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Abstract. Addiction is a complex phenomenon, stemming from envi-
ronmental, biological and psychological causes. It is defined as a natural
response of the body to external pulses, such as drugs, alcohol, but also
job, love and Internet technologies, that become compulsive needs, diffi-
cult to remove. At the neurological level, the Dopamine System plays a
key role in the addiction process. Mathematical models of the Dopamine
System have been proposed to study addiction to nicotine, drugs and
gambling. In this paper, we propose a Hybrid Automata model of the
Dopaminergic System, based on the mathematical model proposed by
Gutkin et al., that allows different kinds of addiction causes to be de-
scribed. In particular, we consider the problem of Internet addiction and
its spread through interaction on social networks. This study is under-
taken by performing simulations of virtual social networks by varying
the network topology and the interaction propensity of users. We show
that scale-free networks favour the emergence of addiction phenomena,
in particular when users having a high interaction propensity are present.

Keywords: computational model, Hybrid Automata, simulation, scale-
free networks, dopamine system, internet addiction, social networks

1 Introduction

Addiction is a social and complex phenomenon that has had different interpre-
tations over the years. We can define it as a natural response of the body to
some substances and external stimuli that, having a strong repercussion on the
organism, become a compulsive need. This condition is difficult to remove be-
cause dependence produces a false feeling of wellness, which leads to a total loss
of control and to repeat the same actions periodically. Many factors contribute
to the development of addiction; it can be influenced by biological, psychological
and environmental factors.

From the biological point of view, the brain has the central role: many neural
circuits and, above all, the Dopamine System, are involved in the addiction
process [I7]. Dopamine is a neurotransmitter and has many functions in the
body. In the brain, it has a key role in the reward system: the level of dopamine



changes after a desired external stimulus is received (the achievement of a goal,
the intake of a chemical substance, etc.), producing a sensation of pleasure. Such
a sensation may induce the subject to look for a repetition of the stimulus. If
repetition happens too frequently, the subject may enter an addiction state in
which the effect of dopamine decreases (tolerance). This can cause the addict to
look for stronger stimuli and to suffer in case of absence of stimuli.

Environmental aspects of addiction are the subject of recent studies [2], focus-
ing on the impact of age, sex and social background on the spread of addiction,
on which the effect of the peer group acts too. Indeed, some habits are easily
shared in social aggregation because of the emulation principle for which people
in a group tend to imitate each other.

In this paper, we study Internet addiction, namely the excessive Internet (and
technology) use that may interfere with daily life, and the way it spreads through
the interaction on social networks. In particular, we show that the scale-free
topology of social networks could be a favoring factor for the spread of Internet
addiction among their users.

To facilitate and improve the comprehension of this particular kind of addic-
tion, we examined it from a computational perspective. Our hypothesis combines
the last theories about the use of social networks [9] from the users and the pre-
existing computational models of addiction to drugs [I6] and, in particular, to
cocaine [7], since there aren’t other models on Internet addiction.

We start from the mathematical model proposed by Gutkin et al. in [I0] for
the study of nicotine addiction. Such a model describes the main neurological
processes involved in addiction phenomena and it has been validated against
experimental data [6]. Moreover, the model describes the interaction between
dopamine and neurological receptors that lead to persistent changes in brain
structures (due to neuronal plasticity) that really occur in the case of addiction.

In our work, we simplify and, subsequently, extend the model proposed by
Gutkin et al. in order to adapt it to different forms of addiction. To this purpose,
we define our model in terms of Hybrid Automata [I1], that allow us to better
describe the different responses of the Dopaminergic System to stimuli of differ-
ent intensities, and to better separate the description of the neural structures
from the description of the external stimuli that are the cause of addiction.

In order to show that our model is a conservative modification and exten-
sion of the model in [10], we perform simulations that reproduce the results on
nicotine addiction already obtained by Gutkin et al. Subsequently, we move to
the problem of Internet addiction by performing simulations of networks of in-
dividuals, rather than of a single subject. This means that in each simulation
experiment the model is replicated as many times as the number of individuals
of the network. Moreover, stimuli for an individual are represented by messages
sent to and received from other individuals in the network. Consequently, each
individual has his/her own dopamine level and stimuli may cause some of the
individuals to become addict.

