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Abstract. Security risk assessment and prevention in ICT systems rely
on the analysis of data on the joint behavior of the system and its (mali-
cious) users. The Haruspex tool models intelligent, goal-oriented agents
that reach their goals through attack sequences. Data is synthetically
generated through a Monte Carlo method that runs multiple simulations
of the attacks against the system. In this paper, we present a sequen-
tial pattern mining analysis of the database of attack sequences. The
intended objective is twofold: (1) to exploit the extracted patterns for
the design of attack counter-measures, and (2) for gaining a better un-
derstanding of the “degree of freedom” available for the attackers of a
system. We formally motivate the need for using maximal sequential pat-
terns, instead of frequent or closed sequential patterns, and report on the
results on a specific case study.

Keywords: Security risk assessment, attack sequences, sequential pat-
tern mining, maximum coverage problem.

1 Introduction

Approaches for security risk assessment and prevention in ICT systems rely on
the analysis of data on the joint behavior of the system and its (malicious) users.
Such data is typically collected over time after the deployment of a system. This
results in two main drawbacks. First, the approach cannot assess and manage risk
at design time, but only with a-posteriori sub-optimal remedies. This prevents a
principled by-design approach in risk analysis and management [8]. Second, the
data available for the analysis is both scarce and biased because one has to wait
for real attacks to take place and extreme events such as low frequency - high
impact attacks are not included.

The Haruspex tool [2] aims at predicting the behavior of a system under
attacks even before its deployment. It models intelligent, goal-oriented agents
that reach their goals through attack sequences. Data is synthetically generated
through a Monte Carlo method that runs multiple simulations of the attacks
against the system. Simulations rely on formal models of the target system and
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of the threat agents and they return a large sample of attack sequences. The
analysis of such data can reveal paths of successful attacks in an ICT network,
and suggest possible patches that block them at design-time.

This paper intends to improve simple statistical summaries of attack se-
quences. We exploit knowledge discovery approaches to extract informative pat-
terns from the data in the form of sequential patterns. The intended objective
is twofold: (1) to exploit the extracted patterns for the design of attack counter-
measures, and (2) for gaining a better understanding of the “degree of freedom”
available for the attackers of a system. Objective (1) can be achieved by us-
ing data mining models for making predictions on the next attack of a threat
agent that is following a matched pattern [4, 9, 11], hence enforcing dynamic
counter-measures. We instead take a different approach that selects from the
set of extracted patterns a set that covers as much as possible the successful
attack sequences of the threat agent. Such a set represents a global description
of the strategies of the agent. By reasoning on such characterization, we claim
that an analyst can derive useful information for the design of static counter-
measures, which are especially useful at system design time. Such a description,
possibly at alternative abstraction levels, is also useful to understand the “degree
of freedom” of an attacker that targets the ICT system, namely objective (2).

The paper is organized as follows. Section 2 introduces the Haruspex tool.
Section 3 describes a case study including a sample ICT system and modeling of
threat agents. Classes of sequential patterns and measures of interest for the field
of ICT risk assessment are then introduced in Section 4. Next, in Section 5, we
introduce a notion of covering for sets of sequential patterns and formally prove
that maximal sequential patterns is the most appropriate class for computing
covers. Section 6 discusses the covers found for attack sequences of our case
study. Finally, we discuss related work and summarize the contribution of the
paper.

2 ICT Risk Assessment: the Haruspex Approach

This section describes the tools of the Haruspex suite [1] that simulate the at-
tacker behaviors to produce synthetic attack sequences. In the following, we
denote by user the team that interacts with such tools to assess and manage the
security risks of an ICT system. Such a target system can be already existing or
only in its design phase. The suite builds the models of the target system and
of the threat agents, or attackers, to simulate the agent attacks in the scenario
of interest. The accuracy of the simulation depends on the accuracy of the tools
that build the model of the system and those of the agents. Table 1 defines the
abbreviations we use in the following.

The builder and the descriptor are the Haruspex tools that model, respec-
tively, the system infrastructure and the agents. Then, the engine uses these
models to apply the Monte Carlo method and to run a number of simulations
of the agent attacks.



