
Temporal Analytics for Software Usage Models

Oana Andrei and Muffy Calder

School of Computing Science, University of Glasgow, G12 8RZ, UK

Abstract. We address the problem of analysing how users actually in-
teract with software. Users are heterogeneous: they adopt different usage
styles and each individual user may move between different styles, from
one interaction session to another, or even during an interaction session.
For analysis, we require new temporal analytics: techniques to model and
analyse temporal data sets of logged interactions with the purpose of dis-
covering, interpreting, and communicating meaningful patterns of usage.
We define new probabilistic models whose parameters are inferred from
logged time series data of user-software interactions. We formulate hy-
potheses about software usage together with the developers, encode them
in probabilistic temporal logic, and analyse the models according to the
probabilistic properties. We illustrate by application to logged data from
a deployed mobile application software used by thousands of users.

1 Introduction

Software users are heterogeneous: they adopt different usage styles for the same
software, furthermore, each individual user may move between different styles,
from one interaction session to another, or even during a session. This may be
for a variety of contextual reasons, for example, time of day, time since last
session, length of session, purpose of engagement, environment (e.g. on a train
or at a desk) or device (PC, tablet, wearable). To analyse these differing and
dynamic usage styles, we require new temporal analytics: techniques to model
and analyse temporal data sets of logged interactions with the purpose of discov-
ering, evaluating, and communicating meaningful patterns of usage. We define
new probabilistic models of software usage that are generated from logged data
using statistical methods. Analysis is performed by model checking probabilistic
temporal logic properties.

Our approach consists of:

– two new parametrised, admixture discrete-time Markov models that include
latent (unobserved) and observed states and depend on a finite number K
of usage styles,

– segmented logged time series data encapsulating different usage time inter-
vals, e.g. interactions over first day, first week, first month, second month,

– use of maximum-likelihood parameter estimation techniques for inferring
model parameters,

– an encoding of the inferred usage models in the PRISM model checker [1]
and use of temporal logics PCTL and PCTL* for analysis.

interactive
system

time series
 data

hypotheses

probabilistic
 models

probabilistic
 temporal
properties

model
checking
 analysis &

evaluation

infer
parameters

encode

develop

log

Fig. 1: Role of inference and probabilistic model checking in temporal analytics for
software usage models.

It is important to note we are not inferring the underlying software structure,
which is determined by the designed functionality of the software. We are in-
vestigating the differing generating processes of software usage over a dynamic,
heterogeneous population of a users. The logged data are user-initiated events:
we refer to the time series data as user traces, where each user trace consists
of all the logged sessions for that user/device. We identify basic common traits
of usage emerging within such a population of users and classify users as ad-
mixtures of basic traits. In statistical modelling, in a mixture model each user
trace is mapped to one single behavioural trait, whereas in admixture models
each user trace has a distribution over all behavioural traits. To the best of our
knowledge, inferring admixture temporal structures has not been described in
prior work outside our group. Figure 1 summarises our approach. This work
builds on two previous studies: an initial analysis of AppTracker using PAM
models [2], and earlier, in [3], analysis of individual user models for a mobile
game application. Major differences here include formal definitions of PAM, new
GPAM models, generic properties, and use of parameter K as exploratory tool.

The main contributions of the paper are:

– two new latent state Markov models: population admixture model (PAM)
and generalised population admixture model (GPAM),

– flattened form of the GPAM model as discrete time Markov chain and en-
coding in the probabilistic model checker PRISM,

– generic and GPAM-specific temporal logic properties,
– an example based on a deployed user-intensive mobile application software

(mobile app) used by tens of thousands of users, working in close collabora-
tion with the app developers.

2 Technical background

2.1 Markov models

We assume familiarity with Markov models, probabilistic logics PCTL and PCTL*,
rewards, and model checking [1, 4, 5]; basic definitions are below.

LetA be a finite set of atomic propositions. A discrete-time Markov chain
(DTMC), also called a first-order Markov chain model, is a tuple (S, s̄,P,L)
where: S is the set of states; s̄ ∈ S is the initial state, P : S × S → [0, 1] is the
transition probability function (or matrix) such that for all states s ∈ S we have∑

s′∈S P(s, s′) = 1; L : S → 2A is a labelling function associating to each state
s in S a set of valid atomic propositions from the set A. A path (or execution)
of a DTMC is a non-empty sequence s0s1s2 . . . where si ∈ S and P(si, si+1) > 0
for all i ≥ 0. For DTMC D the set of paths starting from state s is PathD(s). A
transition is also called a time-step.

