
the minimum DFA consistent with given behavior examples. This can be viewed
as a graph coloring problem and we need to color CG vertices into the minimum
number of colors in such a way that adjacent vertices have different colors.

The next step in the considered algorithm is to translate the graph coloring
problem into SAT. Authors proposed so-called compact encoding where they
use three kinds of Boolean variables to formulate all constraints in CNF: color

variables xv,i which indicate whether the vertex v in the CG is i-colored; parent

relation variables ya,i,j which indicate whether there is an a-labeled transition
from the i-colored state to the j-colored state in the target DFA; accepting color

variables zi which indicate whether the i-colored state in the target DFA is
accepting. There are four mandatory and four redundant types of clauses in the
proposed compact encoding. The reader can read about them in detail in [10].
The final step of the translation-to-SAT approach is to run an external SAT
solver with the built CNF formula. If the formula is satisfiable, then the target
DFA can be easily constructed from the found satisfying assignment. Otherwise,
the number of colors C is increased.

2.2 Symmetry Breakings Predicates

Large clique predicates. Heule and Verwer used symmetry breaking predi-
cates in their algorithm [10]. In the case when the CG cannot be colored into C

colors the SAT solver tries to solve the same problem C! times — one time for
each permutation of colors. In other words the solver considers C! isomorphic
automata. The authors suggested to find some large clique in the CG and to fix
the colors of its vertices. It helps to reduce the number of unnecessary consider-
ations because in any valid graph coloring all vertices in a clique obviously have
different colors. Thus, assuming that the size of the found clique is k, the solver
considers only (C − k)! isomorphic automata. Moreover, the process of iterating
over C can be started from k instead of 1.



BFS-based predicates. We proposed the new approach to symmetry break-
ing in our previous research [17]. Its main idea is to enforce DFA states to be
enumerated in the breadth-first search (BFS) order. If some order (say lexico-
graphical) on the transition symbols is fixed then only one representative of each
equivalence class with respect to the isomorphic relation is BFS-enumerated due
to the uniqueness of such BFS traversal. We call a DFA BFS-enumerated if
its enumeration corresponds to the order of states processing during the BFS
traversal. In other words, if we consider a BFS tree, built for some DFA and if
we arrange the children of each state from left to right according to the chosen
order on the transition symbols then numbers of states should increase from left
to right on the same depth (layer-order) and from top to bottom (depth-order).
In [17] we used the definition based on a BFS-queue which is equivalent to the
one described above but less apprehensible. An example of a BFS-enumerated
DFA is shown in Fig. 2a, and its BFS tree is shown in Fig. 2b.

1  b

2

a

3

c

4

a

5

b

6

c

c

a

7

b

 a,b,c

a,c

b

 b,c

 a

a,b,c

(a) An example of a BFS-enumerated
DFA

1

2

a

3

c

4

a

5

 b

6

c

7

 b

(b) A BFS tree of the DFA from
Fig. 2a

Fig. 2. A BFS-enumerated DFA and its BFS-tree

If such predicates are used then while a SAT solver searches for a DFA
consistent with the given samples, it is restricted to only BFS-enumerated ones.
To implement this we proposed three additional kinds of Boolean variables:

1. parent variables pj,i which are true if and only if state i is the parent of state
j in the BFS tree;

2. transition variables ti,j which are true if and only if there is a transition
from state i to state j;

3. minimum symbol variables ml,i,j which are true if and only if there is a
l-labeled transition from state i to state j and there are no such transitions
labeled with a smaller symbol (according to the choosen order on symbols).
These variables are used only in the case of a non-binary alphabet.

BFS-enumeration is enforced with the following seven clauses:



1.
∧

16i<j6C

(ti,j ⇔ yl1,i,j ∨ . . . ∨ylL,i,j) — definition of transition variables using

variables yl,i,j ;
2.

∧
16i<j6C

(pj,i ⇔ ti,j ∧ ¬ti−1,j ∧ . . . ∧ ¬t1,j) — definition of parent variables

using variables ti,j ;
3.

∧
26j6C

(pj,1 ∨ pj,2 ∨ . . . ∨ pj,j−1) — each state except the start one holds a

parent with a smaller number (depth-order);
4.

∧
16k<i<j<C

(pj,i ⇒ ¬pj+1,k) — the ordering of children must be the same as

the ordering of parents (layer-order for children of different parents);
5.

