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Abstract. Human cognitive processes have been shown to be very im-
portant in human-computer interaction (HCI). In particular, the brain
mechanism of selective attention plays a key role in determining the
success of an interaction with a device. During such interaction, the at-
tention of the user is directed at the specific task to be performed. If the
user has to interact simultaneously with more than one device, attention
is directed at one of them at a time. Attention can therefore be seen as
a shared resource and the attentional mechanisms play the role of a task
scheduler.
In this paper we propose an algorithm for simulating the human selective
attention. Simulations can then be used to study situations in which a
user has to interact simultaneously with more than one device. This kind
of study is particularly important in safety-critical contexts in which
failures in the main task, such as driving a car or setting an infusion
pump, may have serious consequences.
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1 Introduction

A key goal of interface design is make it easy for the user to perform the necessary
tasks at hand by interacting with a device. This may require understanding how
the user perceives and interprets the state of the device, recognizes the enabled
actions, memorizes information and takes decisions based on such information.
These cognitive processes can be modeled [3], and techniques such as simulation
and model checking can be applied to analyse and predict user’s behaviours.

Reasoning on user’s behaviour is nontrivial already with one task, such as
withdrawing money from an ATM, but is certainly a complex problem when
the user has to perform multiple tasks concurrently. In particular, it might be
very hard to reason analytically about how the user distributes attention to the
different tasks. Analysing attention is particularly important in order to predict
the behaviour of users involved in concurrent tasks exactly like schedulers are
important to predict the behaviour of concurrent processes.



Working memory is among the cognitive resources that are mostly involved
in interactions with computers and other technological devices. Several mod-
els of the working memory have been proposed in the psychological literature,
based on different hypotheses about the structure and functioning of such a cog-
nitive system [11, 15, 13, 14, 12]. All of these models agree on the central role of
(selective) attention in the regulation of the working memory activity.

According to some psychological studies [21], the cognitive load of the tasks
(i.e., the amount of cognitive resources each of them requires) influences the
activity of the attentional mechanisms. In particular, focusing attention to a
“main” task may be impeded by a secondary “distractor” task having a high
cognitive load.

Another factor influencing attention is the fact that some tasks (e.g. driving a
car or setting an infusion pump) might be more critical than others (e.g. setting
the address in a satellite navigator or resizing the window of the virtual clinical
folder application). A critical task should attract the attention of the user more
than a non-critical task. However, if the user is involved in different concurrent
tasks, one of which is safety-critical and the others non-critical but characterized
by a high cognitive load, such a cognitive load of the non-critical tasks could
causes the attention of the user to be moved away from the safety-critical task.

We therefore propose an algorithm that allows us to simulate the human
selective attention in the case of users involved in multiple tasks, some of which
may be safety-critical. Simulations would allow us to get a quick feedback about
whether a human can safely perform multiple such tasks, or about which changes
should be made to the interface of a device to make interacting with it not too
distracting from another (possibily critical) task.

We show that the proposed algorithm simulates human selective attention in
accordance with the description of its functioning in the psychological literature.

2 Cognitive Load and Influence on Selective Attention

The cognitive load (CL) of a task is a measure of the amount of the user’s
cognitive resources required for the task completion. The main cognitive resource
used during the execution of a task is the working memory (WM) [4, 1]. The
WM is a cognitive system with a limited capacity, and is responsible for the
transient holding, processing, and manipulation of information. It is involved in
the accomplishment of cognitive activities such as reasoning, decision making,
learning and problem solving [5].

Over the years different models have been proposed to explain how the WM
works [11, 15, 13, 14, 12]. Although all of these models are based on different
hypotheses, they all agree on two important aspects of the WM: it can store
a limited amount of items (that hence dacay over time) and it is responsible
of both processing and storage activities. The limited capacity of the WM is
thought to be the cause of the phenomenon known as the processing-storage
trade-off: under heavy memory load, resources that are devoted to storage are
no longer available for processing, and performance deteriorates.



There are several hypothesis regarding the nature of the items decay. One is
that memory traces in WM decay within a few seconds, unless refreshed through
rehearsal, and because the speed of rehearsal is limited, we can maintain only a
limited amount of information. This is the “Task Switching Model” by Towse and
Hitch [16]. Their memory decay hypothesis is that the strength of the memory
traces in the short-term storage space weakens as the temporal interval between
storage and recall increases.

The theory most successful in explaining experimental data on the interaction
of maintenance and processing in WM is the “Time-Based Resource Sharing
Model” [17]. This theory assumes that representations in WM decay unless they
are refreshed and that refreshing them requires an attentional mechanism.

The attentional mechanism is also needed for any processing task executed
concurrently to memory refreshing, especially when the processing components
require retrieval from long-term memory. Both processing and maintenance of
information in WM therefore share the same resource: the attention. When there
are small time intervals in which the processing task does not require attention,
this time can be used to refresh memory traces. When attention is switched away
from the items to be recalled, their activation suffers from a time-related decay.
This effect would be particularly pronounced when the processing component
involves memory retrieval from long-term memory.