S the target system
n a node of S
ag a threat agent (attacker)
at an elementary attack
v a vulnerability

v(at) the vulnerabilities enabling at
pre(at) the rights to execute at
res(at) the resources to execute at
post(at) the rights granted if at succeeds
succ(at) the success probability of at
time(at) the execution time of at
λ(ag) the look-ahead of ag

Table 1. List of abbreviations.

2.1 Modeling an Infrastructure

The builder is the first tool the user applies to build a model of the target
system S that decomposes S into a network of nodes and the resulting nodes
into components, i.e. hardware/software modules. Each component is affected
by zero or more vulnerabilities that enable some attacks [13, 15, 16]. Haruspex
covers social engineering attacks by modeling users of S as further components
with the proper vulnerabilities. If any vulnerability in v(at) is effective, at is
enabled and succeeds with a probability succ(at), otherwise it fails. For each
vulnerability v that affects a node n, the builder computes pre(at) and post(at)
for each attack v enables. These properties drive the sequence that an agent will
compose. The builder computes pre(at) and post(at) by matching predefined
patterns against the description of v in some de facto standard databases, e.g.
the Common Vulnerability Enumeration [1,15]. The builder considers any attack
sequence of ag, even those that involve distinct nodes of S. To let the builder
model sequences that involve distinct nodes, the user has to describe to the
builder the logical topology of nodes in S and the components of S that controls
it, e.g. firewalls.

2.2 Modeling Agents

The descriptor builds an agent model starting from four properties the user
define for each agent:

1. the initial rights;
2. the goal(s);
3. the selection strategy;
4. the value of λ(ag) of the look-ahead.

A goal is the set of rights that ag get after reaching the target node nf ,
and it results in an impact, i.e. a loss for the owner of S [3]. An agent ag can



attempt an elementary attack at. The attack is successful if the agent owns
the rights defined in pre(at), either as initial rights or as rights granted after
previous successful attacks. ag sequentially executes elementary attacks. The
attack sequence is successful if it reaches nf .

Each ag is paired with a selection strategy that ranks the next attack se-
quences ag may execute according to its goals, its current set of rights and its
preferences. λ(ag) defines the look-ahead of ag, i.e., the largest number of at-
tacks in the sequences ag ranks to select the one to execute. The strategy always
selects one of the sequences leading to a goal, if it exists. Otherwise, the strategy
ranks sequences according to attack attributes only. In this case, ag may select
a sequence with useless attacks, i.e. their granted rights are useless to reach a
goal. In the current version of the suite, the user can pair ag with one of the
following strategies:

1. maxProb: returns the sequence with the best success probability,
2. maxIncr : returns the sequence granting the largest set of rights,
3. maxEff : returns the sequence with the best ratio between success probability

and execution time of attacks,
4. maxAtt : returns the sequence granting the rights that enable the execution

of the largest number of attacks,
5. SmartSubnetFirst : returns any attack that ag may execute and that increases

these rights. It prefers attacks that enable ag to enter another subnetwork.

If λ(ag) = 0, then ag can only adopt the SmartSubnetFirst strategy, This
strategy prefers the attacks that enable ag to enter a distinct subnetwork and it
is Smart because it prefers the attacks that ag can execute.

Haruspex models both the time to implement the attack and the one to
collect information to select the attack. Larger values of λ(ag) result in a more
accurate selection that may avoid useless attacks, on the other hand, the time
ag spends to acquire information on the target system increases with λ(ag).

2.3 Simulation Engine

The engine uses the infrastructure model and those of the agents to apply the
Monte Carlo method. It executes an experiment with several independent runs
that simulate, for a maximum time period, the attacks of a set of agents and
the discovery of potential vulnerabilities. To guarantee run independence, the
engine re-initializes the state of S and of any agent before starting a new run.
An experiment ends either after executing the specified number of runs or when
a predefined statistic reaches the required confidence level. Each experiment
returns a database of attack sequences collected in the runs.