∧
16i<j<C

(pj,i ∧pj+1,i ⇒ ya,i,j) — in case of a binary alphabet this constraint

is sufficient to order two children j and j+1 of state i (layer-order for children
of one parent);

6.
∧

16i<j6C

∧
16n6L

(mln,i,j ⇔ yln,i,j ∧ ¬yln−1,i,j ∧ . . . ∧ ¬yl1,i,j) — definition of

miminum symbol variables using variables yl,i,j which are used in case of a
non-binary alphabet;

7.
∧

16i<j<C

∧
16k<n6L

(pj,i ∧ pj+1,i ∧ mln,i,j ⇒ ¬mlk,i,j+1) — in case of a non-

binary alphabet this constraint forces children of a state to be ordered ac-
cording to the chosen order on symbols (layer-order for children of one par-
ent).

Using variables and clauses described above one can force an automaton to
be BFS-enumerated. Unfortunately the implementation of these methods was
not perfect when we prepared our previous paper [17] so the results did not
show the real improvement caused by the proposed method. We revisited it and
performed new evaluation experiments. The results are shown in Section 5 and
they are quite impressive.

3 DFS-based Symmetry Breaking Predicates

In this section we propose a new way to fix automata states enumeration to
avoid consideration of isomorphic automata during SAT solving. This approach
is a modification of our BFS-based predicates. It enforces automata states to
be enumerated in the depth-first search (DFS) order. We describe the method
briefly, paying attention only to the differences between DFS- and BFS-based
approaches. Detailed information about BFS-based predicates can be found in
Section 2.2.

During DFS processing it is necessary to find all adjacent unvisited states
for each unvisited state of the DFA. Firstly, the DFS algorithm handles the
initial DFA state. Then the algorithm processes the children of this state and
recursively executes for each of them. We process child states in some particular

(e.g., alphabetical) order of symbols l on transitions i
l

−→ j. Thus again only one
representative of each equivalence class with respect to the isomorphic relation



will be processed. We call a DFA DFS-enumerated if its states are numbered in
the order of handling them by DFS traversal with chosen symbol order. Although
there is no traversal, we refer to it for the definition and explanation. The set of
developed constraints enforces DFS. An example of a DFS-enumerated DFA is
shown in Fig. 3a. A DFS tree for this DFA is shown in Fig. 3b.
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Fig. 3. A DFS-enumerated DFA and its DFS tree

All variables which were used for the BFS enumeration are also used for
the DFS enumeration, but some the constraints must be changed. In the DFS
enumeration pj,i variables (pj,i is true if and only if state i is the parent of j in the
DFS tree) are defined differently. Due to the greediness of the DFS algorithm,
state i is the parent of state j if it has the maximum number among states that
have a transition to j:

∧

1≤i<j≤C

(pj,i ⇔ ti,j ∧ ¬ti+1,j ∧ . . . ∧ ¬tj−1,j),

where ti,j ≡ 1 if and only if there is a transition between i and j (these variables
in their turn are defined by using yl,i,j variables).

Moreover, in the DFS enumeration instead of the children ordering constraint
we use the following one. If i is the parent of state j and k is a state between i

and j (i < k < j) then there is no transition from state k to state q, where q is
bigger than j: ∧

1≤i<k<j<q<C

(pj,i ⇒ ¬tk,q).



Indeed, since i < k < j, state k has to be considered by the DFS algorithm
before state j. Hence if such a transition would exist then state k must have a
lower number than state j.

Now, to enforce the DFA to be DFS-enumerated we have to order chil-
dren according to symbols on transitions (e.g., alphabetically). We consider two
cases: alphabet Σ consists of two symbols {a, b} and more than two symbols
{l1, . . . , lL}. In the case of two symbols state i can have only two transitions: to
state j and to state k (where without loss of generality j < k). If the transition
from state i to state j is used during the DFS traversal then it must be labeled
with a smaller symbol:

∧

1≤i<j<k<C

(pj,i ∧ ti,k ⇒ ya,i,j),

because otherwise state k had to be processed earlier.
In the second case we have to use ml,i,j variables: ml,i,j is true if and only if

there is an l-labeled transition from state i to state j and there is no transition
from state i to state j with an alphabetically smaller symbol. The idea is similar
to the previous case. For state i it remains to arrange its children in the chosen
order. For any two transitions from state i to state j and from state i to state
k (where without loss of generality j < k), if state j is used during the DFS
traversal then it must be labeled with a smaller symbol:

∧

1≤i<j<k≤C

∧

1≤m<n≤L

(pj,i ∧ ti,k ∧ mln,i,j ⇒ ¬mlm,i,k).