We will distinguish between latent (unobserved or hidden), and observed
states. The standard latent variable Markov model is the hidden Markov model,
which does not include transitions between observed states. Formally, a first-
order hidden Markov model (HMM) is a tuple (X ,Y, π, A,B) where: X
is the set of hidden (or latent) states X = {1, . . . ,K}; Y is the set of observed
states generated by hidden states; π : X → [0, 1] is an initial distribution, where∑

x∈X π(x) = 1; A : X×X → [0, 1] is the transition probability matrix, such that
for all x ∈ X we have

∑
x′∈X A(x, x′) = 1; B : X ×Y → [0, 1] is the observation

probability matrix, such that for all x ∈ X we have
∑

y∈Y B(x, y) = 1.
A less common, but more useful model than HMM for us, is the auto-

regressive hidden Markov model, which also permits transitions between ob-
served states. Formally, a first-order auto-regressive hidden Markov model
(AR-HMM) is a tuple (X ,Y, π, A,B) where: X ,Y, π, A are as defined for
HMM; B : X × Y × Y → [0, 1] is the observation probability matrix, such
that for all x ∈ X and y ∈ Y we have

∑
y′∈Y B(x, y, y′) = 1.

2.2 Probabilistic logics and model checking

Probabilistic Computation Tree Logic (PCTL) and its extension PCTL* allow
one to express a probability measure of the satisfaction of a temporal property
by a DTMC. Their syntax is the following:

State formulae Φ ::= true | a | ¬Φ | Φ ∧ Φ | P./ p[Ψ] | S./ p[Φ]
PCTL Path formulae Ψ ::= XΦ | ΦU≤n Φ

PCTL* Path formulae Ψ ::= Φ | Ψ ∧ Ψ | ¬Ψ | XΨ | Ψ U≤n Ψ

where a ranges over a set of atomic propositions A, ./∈ {≤, <,≥, >}, p ∈ [0, 1],
and n ∈ N ∪ {∞}.

This is a minimal set of operators, the propositional operators false, disjunc-
tion and implication can be derived. Two common derived path operators are:
the eventually operator F where F≤n Φ ≡ true U≤n Φ and the always operator G
where GΨ ≡ ¬(F¬Ψ). If n = ∞ then superscripts omitted. In PRISM P=?[Ψ]
computes the probability for Ψ to hold in a given state (initial state by default).
S=?[Φ] computes the steady-state (long-run) probability of being in a state which
satisfies a Boolean-valued state formula Φ. PRISM supports a reward-based ex-
tension of PCTL called rPCTL that assigns non-negative real values to states
and/or transitions. Rrwd=?

[
C≤N

]
computes the reward named rwd accumulated

along all paths within N time-steps, Rrwd=? [F φ] computes the reward named
rwd accumulated along all paths until φ is satisfied. Filters check for properties
that hold from sets of states satisfying given propositions. Here we use state
as the filter operator: e.g., filter(state, φ, condition) where φ is a state formula
and condition a Boolean proposition uniquely identifying a state in the DTMC.

3 Probabilistic models for software usage analysis

Our experience indicates that useful usage models do not depend only on static
attributes such as the location, gender, age of users, but on dynamic attributes
such as styles of use, that may change over time. Users are heterogeneous and
each individual user may move between different styles, from one interactive
session to another, or even during an interaction session. We need new models
of dynamic usage styles and new ways to analyse those models. To encapsulate
the styles of dynamic and heterogeneous users, we define models that are:

– probabilistic: statistical models of the different generating processes of het-
erogeneous, dynamic users,

– Markovian: behaviour is determined by current state, not process history,
– admixture1: usage styles (or, more generally, behavioural traits) are complex

and drawn from a probability distribution, i.e. individuals move between
different styles during an observed trace.