In each time step, the engine considers any idle agent that still has to reach
a goal. For each agent ag, the engine considers the current set of rights of ag
and computes the sequences with, at most, λ(ag) attacks that ag can select.
Then the engine applies the selection strategy of ag and it simulates at, the first
attack of the sequence the strategy returns. If at succeeds and ag has reached a
goal, the engine updates the corresponding impact.



Fig. 1. Topology of the case study system.

3 Case Study

In this section, we describe a case study that will be the subject of sequential
pattern mining analysis later on. Figure 1 shows the topology of the target
system network. It consists of 36 nodes (hosts) plus routers and switches (they
are not part of the model). The node ne = 0 is the entry node, i.e., all attack
sequences start from it, and the node 34 is the goal node, i.e., nf = 34. An
attack sequence is then considered successful if it reaches nf .

The system vulnerabilities result in 2,859 elementary attacks, belonging to
192 attack types. An elementary attack at is specific of a vulnerability at a node,
i.e. the same attack that targets different nodes give raises to distinct elementary
attacks. Attack types group elementary attacks according to the CVE [1, 15]
vulnerability they exploit.

Example 1. An example of elementary attack is one that grants administrative
privileges on the software HP Data Protector at node 1. The attack has type:
HP Data Protector Remote Command Execution. An attack of the same type
but at another node is a different elementary attack.

As another example, if an attacker wants to remotely execute arbitrary code
may exploit an attack of type MS12020: Vulnerabilities in Remote Desktop Could
Allow Remote Code Execution (2671387) (uncredentialed check).



ag strategy λ(ag)

A0 SmartSubnetFirst 0
A1 maxIncr 1
A2 maxIncr 2
A3 maxProb 1
A4 maxProb 2
A5 maxAtt 2

Table 2. Threat agents in the case study.

As a third example, the Unencrypted Telnet Server type models an attack
to steal sensitive information through Telnet protocol.

The risk assessment in the case study considers 6 threat agents A0-A5. Ta-
ble 2 lists their selection strategies and look-aheads.

The simulation engine has executed experiments up to the collection of 100K
successful attack sequences for each agent. Data collected for each run includes
the nodes the agent has targeted, the attacks attempted and its success, the time
of each attack, plus other detailed information which this paper neglects. Attack
sequences have a length between 5 and 144, for a total of 23.7M elementary
attacks in the sequences the threat agents select in the simulations. The agents
have actually selected only 435 of the 2,859 possible elementary attacks.

Example 2. A successful attack sequences involves the following nodes: 1, 9, 6,
5, 2, 20, 21, 18, 35, 34 of the network in Fig. 1. In such a sequence, the agent
exploits an attack of type HP Data Protector < A.06.20 Multiple Vulnerabilities
against node 1. Then, the sequence exploits the attack type HP Data Protector
Remote Command Execution to gain administrative privileges on nodes 9, 6, 5,
and 2. Starting from these nodes, the attacker exploits further attack types, e.g.
MS12020: Vulnerabilities in Remote Desktop Could Allow Remote Code Execu-
tion (2671387) (uncredentialed check) and HP System Management Homepage
< 7.0 Multiple Vulnerabilities. In the end, the agent launches an attack with
type Unencrypted Telnet Server against the node 34.

4 Sequential Pattern Mining over Attack Sequences

This section recalls the framework of sequential pattern mining and instantiates
it on the basis of the data the Haruspex suite returns. We refer the reader to [6,
12,14] for surveys on sequential pattern mining theory and applications. A large
suite of algorithms for extracting classes of sequential patterns is implemented
in Java [5].