Thus we proposed the new set of constraints which enforce a DFA to be DFS-
enumerated. The predicates (for the case of three or more symbols) translated
into O(C4 + C3L2) (where C is the number of colors and L is the alphabet size)
CNF clauses which are listed in Table 1 together with BFS-based predicates,
which are translated into O(C3 + C2L2) clauses.

Table 1. DFS-based and BFS-based symmetry breaking clauses

Clauses Range

B
ot

h

ti,j ⇒ (yl1,i,j ∨ . . . ∨ ylL,i,j) 1 ≤ i < j ≤ C

yi,j,l ⇒ ti,j 1 ≤ i < j ≤ C; l ∈ Σ

pj,i ⇒ ti,j 1 ≤ i < j ≤ C

pj,1 ∨ pj,2 ∨ . . . ∨ pj,j−1 2 ≤ j ≤ C

ml,i,j ⇒ yl,i,j 1 ≤ i < j ≤ C; l ∈ Σ

mln,i,j ⇒ ¬ylk,i,j 1 ≤ i < j ≤ C; 1 ≤ k < n ≤ L

(yln,i,j ∧ ¬yln−1,i,j ∧ . . . ∧ ¬yl1,i,j)⇒ mln,i,j 1 ≤ i < j ≤ C; 1 ≤ n ≤ L

D
F

S

pj,i ⇒ ¬tk,j 1 ≤ i < k < j ≤ C

(ti,j ∧ ¬ti+1,j ∧ . . . ∧ ¬tj−1,j)⇒ pj,i 1 ≤ i < j ≤ C

pj,i ⇒ ¬tk,q 1 ≤ i < k < j < q ≤ C

(pj,i ∧ pk,i ∧mln,i,j)⇒ ¬mlm,i,k 1 ≤ i < j < k ≤ C; 1 ≤ m < n ≤ L

B
F

S

pj,i ⇒ ¬tk,j 1 ≤ k < i < j ≤ C

(ti,j ∧ ¬ti−1,j ∧ . . . ∧ ¬t1,j)⇒ pj,i 1 ≤ i < j ≤ C

pj,i ⇒ ¬pj+1,k 1 ≤ k < i < j < C

(pj,i ∧ pj+1,i ∧mln,i,j)⇒ ¬mlm,i,j+1 1 ≤ i < j < C; 1 ≤ m < n ≤ L



4 The find-all problem

In this section we consider the problem of finding all non-isomorphic DFA (find-

all problem) with the minimum number of states which are consistent with a
given set of strings. We propose a way to modify the SAT-based method of solv-
ing regular DFA identification problem in order to apply it to the find-all prob-
lem. We consider two ways of using SAT solvers: restarting a non-incremental
solver after finding each automaton and using an incremental solver — if such
a solver finds a solution, it retains its state and is ready to accept new clauses.
The most common interface and technique for incremental SAT solving was pro-
posed in [19]. We also propose the heuristic backtracking method as a baseline
for comparing it with SAT-based ones.

4.1 SAT-based methods

The main idea of SAT-based methods of solving the find-all problem is to ban
satisfying interpretations (variable values) which have already been found. It is
obvious that if the proposed symmetry breaking predicates are not used then
this approach finds many isomorphic automata — exactly C! for each equiva-
lence class where C is the DFA size. Since max-clique predicates fix k colors only
(where k is the clique size), the algorithm of Heule and Verwer finds (C − k)!
isomorphic automata which is still bad. The BFS-based and DFS-based symme-
try breaking predicates allow us to ban isomorphic DFA from one equality class
by banning an accordingly enumerated representative. It must be noted that al-
though the idea to discard satisfying interpretations is classic for such methods,
it cannot be used in practice without effective symmetry breaking techniques.
There were no known techniques to deal with factorial number of isomorphic
automata earlier, and thus the considered problem could not be solved effec-
tively. Proposed symmetry breaking predicates change the situation and bring
the solution. It is easy to implement this by adding a blocking clause into the
Boolean formula. Since we know that yl,i,j variables define the structure of the
target DFA entirely, it is enough to forbid only values of these variables from
the found interpretation:

¬y1 ∨ ¬y2 ∨ . . . ∨ ¬yn|Σ|,

where yk is some yl,i,j from the found interpretation for 1 < k < n|Σ|.
There are two different ways of using SAT solvers as it was stated above. First,

we can restart a non-incremental SAT solver with the new Boolean formula with
the blocking clause after finding each automaton. The second approach is based
on incremental SAT solvers: after each found automaton we add the blocking
clause to the solver and continue its execution.