First-order Markov models have been shown to provide a good modelling
approach for human navigation on the Web [6–10] (where the states correspond
to visited webpages) as well as within mobile applications [3,11] (where the states
correspond to device screen events). We model the usage style as a hidden/latent
state and the user-initiated events as observed states. Each hidden state defines
a first-order discrete time Markov chain (DTMC) over observed states, which
we call activity pattern.

Let P be a population of M user traces, with each user trace α1, . . ., αM a
finite sequence over a set A of n events (labels of logged user interactions). Some
events are distinguished by the unique labels startS and stopS to denote the
beginning and end (resp.) of a user session within a trace. Each user trace is a
concatenation of sessions. It is important to note that each user trace contains
a variable number of sessions, and each session is a variable length sequence of
events. We now define two different usage models for a given population of user
traces.

Definition 1 (Population admixture model). For a given K, a population
admixture model (PAM) for the user trace population P is a tuple (X ,Y, B,L, Θ)
where:
– X is the set of latent states, X = {1, . . . ,K},

1 Admixture models derive from genetic analysis of populations where individuals have
mixed ancestry: each individual inherits a fraction of his/her genome from ancestors.

– Y is the set of observed states, Y = {0, . . . , n− 1},
– B is the observation probability matrix with B : X ×Y×Y → [0, 1] such that

for all x ∈ X and y ∈ Y we have
∑

y′∈Y B(x, y, y′) = 1,
– L : Y → A is the labelling function,
– Θ = {θ1, . . . , θM} is the set of distributions over all latent states for each

user trace in the population, such that for all m, 1 ≤ m ≤M , θm : X → [0, 1]
with

∑
x∈X θm(x) = 1.

Definition 2 (Generalised population admixture model). For a given K,
a generalised population admixture model (GPAM) for the user trace population
P is a tuple (X ,Y, π, A,B,L) where (X ,Y, π, A,B) is an AR-HMM and L : Y →
A is the labelling function.

Definition 3 (Activity patterns). For any PAM (X ,Y, B,L, Θ) or GPAM
(X ,Y, π, A,B,L), and any latent state x ∈ X , the tuple (Y,L−1(startS), B(x),L)
is a discrete-time Markov chain we call activity pattern.

HMMs express relationships only between latent states, but not between ob-
served states, so they are not suitable for our purpose of analysing user-software
interaction. PAM models are admixtures of first-order Markov chains (DTMCs)
that express relationships between observed states, with Θ defining distributions
over the latent states. PAM models are well-suited for user-intensive software,
in particular because we can study the values for Θ across all users or subpopu-
lations thereof. In the PAM models, it is not possible to relate changes to latent
states to changes in the observed states. If this is important, then AR-HMMs
(GPAM) are more suitable because they express explicit relationships between
both observed and latent states.

Each of the models PAM and GPAM (pictorial representation in Fig. 2) offers
a different perspective on usage behaviours, and consequently affords different
analysis. Both are based on K mixture components (or latent states), with each
component a DTMC (an activity pattern). Each component DTMC has the same
set of states, but the transition probabilities are different, as indicated by the
thickness of transitions. The number of mixture components/activity patterns,
K, is an exploratory tool: we do not try to find the “correct” or optimal value for
K, instead we explore the variety of usage styles that are meaningful to software
evaluation (e.g. we might develop distinct versions for three or four different
usage styles).

3.1 Learning model parameters

The size of the latent state set X (the number K of the activity patterns), the set
of n observed states (user-initiated events) Y, and the labelling function L are
pre-determined for both PAM and GPAM. It remains to define the observation
matrix B and distributions Θ for PAM, and the transition matrix A, observation
matrix B, and initial distribution π for GPAM. We learn these parameters from
sets of user traces using statistical methods for maximum likelihoods.

y0 y1

y2 y3

y0 y1

y2 y3

θ1 θM...

x1 x2

y0 y1

y2 y3

y0 y1

y2 y3

A(1,1) A(2,2)

A(1,2)

A(2,1)

x2x1

Population
admixture
model	(PAM)

Generalised
population
admixture

model	(GPAM)

Fig. 2: Pictorial representation of PAM and GPAM for two latent states (or activity
patterns as DTMCs in each box) x1 and x2, K = 2, four observed states y0 − y3, M
user traces, 1 ≤ m ≤M

We segment the user traces according to intervals over days, weeks, or months,
based on timestamps associated with each logged event (the time stamps are then
discarded). Intervals have the form [d1, d2], which includes the user traces from
the dth1 -th up to the dth2 day of usage.