The amount of forgetting therefore depends on the temporal density of at-
tentional demands of the processing task. Such a temporal density corresponds
to what in [17] is defined as CL. The CL is a function of the time during which a
task captures attention impeding the refreshing of decaying memory traces. As
this time increases, the fewer and the shorter are the pauses during which the
attention can be addressed to the refreshing of the decaying items.

When different retrievals (that could be of different types) are performed at
a constant pace, the CL would correspond to the following value:

CL =
∑

aini/T (1)

where ni corresponds to the number of retrievals of type i, ai to a parameter
that represents the difficulty of such retrievals (i.e., the time during which these
retrievals totally capture attention), and T is the total duration of the activity.

Figure 1 shows a schematic representation of a portion of a WM span task
in which the goal of the interaction is to remember a sequence of letters (in
white boxes) while performing some processing activities (e.g. reading aloud
some digits or solving some operations) that require successive retrievals (gray
boxes marked R). The three panels in the figure illustrate variants of the same
task that differ in the amount of cognitive load.

Several studies show how the attentional limitations could cause trouble when
performing concurrent tasks [18–21]. In particular, [21] describes the roles of
WM, of the CL, and of the attentional mechanism, in the interaction with two
concurrent tasks (a “main” task and a “distractor” task). It is shown that when
the CL of the “distractor” task increases, the interaction with the “main” task
could be impeded.



Fig. 1. Working memory tasks with different values of CL: b) has the highest, c) has
the lowest and a) has a value in the middle of the other two.

3 The Simulation Algorithm

A task to be completed can be seen as a sequence of basic tasks: single actions
that can not be further decomposed. For example, in the WM task described in
the previous section, the basic tasks are the single actions such as read and “put
in mind” a letter, solve an operation, read aloud a digit, and so on. In the task
of sending an email, the basic tasks would be: typing a character, looking for a
button in the interface, clicking on the button, etc.

The time between two basic tasks could correspond to the time necessary
to switch from one basic task to the next, but also to the time required by the
used device to process the received input and to enable the execution of the next
basic task.

Fig. 2. Three different tasks with basic tasks denoted as gray boxes.

In [17], the time between two basic tasks is not explicitly taken into account
since the definition of the CL of a task assumes that the single actions are
performed at a constant pace (see Eq.1). According to such a definition, the CL
of the three tasks depicted in Figure 2 would be the same. However, if the three
tasks in Figure 2 were potential “distractors” of another “main” task, they would
interfere with the main task differently over time: the first one would constantly
attract the attention of the user, the second one would attract the attention
mostly at the very beginning, and the third one mostly after some time.



We propose an algorithm for simulating the selective attention in which the
cognitive load of the concurrent tasks is recomputed each time a basic task
is completed. Actually, in order to choose which of the tasks to execute, the
algorithm does not compute the cognitive load of each task, but the difficulty
and duration of the next basic task of each task. In a sense this corresponds to
computing an instantaneous CL rather than the average CL of the whole task,
and it allows tasks like the ones in Figure 2 to be differentiated.

The free time between two tasks is modeled as a waiting time before the
execution of a basic task (i.e., information is included in the basic task that will
follow such a free time). Moreover, each tasks is associated with a parameter
describing its criticality level.

Definition 1. A basic task is defined as a triple 〈w, t, d〉 ∈ R3 where:

– w is the waiting time before the basic task is enabled;
– t is the time corresponding to the basic task duration; and
– d is the difficulty of the basic task, with 0 < d ≤ 1.

Definition 2. A task is a sequence of basic tasks, denoted t1.t2. ... .tn, associ-
ated with a criticality level C ∈ R such that 0 < C ≤ 1.

A task is denoted as a pair enclosed between square brackets [t1.t2.....tn, C].
Moreover, we denote an empty sequence of basic tasks as ε. Consequently, the
pair [ε, C] will represents a completed task.

The state of the simulation is given by a configuration C, essentialy the set of
active tasks, and by a global clock gc that will be used to increase the probability
of choosing a task that has been ignored for a long time. For this reason, also the
timestamps of the last executions of all the tasks are stored in the configuration.

Definition 3. A configuration C is a set of triples (tid, T, ts) where:

– tid is a task identifier (of any type and not repeated in the configuration);
– T is a task [t1.t2.....tn, C];
– ts is a timestamp storing the last time the task with identifier tid has been

executed.