It is necessary to mention the case when some transitions of the found DFA
are not covered by the APTA. It means that there are some free transitions
which are not used during processing any given word and each such transition
can end in any state, since this does not influence the consistency of the DFA



with a given set of strings. But in the case of the find-all problem basically we
do not wish to find all these automata distinguished only by such transitions.
Thus we propose a way to force all free transitions to be self-loops — end in the
same state as they start. To achieve that we add auxiliary ‘used’ variables: ul,i

is true if and only if there is an l-labeled APTA edge from the i-colored state:

∧

l∈Σ

∧

1≤i≤C

ul,i ⇔ x1,i ∨ . . . ∨ x|Vl|,i,

where Vl is the set of all the APTA states which have an outcoming edge la-
beled with l. To force unused transitions to be self-loop we add the following
constraints: ∧

l∈Σ

∧

1≤i≤C

¬ul,i ⇒ yl,i,i.

These additional constraints are translated into O(C|L|) clauses. See Fig. 4 for
an example of an APTA for S+ = {ab, b, ba, bbb} and S− = {abbb} and its
consistent DFA with an unused transition. If we add the proposed constraints,
then this transition will be forced to be a loop as shown by a dashed line in
Fig. 4b.
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4.2 Backtracking algorithm

The solution based on backtracking does not use any external tools like SAT
solvers. This algorithm works as follows. Initially there is an empty DFA with n

states. Also there is a frontier – the set of edges from the APTA which are not
yet represented in the DFA. Initially the frontier contains all outcoming edges of
the APTA root. The recursive function Backtracking maintains the frontier in
the proper state. If the frontier is not empty, then the function tries to augment
the DFA with one of its edges. Each found DFA is checked to be consistent
with the APTA and if the DFA complies with it then an updated frontier is



found. If the frontier is empty then the DFA is checked for completeness (a DFA
is complete if there are transitions from each state labeled with all alphabet
symbols). If it is not complete and there are nodes which have the number of
outcoming edges less than the alphabet size then we add missing edges as self-
loops with function MakeComplete. Algorithm 1 illustrates the solution. The
function FindNewFrontier returns the new frontier for the augmented DFA or
null if the DFA is inconsistent with the APTA. This algorithm is an exact search
algorithm based on the one from [18].

Data: augmented prefix tree acceptor APTA, current DFA (initially empty),
frontier (initially contains all APTA root outcoming edges)

DFAset ← new Set<DFA>

edge ← any edge from frontier

foreach destination ∈ 1..|S| do
source ← the state of DFA from which edge should be added
DFA′ ← DFA ∪ transition(source, destination, edge.label)
frontier′ ← FindNewFrontier(APTA, DFA′, frontier)

if frontier′ 6= null then

if frontier′ = ∅ then

DFAset.add(MakeComplete(DFA′))

else

DFAset.add(Backtracking(APTA, DFA′, frontier′))

end

end

end

return DFAset

Algorithm 1: Backtracking solution

5 Experiments

All experiments were performed using a machine with an AMD Opteron 6378 2.4
GHz processor running Ubuntu 14.04. All algorithms were implemented in Java,
the lingeling SAT solver was used [20]. As far as we know all common benchmarks
are too hard for solving by exact algorithms without some heuristic non-exact
steps. Thus our own algorithm was used for generating problem instances. This
algorithm builds a set of strings with the following parameters: size N of DFA
to be generated, alphabet size A, the number S of strings to be generated.
The algorithm is arranged as follows. First of all N states are generated and
uniquely numerated from 1 to N . Each state is equiprobably set to be accepting
or rejecting. Next on step i the algorithm picks state i, evenly chooses another
state from [i + 1; N ] and adds a random-labeled transition from the first state
to the second. After N − 1 such steps we have partially built an automaton
where all states are reachable from the initial one (1-numbered). In the end the



algorithm picks each state one by one and add all missing (in terms of automaton
completeness) transitions with destination randomly chosen among all states.
Finally S strings are generated by processing the automaton. The distribution
of the words’ length is shifted to longer words. These strings with the accepting
or rejecting labels form the instance of the DFA identification problem.