Given a set P of user traces, we compute n×n transition-occurrence matrices
for each trace α such that αij at position (i, j) is the number of times the
subsequence αi, αj occurs in α. This is the input data for parameter inference.

For PAM we employ the local non-linear optimisation Expectation–Maxim-
isation (EM) algorithm [12] for finding maximum likelihood parameters of ob-
serving each trace, restarting the algorithm whenever the log-likelihood has
multiple-local maxima. EM converges provably to a local optimum of the cri-
terion, in this case the likelihood function. For GPAM (AR-HMM) we employ
the Baum–Welch algorithm [13], which uses also the EM algorithm. We use EM,
as opposed to say Markov chains Monte Carlo methods, because it is fast and
computationally efficient for our kind of data.

3.2 Encoding models in the PRISM modelling language

For both PAM and GPAM we analyse each activity pattern as a DTMC in
PRISM. In addition, for GPAM we flatten the whole AR-HMM model, which
has two types of states and three types of transitions (between latent states,
between observed states, from latent states to observed states) into a DTMC
(and subsequently analyse it in PRISM) as follows. We pair each observed state

with a hidden state. The transition probability between two any such pairs of
states (y, x) and (y′, x′) is the probability of moving from hidden state x to
hidden state x′ times the probability of moving between the observed states
y to y′ while in the current hidden state x′, i.e., P((y, x), (y′, x′)) = A(x, x′) ·
B(x′, y, y′). The initial state (L−1(startS), 0) is a dummy that encodes the
global initial distribution. This flattening operation shares similarities with the
composition between an HMM and a deterministic finite state machine (see [14]),
however we are composing an HMM with a DTMC.

Definition 4. Given a GPAM (X ,Y, π, A,B,L), we flatten it into the DTMC
(S, (ȳ, 0),P,L) where:

– S = Y × ({0} ∪ X), where X = {1, . . . ,K},
– ȳ = L−1(startS) is the initial observed state with the label startS,
– P((y, x), (y′, x′)) = A(x, x′) ·B(x′, y, y′), for x > 0,

– P((ȳ, 0), (y, x)) =
{
π(x) if y = ȳ and x′ > 0
0 otherwise

– L(y, x) = L(y)× {x}.

For clarification, DTMCs are used at two levels of abstraction: to represent
individual activity patterns and to represent the more complex GPAM Markov
models in which the activity patterns are embedded, as a flattened GPAM.

4 Temporal properties for analysis

We present generic rPCTL properties for analysing: (1) individual activity pat-
terns of both PAM and (flattened)2 GPAM models, and (2) GPAM-specific
rPCTL and PCTL* properties that involve moving between activity patterns.
It is important to note we cannot check properties from the latter set on PAM
models because PAMs include a distribution over activity patterns and not tran-
sition probabilities between activity patterns, as in GPAMs.

4.1 Generic properties for individual patterns in PAM and GPAM

We consider the following classes of state formulae:

Observed state formulae ϕ ::= true | ` | y = j | ¬ϕ | ϕ ∧ ϕ
Hidden state formulae γ ::= true | x = i | ¬ γ | γ ∧ γ

Non-probabilistic state formulae φ ::= ϕ | γ | ¬φ | φ ∧ φ

where ` ranges over the set of observed state labels A, j over the set of observed
states identifiers {0, . . . , n − 1} and i over the set of hidden state identifiers
{0, 1, . . . ,K} (with 0 denoting a dummy hidden state for the PRISM encoding).
We define the following reward structures for all values of j ∈ {0, . . . , n−1} and
i ∈ {1, . . . ,K}: rLabelj and rLabeljAPi for computing the expected number

2 all results are for flattened GPAMs

Table 1: Classes of rPCTL properties applicable in PAM and GPAM model.