4.1 Sequence Databases

Let I = {i1, . . . , im} be a fixed set of items, where m > 0. Items can be symbols
or, simply, natural numbers. An itemset A is a set of items, i.e., A ⊆ I. A



sequence S = 〈A1, . . . , Al〉 is an ordered list of non-empty itemsets. We write
l(S) = l to denote the length l ≥ 0 of S. A sequence S1 = 〈A1, . . . , Al〉 is a
sub-sequence of S2 = 〈B1, . . . , Bk〉 if there exists 1 ≤ π1 < . . . < πl ≤ k such
that A1 ⊆ Bπ1 , . . . , Al ⊆ Bπl

. In such a case, we write S1 v S2. Also, we say
that S2 contains S1. We write S1 @ S2 when S1 v S2 and S1 6= S2, and say that
S2 strictly contains S2. A sequence database D = {S1, S2, . . . , Sn} is a multiset
of sequences. |D| is the size of D.

With reference to the case study, attack sequences can be modeled by con-
sidering items at different granularities. We will consider two scenarios (several
others are possible).

Definition 1. In scenario S1, items are elementary attacks at. Since each agent
executes one attack at a time, itemsets A ⊆ I are singletons of elementary
attacks, i.e., |A| = 1. Moreover, in this scenario, we include in a sequence S =
〈at1, . . . , atl〉 only successful elementary attacks ati’s.

Example 3. Reconsider Example 2. The attack sequence in Scenario S1 would
be modeled as 〈at1, at9, at6, at5, at2, at20, at21, at18, at35, at34〉, where atj is some
elementary attack attempted at node nj . E.g., at9 is the HP Data Protector
Remote Command Execution at node n9.

Definition 2. In scenario S2, items are eithers nodes n or attack types t. Again,
since agents execute the attacks sequentially, itemsets either consists of node
and type ({n, t}), or of node only ({n}), or of type only ({t}). Also in this
scenario, we include in a sequence S = 〈{n1, t1}, . . . , {nl, tl}〉 only information
from successful attacks.

Example 4. Reconsider Example 2 again. The attack sequence in scenario S2
would be modeled as 〈{n1, t1}, {n1, t9}, {n1, t6}, {n1, t5}, {n1, t2}, {n1, t20}, {n1,
t21}, {n1, t18}, {n1, t35}, {n1, t34}〉, where tj is the attack type attempted at node
nj . E.g., t9 is the HP Data Protector Remote Command Execution attack type.

4.2 Sequential Patterns and Measures of Interest

Sequences can be adopted as abstractions (patterns) of subsets of D. We denote
such abstractions as sequential patterns to differentiate them from sequences in
D. Formally, a sequential pattern SP is a sequence. The cover of a sequen-
tial pattern SP is the set of sequences in D that contain SP . In symbols,
coverD(SP ) = {S ∈ D | SP v S}. The goal of sequential pattern mining is to
extract from a sequence database a set of interesting sequential patterns. An ob-
jective measure of interest is support. The absolute support (or, simply, support)
of SP is the size of its cover: suppD(SP ) = |coverD(SP )|. The relative support
of SP is the fraction of its cover over D: relsuppD(SP ) = |coverD(SP )|/|D|. We
omit the subscripts D when clear from the context.

Example 5. An example sequential pattern in Scenario S1 is the following: SP =
〈at9, at2, at21〉. It covers all sequences that perform at some point attack at9



(which is, say, at node n9), and after zero or more steps attack at2 (at node n2),
and after zero or more steps attack at21 (at node n21). The sample sequence of
Example 3 is in the cover of SP .

Besides support, other measures of interest can be devised to rank sequen-
tial patterns. The following may be specifically defined to the problem of risk
assessment:

– Length l(SP ), the longer a pattern is the more information it provides on a
(successful) strategy of a threat agent.

– Score score(SP ) = supp(SP ) ·2l(SP )−1, defined as a combination of support
and length, where length is exponentially weighed.

– Success distance success(SP ). For a sequence S, the success distance is de-
fined as the number of itemsets in S between the last one matching SP and
the last in S. The success distance success(SP ) is the mean success distance
over the sequences in the cover of SP . Intuitively, the smaller the success dis-
tance, the higher is the risk that an ongoing sequence matching the pattern
will become successful (the agent reach its goal).