We perform simulation experiments of three kinds of network: a 2-nodes
network, a star graph and scale-free networks. The first two kinds of network



are used to reason on the model parameters (in particular, on the interaction
propensity factor of social network users), while the scale-free networks (that
may represent the structure of a real social network) are used to show that such
a topology may actually favor the spread of Internet addiction.

2 The Model of the Dopaminergic System

We start from the model proposed by Gutkin et al. [I0], which defines the work-
ing principles of the Dopaminergic System in the case of constant stimuli.

Mathematical model. The model consists of differential equations describing
the dynamics of the Dopaminergic System, of the Action-Selection circuits and
of synaptic plasticity. We give a simplified definition of the model by describing
the Action-Selection and synaptic plasticity components by means of a simpler
differential equation representing, in a abstract way, the “memorization” of the
received stimuli. Moreover, we replace the sigmoid functions used in the model to
implement threshold-based switches, with simpler differential equations defined
by cases. As a result, we obtain a model consisting of two differential equations:

— Dopamine concentration. We have an equation describing the dynamics of
variable D representing the dopamine concentration in the prefrontal cortex:
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The dynamics of D is calculated by considering the following parameters:

e [ is the basal production rate of dopamine;

e r is the perceived stimulus;

e M is the memory of the stimulus, whose value is given by the second

differential equation;

e 0, is the positive threshold, in the simulation is set to 80;

e 0, is the negative threshold, in the simulation is set to -30;

e o = (.3 is a unique time-scaling parameter.
Apart from standard decay and basal production, the differential equation
describes the dynamics of the dopamine concentration by considering three
cases given by the comparison of the current stimulus r with the memory
M. When the stimulus is largely greater than the memory, the dopamine
concentration increases. When the stimulus and the memory are comparable
the dopamine concentration does not increase. Finally, when the stimulus is
largely smaller than the memory, the dopamine concentration decreases with
a rate that depends both on D and on M.

— Memory. The second differential equation describes, in an abstract way, the
opponent process (in psychology defined as a contrary emotional reaction to
a previous stimulus) that is modeled as a “memorization” process of previous
stimuli.
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Dopamine and memory take different times to reach “high” values: Memory
requires some time to reach values comparable to the stimulus r, but when
it reaches such a level, it contrasts the increase of dopamine concentration
in the brain.

To establish if a user became addicted, we considered properly the mem-
ory level, because it represents the tolerance and so the phenomenon that
better characterizes the addiction. As threshold we selected M > 15, be-
cause at that point in the performed simulations, the users showed peaks
and consequently decreases in dopamine trend.

Hybrid Automata model. Hybrid Automata [3II1] are finite state automata
in which states are associated to differential equations that describe the dynamics
of a set of continuous variables. Transitions of Hybrid Automaton can update
the values of the variables in a discrete way. Moreover, by moving to a different
state, transitions can also activate a different set of differential equations.

We propose a Hybrid Automata model to analyse the mechanisms of Dopamin-
ergic System in an addiction context. It is an extension of the model by Gutkin
et al. because it allows different types of stimuli to be dealt with. The stimu-
lus is no longer a simple parameter of the differential equations, but becomes a
continuous variable whose dynamics is governed by a Hybrid Automaton.

Indeed, by exploiting the modularity of Hybrid Automata, we can separate
the part of the model describing the Dopaminergic System from the part of the
model describing the dynamics of the stimuli. The two parts are described by two
different automata that are composed in parallel. In order to consider a different
stimulus (or a stimulus with a different dynamics) it will be enough to change
the relevant automaton, without changing the automaton of the Dopaminergic
System.

In order to validate our model and to show that it is a conservative modifica-
tion and extension of the one proposed by Gutkin et al., we used it to reproduce
the experiments on nicotine addiction presented in [10].

In Figure 1 the two automata constituting our model are depicted. The
biggest one is the automaton describing the Dopaminergic System. It essentially
corresponds to the already described differential equations of the dopamine con-
centration D and of the memory M, in which the cases are made explicit as
different states of the automaton. The initial values of D and M are 0.2 and 0,
which represent, in percentage, the neural activation as in [I0]. The initial state
of this automaton depends on the initial value of the stimulus 7.