We define a few auxiliary functions that are used by the simulation algorithm.
Given a task T , functions hd(T ) and tl(T ) give its first basic task and the

sequence of the other basic tasks, respectively. Formally:

hd([t1.t2.....tn, c]) = t1 tl([t1.t2.....tn, c]) = t2.....tn

Moreover, criticality(T ) gives the criticality level of T .
Given a configuration C, enabled(C) gives the set of the tasks that are enabled

at time gc (the global clock). A task is enabled if the waiting time of its first
basic task has passed since the execution of the previous basic task:

enabled(C) = {(tid, T, ts) ∈ C | 〈w, t, d〉 = hd(T ) ∧ gc− ts ≥ w}



Algorithm 1 Algorithm for simulating selective attention

1: while not completed(C) do
2: if enabled(C) 6= ∅ then
3: for all (tid, T, ts) ∈ enabled(C) do
4: αtid := c · t · d · (1 + (gc− ts))
5: where 〈w, t, d〉 = hd(T ) and c = criticality(T )
6: end for
7: choose (tid, T , ts) ∈ enabled(C) with probability

α
tid∑

(tid,T,ts)∈enabled(C) αtid

8: gc := gc+ t where 〈w, t, d〉 = hd(T )
9: C := (C \ (tid, T , ts)) ∪ (tid, tl(T ), gc)

10: else
11: gc := min{ts+ w | (tid, T, ts) ∈ C ∧ 〈w, t, d〉 = hd(T )}
12: end if
13: end while

Furthermore, completed(C) is true if and only if all tasks in C are completed:

completed(C) = ∀(tid, T, ts) ∈ C.T = [ε, c]

Now, we define the simulation algorithm of selective attention.
The algorithm performs a main loop that essentially executes one basic task

at each iteration. The basic task to be executed is the first basic task of one of
the enabled tasks. For each of such candidate basic tasks, an attention attraction
factor αtid is computed as the product of the criticality level, duration, difficulty
and time from the last execution. Each of the candidate basic tasks then has
a probability of being chosen that is proportional to αtid. Once a basic task
has been chosen, it is removed from the configuration and the global clock gc is
updated. If the algorithm reaches a configuration in which no task is enabled,
the main loop performs an iteration in which only the global clock gc is updated.

In order to show that the proposed simulation algorithm simulates selective
attention in accordance with relevant literature, let us consider a variant of the
algorithm that does not take the task timestamp into account when computing
the attention attraction factor αtid. This corresponds to modifying line 4 of the
algorithm into αtid := c · t · d.

Let us consider two concurrent tasks with the same criticality level and each
consisting of k identical basic tasks:

T1 = 〈w1, t1, d1〉.〈w1, t1, d1〉. . . . 〈w1, t1, d1〉
T2 = 〈w2, t2, d2〉.〈w2, t2, d2〉. . . . 〈w2, t2, d2〉

In order to complete both tasks, the simulation algorithm performs exactly 2k
steps (where a step represents the execution of a single basic task). Since the
two tasks have the same criticality level, the probability of completing task T1
at step n, with k ≤ n ≤ 2k, is

P (T1, n) =

(
t1d1

t1d1 + t2d2

)k (
t2d2

t1d1 + t2d2

)(n−k)(
n

n− k

)



Now, we can compute the expected number of steps necessary to complete task
T1, namely E[T1] =

∑2k
n=k P (T1, n)n, that corresponds to

E[T1] =

(
t1d1

t1d1 + t2d2

)k 2k∑
n=k

(
t2d2

t1d1 + t2d2

)(n−k)(
n

n− k

)
n

The formula shows that the expected number of steps for the completion of
T1 increases with the difficulty and duration of the basic tasks of T2, namely
it increases when the CL of T2 increases. Hence, the algorithm simulates the
switching of attention in agreement with what described in [17] and [21].

Let us now discuss what changes when the task timestamp is taken into
account, namely when line 4 is exactly as in the algorithm definition. Formula
E[T1] becomes more complex since the repeated probabilistic events are no longer
independent. However, the structure of the formula remains the same, with a
result that is still increasing with the difficulty and duration of the basic tasks
of T2 (in agreement with [17] and [21]). In addition to this, the timestamps tend
to favor at each step the task that has not been choosen in the previous step.
As a consequence, the regular alternation of T1 and T2 is promoted with, as a
result, a reduced variance in the distribution of the number of steps necessary to
complete T1. Hence, the use of timestamps reduces the probability of innatural
starvation phenomena among the tasks.

4 Conclusion

We proposed a (probabilistic) algorithm for simulating the human selective at-
tention, based on the current knowledge of this cognitive mechanism. The algo-
rithm takes into account the cognitive load and the criticality level of the tasks
to be executed. The algorithm could be used to simulate the interaction of a user
with more than one device. Simulating this kind of situations is particularly in-
teresting when one of the devices is associated to a safety-critical task such as
driving a car or an infusion pump. By mean of simulations it could be possible
to identify situations in which the non-critical devices could represent a too high
distraction for the user and could lead to failures in the safety-critical task.

We plan to implement the algorithm and to evaluate it empirically on a
number of examples of concurrent tasks. This will probably lead us to refine the
algorithm by introducing weights for the considered parameters. The implemen-
tation will be made available here [22]. We plan also to validate the algorithm
against data collected by running some experiments with real users involved in
more than one (web-based) task.
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