Prop. Description rPCTL formula

VisitProb Probability that starting from state
satisfying φ0, φ1 holds until reaching
a state in which φ2 holds, within N
time-steps.

filter(state, P=?[φ1U
≤Nφ2], φ0)

VisitCount Starting from state satisfying φ0, ex-
pected reward cumulated over N time-
steps.

filter(state, RrewardV=?[C≤N], φ0)

StepCount Starting from state satisfying φ0, ex-
pected number of steps cumulated be-
fore reaching a state satisfying φ1.

filter(state, RrewardS=?[Fφ1], φ0)

of visits to an observed state j and to a state (i, j) respectively, and rSteps
and rStepsAPi for computing the number of all time steps in the model and the
number of all time steps in activity pattern i respectively. Note that rLabeljAPi
and rStepsAPi are defined exclusively for GPAM models.

rewards "rLabelj" rewards "rLabeljAPi" rewards "rSteps" rewards "rStepsAPi"
(y=j): 1; (y=j) & (x=i) : 1; [] true : 1; [] (x=i) : 1;

endrewards endrewards endrewards endrewards

Table 1 lists three classes of generic properties: VisitProb, VisitCount, and
StepCount, where the reward name rewardV can be either of rLabelj and
rLabeljAPi, while rewardS can be either of rSteps and rStepsAPi. We adopt
the following interpretation of the model checking results for activity patterns in
the same model (either PAM or GPAM), and the same value of N , when com-
paring the states. We say that a pair of observed state j and activity pattern
i scores a better (resp. worse) result that (j′, i′) if: VisitProb returns a higher
(resp. lower) value, VisitCount a higher (resp. lower) value, StepCount a positive
lower (resp. higher) value for the pair (j, i) than for (j′, i′).

Table 2 illustrates some instances of the property classes in Table 1. VP1
and VP2 are simple reachability properties for a particular state in either an
activity pattern (AP) or a GPAM respectively. VP3 computes the reachability
probability for a state j in pattern i while always being in pattern i in an GPAM.
SC1 and SC2 compute the expected number of steps needed to reach a particular
state in either an AP or a GPAM, while SC3 computes only the steps takes in
the pattern i to reach a state in an GPAM. VC1 computes the expected number
of visits to a state j in an AP, while VC2 computes only the number of visits to
state j while the pattern i in a GPAM.

4.2 GPAM-specific properties

For GPAM, it is possible to consider properties that involve multiple activity
patterns. A few such rPCTL/PCTL* properties are listed in Fig. 3. PG1 is an

Table 2: Instances of VisitProb, VisitCount, and StepCount applicable to activity pattern
(AP) i in PAM or GPAM, parameterised by observed state j and pattern i.

Prop. DTMC rPCTL formula

VP1 AP/PAM filter(state, P=?[trueU≤N (y = j)], startS)

VP2 GPAM filter(state, P=?[trueU≤N (x = i ∧ y = j)], (startS ∧ x = 0))

VP3 GPAM filter(state, P=?[(x = i) U≤N (x = i∧y = j)], (startS∧x = i))

SC1 AP/PAM filter(state, RrSteps=?[F (y = j)], startS)

SC2 GPAM filter(state, RrSteps=?[F(x = i ∧ y = j)], (startS ∧ x = 0))

SC3 GPAM filter(state, RrStepsAPi=?[F(x = i ∧ y = j)], (startS ∧ x = i))

VC1 AP/PAM filter(state, RrStatej=?[C≤N], startS)

VC2 GPAM filter(state, RrStatejAPi=?[C≤N], (startS ∧ x = i))

PG1 : filter(state, P=?[(¬UseStop) U (x = i1 ∧ y = j1)], (x = i0 ∧ y = j0))

PG2 : filter(state, RrSteps=?[F (y = j1)], (x = i0 ∧ y = j0))

PG3 : filter(state, RrSteps=?[F (x = i1 ∧ y = j1)], (x = i0 ∧ y = j0))

PG4 : filter(state, RrStepsAPi=?[F (x = i1 ∧ y = j1)], (x = i0 ∧ y = j0))

PG5 : P≥1[F (x = i ∧ y = j)] ∧ P≥1[G ((x = i ∧ y = j)⇒ P>p[(x = i) U stopS])]

PG6 : P≥1[Fφ1] ∧ P≥1[Fφ2] ∧ P≥1[F ((¬φ1 ∧ ¬φ2) U P≥1[(φ1 ∧ ¬φ2) U P≥p[Xφ2]])]