The smaller automaton is the one describing the stimulus, i.e. the contin-
uous variable r. In this case, the stimulus dynamics is the same considered in
[10]: initially set to 100, then constant for 25 days and then interrupted (by the
transition that updates r into 0). The parameter, representing the constant stim-
ulus, is experimentally obtained from the performed simulations, to reproduce
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Fig. 1: Hybrid Automata of the Dopaminergic System and of a stimulus that remains
constant for 25 days and then is interrupted.

the achieved results in [I0]. The continuous variable T' and the corresponding
differential equations are used only to make it possible to define the guard on
the elapsed time (25 days).

Simulation. The simulation and, in particular, the resolution of the differential
equations are implemented using GNU Octave [12]. In Octave, the differential
equation is written in the form of a vector zdot that is passed to the standard
ODE solver LSODE. The discrete transitions are implemented as if-then-else
conditions inside the functions computing zdot. The Octave source code of the
model is freely available online [1].

Graphical results. From the performed simulations, we get three graphs, rep-
resenting respectively dopamine and memory trends, in relation to impulses. The
dopamine trend, similar to graphs in [I0], shows an initial peak resulting in with-
drawal symptoms before the stimulus interruption after 25 days. Subsequently,
the dopamine concentration is sustained only by the basal production rate. The
performance of the memory, however, corresponds to the opponent process, that
in the motivational theory has the function to quiet a previous process, which
becomes weaker.



The memory ensures the pulse is ab-
sorbed and routinized, reducing its percep- o
tion. It grows slower than the dopamine o
and shows no peaks, but its growth counter- -
acts the constant dopamine trend, causing a o
spike down when the impulse is interrupted. e .

In order to study the possible scenarios Memory
of addiction development, in [T4], we modi- ‘
fied the automaton describing the stimulus
in order to describe non-constant stimuli. In
particular, we studied how the dopamine re-
sponse changes to stimuli provided at reg- i ime
ular intervals and to impulsive stimuli in Impulses
which both the frequency and the intensity ol
change dynamically in response to changes F
in the dopamine concentration (in order to fo -
simulate a subject that looks for more fre- . ,
quent or stronger stimuli when the feeling of
satisfaction due to the high dopamine con-
centration disappears).

Dopamine

Fig. 2: Results of simulation at
constant pulses

3 The Internet addiction

In few years, the impact of Internet and technology has fundamentally changed
the way we relate and communicate with each other [21]. People, especially the
younger ones, tend to prefer non-verbal communication, choosing text messages
to communicate with their peers [9]. Adopting a computer-mediated communi-
cation has multiple consequences, such as the loss of empathy and the increase
of cortisol, resulting in increased stress and addiction [I3]. Usually, users show
a different attitude to this communication form, which mainly depends on their
level of stress, sense of isolation and inadequacy [I5]. To investigate this type of
behaviour, we decided to use our model of addiction to study different kinds of
scenario. Among all the kinds of Internet addiction, we choose to consider the
one due to social network usage since, as reported in some recent studies, it is a
very common and increasing phenomenon [19/20].

3.1 The network communication model

Social networks, similarly to many other Internet related networks, have a scale-
free topology [8]. Therefore, in order to study them, we consider graphs in which
each node corresponds to a user, edges corresponds to social network connections.
Our automata-based model is then replicated once for each node of the graph,
thus allowing the dopamine and memory levels of each user to be considered and
simulated.



Each node of the graph (that is, each user) is also associated to a parameter,
which spans the range [0,1], that we call propensity factor. Such a factor, governs
the approach to the network and influences the probability of such user to send
(or reply to) messages through the social network.

In particular, communication on the social network is simulated as follows:

— we assume, for simplicity, that each user can send at most one message
each day (apart from replies). Such a single message actually represents, in
an abstract way, the involvement of the user in social network interactions
during such a day;

— on each day, each user chooses with a probability proportional to his/her
propensity factor whether to send a message to his/her neighbors or not. If
sent, the message is received by all the neighbors;

— on the same day, all user that have received one or more messages choose
whether to reply or not, again with a probability proportional to their
propensity factors.

The exchange of messages causes stimuli to be received by users. In normal
conditions, when in the model a user receives a message, it receives also a stim-
ulus of intensity 100, that is comparable to the stimulus considered in the model
of nicotine addiction presented in the previous section. Moreover, when the user
becomes addict to such a stimulus, that is when the memory becomes greater
than a threshold level of 15, it receives an additional stimulus of intensity 150
at the time of sending a message. This additional stimulus is due to a particular
aspect of the Dopaminergic System, presented by Samson et al. in [I§]: in the
presence of addiction, the dopamine concentration increases also when the sub-
ject waits for a stimulus to whom he is particularly sensitive. Namely, addiction
causes the dopamine level to increase as a consequence of the expectation of a
reward. This phenomenon is often referred to as prediction error, as it is related
with withdrawal symptoms when a stimulus is expected, but then not obtained.