– Right distance right(SP ). For a sequence S, the right distance is defined as
the number of new rights in S acquired between the last itemset matching
SP and the last itemset in S. The right distance right(SP ) is the mean
right distance over the sequences in the cover of SP . This is a refinement
of success distance that considers the number of missing rights before the
success instead of the number of steps before the agent is successful.

Example 6. The sequence of Example 3 contributes to the success distance of
SP in Example 5 with a value of 3, because it attempts 3 more attacks after the
last match with SP , namely after at35.

4.3 Frequent, Closed, and Maximal Sequential Patterns

While a measure of interest can prompt useful patterns from an initial collec-
tion, the number of all possible sequential patterns is exponentially large (in
the number of items and pattern length). It is then important to concentrate on
specific collections of sequential patterns. The frequent pattern mining literature
has proposed several collections and efficient algorithms to extract them from
sequence databases.

Consider a fixed minimum support threshold minsup > 0. A sequential pat-
tern SP is frequent if supp(SP ) ≥ minsup. We denote by FP the set of fre-
quent sequential patterns. Since two frequent sequential patterns may actually
denote the same set of sequences, i.e., they have a same cover, restricting to
patterns with distinct covers is a lossless strategy to reduce the number of
extracted patterns and to avoid duplicate analyses. SP is closed if it is fre-
quent and not strictly contained in a sequential pattern SP ′ with the same sup-
port, i.e., supp(SP ) ≥ minsup ∧ @SP ′. (SP @ SP ′ ∧ supp(SP ′) = supp(SP )).



We denote by CP the set of closed sequential patterns. Closed sequential pat-
terns are the longest sequential patterns in the class of equivalence of pat-
terns with a same cover. A further condensed representation consists of re-
stricting to the longest frequent sequential patterns only. SP is maximal if it
is frequent and not strictly contained in another frequent sequential pattern
SP ′ i.e., supp(SP ) ≥ minsup ∧ @SP ′. (SP @ SP ′ ∧ supp(SP ′) ≥ minsup).
We denote by MP the set of closed sequential patterns. Maximal sequential
patterns are closed, but the converse does not necessarily holds. In summary,
FP ⊇ CP ⊇MP. For non-trivial sequence databases, the inclusion is strict.

Next lemma is referred to as the anti-monotonicity property of cover (or,
equivalently, of supp). It is a trivial consequence of transitivity of relation v.

Lemma 1. If SP1 v SP2 then cover(SP1) ⊇ cover(SP2).

5 The Covering Problem

5.1 Motivation

Sequential patterns provide a useful abstraction for understanding the strategies
an agent adopts to reach its goal. Ranking patterns using one of the measures
of interest from Sect. 4.2 prompts sub-sequences that occur with high frequency
among the successful ones (using support as measure) that are characterized
in higher detail (using length), or that are close to success (using success/right
distance). In particular, the last ranking appears extremely useful in the design
of dynamic counter-measures, such as blocking an agent that is following a pat-
tern of successful attack before it reaches the goal. In this paper, however, we
concentrate on a different approach, which tries and overcome the main limi-
tation of (sequential) patterns, namely the local view each of them provides. A
global understanding of the behavior of agents is missing. It is not obvious how
to grasp a set of strategies that characterize the behavior of a threat agent1.
Such a set provides a better understanding of how exposed is the target sys-
tem to the attack strategies of the agent. Furthermore, it also supports what-if
analyses and the selection of static counter-measures, such as network redesign
and software patches. For instance, the integration of the Haruspex suite and
sequential pattern mining in iteration generate sequence databases, characterize
agent strategies, design counter-measures, and then repeat the process on the
revised system.

5.2 The Covering Problem

Let us extend the cover notation to sets of sequential patterns.

Definition 3. For a set C, we define: coverD(C) = ∪SP∈CcoverD(SP ).

1 A further problem is to extract a set of strategies that, in addition, are also specific
to a threat agent because they are not (often) used by the other agents. In this sense,
they define a signature of the threat agent.