PG7 : S=?[x = i]

Fig. 3: rPCTL* properties where i, i0, i1 range over hidden states, j, j1, j2 over observed
states, p ∈ [0, 1].

instance of VisitProb (reasoning over reachability within the same user session),
while PG2 – PG4 are instances of StepCount. PG5 helps us identify most likely
states and patterns that lead to the end of the session (this is useful for user
engagement analysis across different time intervals). PG6 checks for correlations
between two properties (that might involve states and activity patterns): if even-
tually one property holds (for a period of time), then immediately afterwards,
the second property holds. PG7 computes the long-run probability of the popu-
lation of user traces of being in each of the activity patterns and it gives us more
insight into the popularity of the patterns.

5 Example software usage analysis: AppTracker

AppTracker [15] is a personal productivity iOS mobile application that runs in
the background, monitoring the opening and closing of (other) apps. It displays
a series of charts and statistics, offering insight to users into the time spent on
their device, the most used apps, how these stats fluctuate over time, etc.. The

main menu screen offers four main options (Fig. 4(a)). The first menu item,
Overall Usage, contains summaries of all the data recorded since AppTracker
was installed and opens the views OverallUsage and Stats (Fig. 4(b)). The
second menu item, Last 7 Days, opens the view StackedBars and displays a
chart indicating activity recorded over the last 7 days. The third menu item,
Select by Period, opens the view PeriodSelector and shows statistics for a
selected period of time. For example, this could be which apps were used most
since last Saturday, or how time spent on Facebook varied each day last month,
or hourly device usage for a particular day (Fig. 4(c)). The final menu option,
Settings, allows a user to start and stop the tracker, or to reset their recorded
data. We are interested in the 16 user-initiated events that switch between views,
as illustrated by the state diagram in Fig. 5. These events determine the atomic
propositions used in our models. The state labels denoting the start and the end
of a session are UseStart and UseStop respectively. The log data is stored in
a MySQL database by the SGLog framework. Raw data is extracted from the
database and processed using JavaScript to obtain user traces in JSON format
has the following format: information about the user’s device, start and end data
of AppTracker usage, and list of sessions. For example, the start of a user trace
may look like the following:

[{"deviceid":"x","firstSeen":"2013-08-20 09:10:59","lastSeen":"2014-03-24 09:57:32",
"sessions":[[{"timestamp":"2013-08-20 09:11:01","data":"UseStart"},{"timestamp":"2013-08-20
09:11:02","data":"T&C"},{"timestamp":"2013-08-20 09:11:23", "data":"Main"},{"timestamp":
"2013-08-20 09:11:46","data":"OverallUsage"},...]}]

AppTracker was first released in 2013 and downloaded over 35,000 times; our
data sets are taken from a sample of 489 users traces during 2013 and 2014.
For learning parameters, the EM algorithm was restarted 200 times with 100
maximum number of iterations for each restart. As example performance, we
implemented the algorithm for GPAM parameters in Java and ran it on a 2.8GHz
Intel Xeon (single thread, one core); for the first week of logged usage data, the
algorithm takes 1.7 min for K = 2, 2.5 min for K = 3, and 3.7 min for K = 4.
Note that complexity of the inference depends on the n and value of K, not on
the size of the data sets.

Analysis of individual patterns. This helps us identify distinct character-
istics of each pattern and give patterns names that are meaningful. In [2] we
considered five properties for PAM: the ones listed in Table 2 and two instances
of the VisitProb and StepCount (where the starting state corresponds to a screen
view different from UseStart). Here, as an example of properties for GPAM,
we give results for VP2 and VC2 in Table 3 for K = 3. For the first month of
usage, AP1 has the best results for Stats and almost the worst for the other
states, AP2 has the best results for OverallUsage, poor results for StackedBars
and PeriodSelector, and worst for Stats, while AP3 has the best results for
StackedBars and PeriodSelector, however OverallUsage scores better, and
Stats has also good results. Therefore for the first month, we conclude that AP1
identifies activity around Stats only, AP2 is a Glancing pattern (based around
the screen view OverallUsage), and AP3 is an Overall Viewing pattern (based

(a) Main menu (b) Overall stats (c) Daily device usage

Fig. 4: Screenshots from AppTracker.