For DFA identification we used the following parameters: N ∈ [10; 30] with
step 2, A = 2, S = 50N . We compared the SAT-based approach with three
types of symmetry breaking predicates: the max-clique algorithm from [10] (the
current state-of-the-art) and the proposed DFS-based and BFS-based methods.
Each experiment was repeated 100 times. The time limit was set to 3600 seconds.
The results are listed in Table 2. It can be seen from the table that both DFS-
based and BFS-based strategies clearly outperform the max-clique approach.
BFS-based strategy in its turn notably outperforms DFS-based one when target
automaton size is larger than 14. These results for the BFS-based approach were
not obtained in our previous research due to weaker technical implementation.

Table 2. Median execution times of exact solving DFA identification in seconds

N DFS BFS max-clique
10 20.9 20.5 23.3
12 40.4 37.6 240.3
14 82.2 62.4 TL
16 205.1 114.1 TL
18 601.7 181.9 TL
20 2501.6 293.7 TL
22 TL 453.3 TL
24 TL 625.1 TL
26 TL 925.8 TL
28 TL 1314.4 TL
30 TL 1635.5 TL

The second experiment concerned the find-all problem. A random dataset
was also used here. We used the following parameters: N ∈ [5; 15], A = 2, S ∈
{5N, 10N, 25N}. We compared the BFS-SAT-based method with the restart-
ing strategy (REST column in the table), the BFS-SAT-based method with the
incremental strategy (INC) and the backtracking method (BTR). Each experi-
ment was repeated 100 times as well. The time limit was set to 3600 seconds.
The results are given in Table 3. The first column in each subtable contains the
number of instances which have more than one DFA in the solution (> 1). If
less than 50 instances were solved then TL is shown instead of a value. It can be
seen from the table that SAT-based methods work significantly faster than the
backtracking one when the size of the automaton is greater than 8. It happens
because the SAT-based methods with BFS-based predicates consider only one
DFA for each equivalence class with respect to the isomorphic relation instead
of N !. As we see, the incremental strategy in its turn clearly outperforms the



restart strategy. It can be explained as incremental SAT solver saves its state
but non-incremental solver does the same actions on each execution.

Table 3. Median execution times in seconds of SAT-based restart method, SAT-based
incremental method and backtracking method

|N |
S = 5|N | S = 10|N | S = 25|N |

>1 REST INC BTR >1 REST INC BTR >1 REST INC BTR
5 53 2.3 2.0 0.8 40 3.6 3.3 1.3 17 4.1 3.4 1.5
6 56 2.8 2.4 2.1 31 4.7 3.9 1.7 27 5.4 4.3 1.7
7 87 3.9 2.5 4.1 27 3.7 3.0 3.1 13 7.4 6.7 2.5
8 80 4.6 3.7 87.2 34 7.0 6.5 41.7 16 10.1 8.9 11.6
9 91 7.6 3.9 475.1 50 7.7 6.4 121.6 10 13.8 13.0 61.4
10 89 15.7 5.3 2756.2 47 8.6 7.0 974.7 11 18.8 16.1 276.8
11 94 19.9 7.3 TL 63 18.5 13.8 3108.0 9 24.5 21.9 1158.4
12 90 28.0 9.9 TL 49 22.3 16.7 TL 8 33.5 27.2 3289.1
13 92 185.5 18.1 TL 57 36.9 22.6 TL 12 62.0 51.4 TL
14 87 408.5 49.0 TL 71 85.1 41.8 TL 4 67.0 56.2 TL
15 95 571.1 174.1 TL 69 193.3 95.7 TL 6 29.2 26.2 TL

Our implementation of proposed predicates and algorithms is available on
our laboratory github repository1.

6 Conclusions

We have proposed DFS-based symmetry breaking predicates. They can be added
to the Boolean formula before passing it to a SAT solver while solving various
DFA identification problems with SAT-based algorithms. Using these predicates
allows reducing the problem search space by enforcing DFA states to be enu-
merated in the depth-first search order.

We have revisited our implementation of the proposed symmetry break-
ing predicates and compared the translation-to-SAT method from [10] to the
same one with proposed symmetry breaking predicates instead of original max-
clique predicates. The proposed approach clearly improved the translation-to-
SAT technique which was demonstrated with the experiments on randomly gen-
erated input data. The BFS-based approach has shown better results than the
DFS-based one if the target DFA size is large.

Then, we have proposed a solution for the find-all DFA problem. The pro-
posed approach can efficiently solve the problem that the previously developed
methods cannot be applied for. We performed the experiments which have shown
that our approach with the incremental SAT solver clearly outperfoms the Back-
tracking algorithm.

1 https://github.com/ctlab/DFA-Inductor
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