We say that C covers the sequence database D if every sequence in D is cov-
ered by some pattern in C. The problem of finding a set C such that coverD(C) =
D is an instance of the well-known set cover problem [7]. Typically, however, one
aims at finding a set C of a maximum size k (called budget). In our case study,
for instance, domain experts may have to examine the cover. Hence, it needs to
be sufficiently small for human inspection. A cover of size k may not exist, hence
one aims at finding a set C of size at most k which maximizes |coverD(C)| – the
number of covered sequences from D. This is an instance of the maximum cov-
erage problem [7]. As a final generalization, we assume that sequential patterns
in C are constrained to belong to a pre-determined set P, e.g., frequent, closed
or maximal sequential patterns.

Definition 4. Let P be a set of sequential patterns, and k ≥ 1. We define the
k-cover of P: Cov(k,P) = argmaxC⊆P∧|C|≤k|cover(C)|.

More than one subset C ⊆ P can maximize the objective function. Thus, we
write C ∈ Cov(k,P) to denote any such subset.

Computing the k-cover is an NP-hard problem in general. A greedy algorithm
chooses sequential patterns from P according to one rule: at each stage, choose
the one whose cover contains the largest number of sequences uncovered by the
already chosen elements. Such a greedy algorithm achieves an approximation
ratio of ≈ 0.632 w.r.t. the optimal cover [7].

We will now formally show that frequent FP and closed CP sequential pat-
terns are not suitable choices for P in the computation of a cover, while maximal
MP sequential patterns are. First, we introduce a notation for the minimal el-
ements of a set of patterns w.r.t. the v relation.

Definition 5. Min(P) = {SP ∈ P | @SP ′ ∈ P. SP ′ @ SP}.

The next key result shows that when looking for the k-cover of P, one can
restrict to select only minimal elements from P.

Theorem 1. Let C ∈ Cov(k,P). There exists C′ ∈ Cov(k,Min(P)) such that
cover(C) = cover(C′) and |C| ≥ |C′|.

Proof. We define the set C′ as follows. For every SP ∈ C choose any SP ′ ∈
Min(P) such that SP ′ v SP . For a given SP , at least one such a SP ′ exists –
it could be SP itself, if it is minimal in P. Any of such SP ′’s can be chosen. By
construction |C′| ≤ |C| ≤ k (in fact, a same minimal element can be chosen for
two SP ’s in C). By Lemma 1, cover(SP ) ⊆ cover(SP ′). As a consequence:

cover(C) = ∪SP∈Ccover(SP ) ⊆ ∪SP ′∈C′cover(SP
′) = cover(C′).

Since C is a k-cover and P ⊇Min(P), then |cover(C)| is maximal, which implies
that the inclusion above is an equality. Finally, observe that a k-cover from
Cov(k,Min(P)) cannot cover more sequences than a k-cover of P, by definition
of maximization. Since C′ ⊆ Min(P) and |C′| ≤ k and |cover(C′)| is maximal,
we conclude C′ ∈ Cov(k,Min(P)). ut



The consequence of this result is considerable. It makes no sense to try and
cover a database of sequences using frequent patterns or closed patterns.

Example 7. It is readily checked that the minimal element of frequent sequential
patterns FP is the empty sequence, namely Min(FP) = {〈〉}. Trivially, {〈〉} is a
cover of any sequence database. By Thm. 1, {〈〉} ∈ Cov(k,FP). Unfortunately,
the empty sequential pattern is of no practical help in any application.

When not considering the empty sequential pattern, the result is not interest-
ing, because sequential patterns are not needed at all when looking for a cover.
As an example, a standard approach for entity selection can apply the greedy
algorithm of the maximum coverage problem [7] to select items (and not se-
quential patterns) that have the largest residual frequency in the yet uncovered
sequences.

Example 8. Consider non-empty frequent sequential patterns: FP ′ = FP \{〈〉}.
We have that Min(FP ′) = {FP ∈ FP | ∃i ∈ I. FP = 〈{i}〉}. Then, to find a
cover, we can consider only squential patterns with one frequent item. In other
words, there would be no need of extracting sequential patterns at all.