3.2 The experiments

We study our model on three forms of computer-mediated communication, rep-
resented as different graphs: (i) with only two nodes; (ii) with multiple nodes
constituting a star-graph; and, (iii) with multiple nodes constituting a scale-
free network. The 2-nodes graph allows us to better understand the role of the
propensity factor in the dynamics of the Dopaminergic System. The star-graph,
instead, allows us to better understand how the number of neighbors of a node
influences addiction development and propagation. Finally, the scale-free net-
works allow us to study the role of topology and of the presence of users with
high propensity factors in the spread of addiction through social networks.

We performed several simulation experiments for each graph topology and
by varying the propensity factors of users. In all experiments, the simulated
time corresponds to 50 days (as in the model of nicotine addiction described in
the previous section and in [10]). All the experiments have been performed by
implementing the model in the Python programming language. The source code
of the model is available at [I].
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Table 1: Each cell represents a simulation of the communication between two users,
with a different combination of propensity factors. On the vertical axis, there are the
propensities of User A, and on the horizontal axis those of User B. The reported values
and the color intensity, express the number of times each users became addicted.

Communication between two users. The first network topology, depicted
below, describes the communication between only two users, A and B.

This graph is used to examine the role

of the propensity factor. All the possible
combinations of users have been tested, in
this simple communication, to study the be-
haviour of the Dopaminergic System in dif-
ferent situations (summarised in Table .
For each combination, we made 100 simu-
lations and measured the number of times
in which one or both users became addicted
(i.e. M > 15).

These experiments allow us to identify three representative values for the
propensity factor (low, medium and high). As regards low and high values we
choose 0.2 and 0.9, respectively. Indeed, it can be seen that in the case of two
users with propensity 0.2, none of the two becomes addict; in the case of two
users with propensity 0.9, both of them become addict; finally, in the case of
one user with propensity 0.2 and the other with 0.9, only one becomes addict.



To find the medium value, we performed additional simulations (results not
shown) by varying the propensity factors of both users in the range [0.3, 0.4] by
steps of 0.05. We repeated these simulations 500 times for each combination of
parameters and, in the end, we identified 0.35 as medium value.

The star graph. This network is a particular kind of tree, in which every node
n is linked to the central one c. Each node interacts only with its neighbours. So,
when, for example, the node ¢ sends a message, it is received by all peripheral
nodes n; instead, when one of the peripheral nodes sends a message, it is received
only by node c.

To study the propagation of addiction in a graph, we start by considering how
many peripheral nodes are necessary to cause addiction of the central node c.
As depicted in the figure, in the simulations, we added peripheral nodes one by
one (all with the same propensity factor) until ¢ became addict, and we counted
how many peripheral nodes are necessary in order to reach such a result.

As summarised in Table 2, we used the three previously identified propensity
values both for the central node ¢ and the peripheral nodes n.

Nodes n
0.2]0.35|0.9
5]
0(0.2 19 |7 |4
B
Z0.35[8 1 [1
0.9 (1 |1 1
Few Nodes  More Nodes
O =

Table 2: Each cell represents the number of nodes we have to add in the graph to make
susceptible to the dependence the central node c¢. On the vertical axis and horizontal
factors, there are respectively the different propensity factors of the central node and
added nodes, used during the simulations.



With 0.2, we add the greater number of nodes, confirming that, with this
value, the interaction is really low. After studying how addiction influences
the network’s central node, we study how one of the peripheral nodes z whose
propensity factor is 0.2 (fixed) can be influenced by the others (both ¢ and n).

This time, by changing the propensity factor of the central node ¢, we count
how many nodes n we have to add to the graph until the target node = becomes
addicted (as shown in the figure).

Changing the propensity factor of the added nodes n, we are able to examine
different situations to notice what influences more between the central node and
the added nodes. As shown in Table 3, the number of nodes to add is proportional
to the propensity factor and, in particular, it is influenced by the central node,
because it has a direct connection with the node z.