For closed sequential patterns CP, one can reason as in the above example,
and reach similar conclusions. To find a way out, one may consider Cov(k,P)
for P being a set of frequent or closed sequential patterns with support in a
range [minsup,maxsup]. However, which maximal threshold maxsup to choose
remains unclear. We propose, instead, to use maximal sequential patternsMP,
for two reasons. First, minimal elements of maximal patterns are themselves:

Min(MP) =MP.

The drawbacks highlighted for frequent sequential patterns are then overcome.
Second, albeit a k-cover C ⊆ MP is not a partition of D, for any two patterns
in C the number of sequences shared by them can be upper-bounded. This is a
useful property when a business action has to be done for each sequential pattern
in a cover, but sequences should not be subject to several business actions. In
our case study, in particular, we aim at finding a cover consisting of sequential
patterns which abstract alternative attack strategies.

Lemma 2. Let SP1, SP2 ∈ MP with SP1 6= SP2. We have: |cover(SP1) ∩
cover(SP2)| < 3 ·minsup − 2.

Proof. Let SP be the maximal initial sub-sequence shared by SP1 and SP2.
Since SP1 6= SP2, at least one between SP1 and SP2 is longer than SP . Since
SP1 and SP2 are maximal, both SP1 and SP2 are longer than SP (otherwise,
one of them would be contained in the other). Thus, let SP1 = SP ·〈A〉·ŜP 1 and
SP1 = SP · 〈B〉 · ŜP 2, where · is the sequence appending operator, and A 6= B.
Any S ∈ cover(SP1) ∩ cover(SP2) either satisfies: (1) SP · 〈A,B〉 · ŜP 1 v S; or
(2) SP · 〈B,A〉 · ŜP 1 v S; or (3) SP · 〈A∪B〉 · ŜP 1 v S. Assume now, by absurd,
that |cover(SP1)∩ cover(SP2)| ≥ 3 ·minsup− 2. Then, the number of sequences
that satisfy (1) (resp., (2) or (3)) are at least one third of 3 ·minsup − 2, i.e., at
least minsup. Therefore, SP1 cannot be maximal. ut



A better bound can be stated when the sequences are made of singleton
itemsets, as in the case of scenario S1 (see Def. 1).

Lemma 3. Assume a sequence database where itemsets are singletons. Let SP1,
SP2 ∈MP with SP1 6= SP2. We have |cover(SP1)∩cover(SP2)| < 2·minsup−1.

Proof. By assumption, the case (3) in the proof of Lemma 2 cannot occur. ut

6 Covering Attack Sequences of the Case Study

Recall that the input dataset in our case study consists of 600K successful attack
sequences, 100K for each of the six threat agents (see Table 2). The empirical
distribution of sequence lengths is reported in Figure 2 (left). It is a mixture of
two distributions. Sequences of threat agents A1 and A2 have length 12 or 13. Se-
quence lengths of the other agents, instead, are well approximated by Gaussian
distribution with mean 32.3. Figure 2 (right) shows the empirical cumulative
distribution of the rank of attacks. Let rk(at) be the rank of attack at, with
1 being the rank of the most frequent attack, 2 of the second most frequent,
etc. The cumulative distribution CDF(rk(at)) is the probability that an attack
occurrence in the database belongs to one of the top rk(at) most frequent at-
tacks. It is well-fitted by a cumulative exponential distribution 1 − e−λ·rk(at)

with λ = 0.0213. A näıve approach that tries and patches the top most frequent
attacks, has to deploy 33 patches to cover half of the occurrences of attacks in
the sequence database, and 108 to cover 90% of the occurrences. Such an ap-
proach is näıve because sequences include multiple attacks, hence after patching
the vulnerability that enables an attack, all the sequences containing such an
attack does not need further patches. Therefore, a covering approach should be
considered, e.g., by applying a greedy algorithm that selects an attack on the
basis of residual support (number of covered sequences among those not covered
by previously selected attacks). Covering sequences using elementary attacks,
however, does not result in an effective approach. In fact, the last attack of any
sequence is a specific one on the target node nf . Thus, such an attack alone will
cover all sequences. But, since it occurs as the last attack: (1) first, it cannot
enable dynamic counter-measures, because after the attack has been attempted
the goal of the agent is already reached; (2) second, it gives no hint on the
possible strategies of the attacker for reaching the final node.