Nodes N
0.2|0.35(0.9
0.2 |44 136 |17
0.35/17 |13 |5

0.9 |15 |7 |4

Few Nodes  More Nodes
O =

Table 3: Each cell represents the number of nodes we have to add in the graph to make
susceptible to the dependence the target node z. On the vertical axis and horizontal
factors, there are respectively the different propensity factors of the central node and
added nodes, used during the simulations.

Node C

Scale-free networks. The study of the two previous networks has allowed us
to test the model and to delineate the significant values of the propensity factor.



Now, with the aim of understanding what happens in social networks, we start
studying scale-free network topology.

The characteristics of scale-free networks is the presence of few nodes with a
very high degree. These high-degree nodes are called hubs and are responsible for
many phenomena in this kind of network. In particular, one of the most relevant
is the robustness to random failures: information, as well as phenomena like
diseases or computer viruses, spread differently on a scale-free network depending
on whether the propagation started from low-degree nodes or from the hubs. In
the first case, the nodes propagation is slower than the second case. This is
caused by the limited role of low-degree nodes in network integrity.

Experiments. For our experiments, we used scale-free networks of 100 nodes
generated in two different ways: with the Bollobds-Riordan (BR) [5] and the
Barédbasi-Albert (BA) [4] approaches. Both the approaches construct the network
by using a preferential attachment algorithm, defined as the probability to attach
a new node to one already present. Since both approaches generate scale-free
networks, in both cases we have degree distributions that follow a power law,
as shown in Figure [3} with the BR approach we usually obtain more hubs than
with the BA approach.

Degree histogram Degree histogram
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Fig. 3: Example of degree distribution of two scale-free networks generated with Bol-
lobas-Riordan (BR), on the left, and with Bardbasi-Albert (BA), on the right.

To compare the spread of addiction in the two kinds of scale-free networks,
we test our model by associating different propensity factors to the users. In
the first experiment, each user in the networks has a propensity factor equal
to 0.2. As we can notice in the Figure 4, the propagation of the addiction is
influenced by the topology of the network. Indeed, in the scale-free network
generated by the BR model, there are more hubs and as a consequence we
obtain more addicted nodes. To explore the difference between networks, we
associated medium and high propensity factors, to particular nodes. In the first
case, we made more susceptible to addiction some random nodes, to study how
changes the communication and the messages sharing; in the second case we



Fig. 4: On the left, there is the graph of scale-free network generated by BR; on the
right, the graph of scale-free generated by BA. When all nodes have propensity equal
to 0.2, 52 nodes become addicted (red color) in the first graph, 35 in the second one.

made susceptible an increasing number of hubs, to compare the result with
the first experiment. How shown in Figure [5] in line with the scale-free network
features, we notice that in the second case we obtain in the end a greater number
of addicted users. In Figure[6] we present different scale-free networks, generated
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Fig. 5: The difference between the number of the addicted users in BR and BA net-
works, when we change the propensity factor of some of the nodes (randomly chosen
on the top, chosen among hubs on the bottom). The size of the nodes in the graphs
represents their propensity factors.



Fig. 6: We made susceptible to addiction 20 random nodes and 20 hubs, in the two
scale-free models, setting their propensity factors before to 0.35 and after 0.9. On the
left, BR models, on the right the BA model.

by the two algorithms, in which we change the propensity factor of 20 nodes,
first randomly chosen and then chosen among hubs. In the BR model, we obtain
the greater number of addicted users.



4 Conclusions

The aim of this work is to propose a computational framework for the study of
addiction, taking into account both neurological and sociological characteristics.
To achieve this, we decided to proceed gradually, to understand the complexity
and dynamics of the phenomenon. Starting from the model proposed by Gutkin
et al., we developed a simplified modular model of the Dopaminergic System,
using the theory of Hybrid Automata. This allowed us to develop a hybrid sys-
tem consisting of two components, the Dopaminergic System and a generator
of stimuli, in order to dynamically grasp the trend of neurological activity, in
relation to many environmental factors. After a general overview we decided to
focus mainly on Internet Addiction because it is an unexplored phenomenon,
that have many sociological and psychological implications. Linked to this, we
decided to study how addiction is correlated to network topologies, testing how
people in a social network can influence each other.

Our model can be further developed: in the future, we plan to explore other
kinds of communication, using networks with a greater number of nodes, to
better investigate different stimuli (like for example non-deterministic stimuli)
and to consider non-constant propensity factors.
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