The approach followed in this paper is instead more refined. We search for a
covering using sequential patterns rather than elementary attacks. Consider the
Scenario S1. For each threat agent, we extract the maximal sequential patterns
from the 100K attack sequence of the agent, assuming minsup = 5K, namely 5%
relative minimum support threshold. Starting from the set of maximal sequen-
tial pattern, we compute a k-cover using the greedy algorithm. Figure 3 (left)
shows the fraction of the 100K sequences that are covered by cover(k,MP) at
the variation of k for threat agents A0, A3-A5. In all cases, the top 20 sequential
patterns do provide a covering of more than 85% of the attack sequences. The
mean length of the top 20 sequential patterns is 3.75 for A0, 4.67 for A3, 3.6
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Fig. 3. Covering sequences. Left: Scenario S1. Right: Scenario S2.

for A4, and 3.7 for A5 (all patterns include the final node nf ). This means the
k-cover provides some useful information on the strategies adopted by the threat
agent. Let us consider as an example, M0. The top 7 sequential patterns in the
result of the greedy algorithm cover 66% of the sequences. One specific elemen-
tary attack occurs in 4 of them, and another in the other 3 of them. Patching
such two attacks will then result in an effective means for blocking 66% of the
successful attack sequences. This shows that the discovery of patterns strongly
reduces the number of patches to deploy without decreasing the effectiveness of
the patching strategy.

Let us consider now the Scenario S2. Figure 3 (right) shows the fraction
of the 100K sequences that are covered by cover(k,MP) at the variation of k
for threat agents A1 and A2 and with minsup = 15K. The covered fraction
grows rapidly with k. However, such sequential patterns cannot be used for
designing countermeasures, since they include attack types or attacked nodes,
without specifying the specific elementary attacks that are used (and possibly
covering different elementary attacks at the same node). They are instead useful
in evaluating the “degree of freedom” of a threat agent on the target system.



In particular, the sequential patterns highlight the (maximal) paths that an
agent may follow to reach the goal. The more sequential patterns are needed
to reach a certain fraction of covered sequences, the more complex is the set
of strategies/paths the agent can implement/follow – and, ultimately, the more
complex is to stop the attacker. At one extreme, a topology with a single path
would produce a single maximal sequential pattern.

7 Related Work

Sequential patterns, measures of interest, and their generalization have been
studied for more than 20 years in the data mining literature [6,12,14], with ap-
plications to the most diverse areas. Several sequential, parallel, and distributed
algorithms for extracting different classes of sequential patterns have been pro-
posed. We adopted the SPMF Java library [5], which includes open-source imple-
mentations of a large number of them. Most of the attention on interest measures
has considered ranking individual sequential patterns, e.g., on the basis of un-
expectedness. Notable exceptions consider sets of sequential patterns and adopt
the Minimum Description Length principle [10,18].

The maximum coverage problem and its approximation algorithms have been
considered in many application contexts and variants [7]. The approach most re-
lated to ours is the computation of Coverage Patterns, a class of (non-sequential)
itemsets X, such that the items in X cover a specified percentage of transactions
and they overlap at most for a specified threshold [17].

Finally, the usage of data mining models in IDS has been widely adopted,
e.g., using classifiers [11], association rules [9], and closed sequential patterns [4].
All of them struggle with the lack of enough data for building accurate models.

8 Conclusions

We have proposed a novel data-driven approach, based on sequential pattern
mining, in ICT risk assessment and prevention that offers potentials at design-
time. Starting from a sequence database generated through Monte Carlo sim-
ulations, we formally showed that maximal sequential patterns are the most
appropriate classes for such a context. On a sample case study, have shown that
a maximal k-cover based on sequential patterns can provide an abstraction which
is useful both for designing countermeasures and for providing to the security
analyst an abstraction of the strategies of attackers on the target system.
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