OverallUsage

Task Feedback

Stats Main PeriodSelector

UBCOverallUsage

Settings InfoUseStart

StackedBarsUBCStats UBCApps

UseStop

AppsInPeriod

T&C

Fig. 5: AppTracker state diagram. UseStart labels the initial state; all (15) outgoing
and incoming arrows are omitted for UseStart and UseStop.

around high level exploration of the app). For the second month of usage we see
different results. AP1 is more likely a Glancing pattern, AP2 an Overall Viewing
pattern, and AP3 an In-depth Viewing pattern (based around in-depth visuali-
sations of usage statistics for specific periods of interest). For the third month,
AP1 is an In-depth Viewing pattern, AP2 is an Overall Viewing pattern, and AP3
is a Glancing pattern.

We draw two main conclusions: (1) during the first month there is an excep-
tional activity around Stats screen view compared to the later months (we will
see additional information revealed by the analysis of PG5); (2) during the sec-
ond month and the third month of usage we can identify a distinctive Glancing
pattern characterised by frequent visits to OverallUsage and, surprisingly, to
StackedBars, though that is almost 5 times less frequent. These interpretations,
based of the results listed in Table 3, gives only a glimpse of the characteristics
of the patterns. More information is obtained by analysing the other properties
and correlating the results.

Table 3: GPAM results for properties VP2 (probability to reach screen view in a par-
ticular activity pattern within 50 time steps) and VC2 (expected number of visits to a
screen view only in a particular activity pattern within 50 time steps) for K = 3 and
j taking state identifiers values associated to the labels OverallUsage, StackedBars,
PeriodSelector, and Stats. Colour-coded interpretation for a property, screen view,
and time cut across all 3 patterns: red results are the best, followed by the blue ones,
and black is for the worst result. The meaning of each AP needs to be determined by
the evaluator for each time cut as they may be different.

Time Prop. OverallUsage StackedBars PeriodSelector Stats

cut AP1 AP2 AP3 AP1 AP2 AP3 AP1 AP2 AP3 AP1 AP2 AP3

1st month VP2 0.24 0.99 0.85 0.19 0.30 0.75 0.28 0.24 0.54 0.75 0.01 0.68
VC2 0.52 6.23 1.98 0.21 0.36 1.44 0.37 0.49 0.79 1.66 0.01 1.17

2nd month VP2 0.73 0.98 0.23 0.00 0.76 0.66 0.04 0.14 0.64 0.21 0.23 0.79
VC2 2.47 5.52 0.26 0.00 1.55 1.19 0.05 0.15 1.79 0.25 0.33 1.99

3rd month VP2 0.39 0.40 0.97 0.60 0.21 0.69 0.46 0.48 0.29 0.67 0.20 0.33
VC2 0.55 1.38 5.63 1.06 0.31 1.26 0.72 1.07 0.67 1.36 0.55 0.48

Analysis specific to GPAM. We analysed 18 GPAM models (K ∈ {2, 3, 4}; 6
time cuts) using the properties of Table 2 and PG1 – PG7 instantiated for various
combinations of states and activity pattern identifiers. The results confirmed
that AppTracker has three major usage styles: Overall Viewing, In-depth Viewing,
Glancing, moreover the styles do not correlate with the top-level menu structure
(we observe this when we consider larger values for K). In addition, the GPAM-
specific properties PG1 – PG4 bring new information compared to the PAM
analysis such as: (a) finer insight into each pattern characteristics in relation to
the other patterns and (b) a stronger case for a distinct activity pattern, Glancing,
for short interactions around the OverallUsage screen view, especially for time
intervals excluding the first few days of usage.

Due to space constraints, we give details for only one property, PG5, which
concerns user disengagement. This property computes the probability that al-
ways from a screen view j in a pattern i, eventually, without changing the pat-
tern, the session ends. Analysing this property allows us to identify most likely
screen views and patterns that diminish user engagement (i.e. lead to end of the
session). Table 4 lists the results for PG5, two cases, K = 2 and K = 3. For the
first month of usage (and this also holds for all time intervals starting from first
day of usage), the views Stats, UBCOverall and UBCApps are the most likely to
disengage users in Glancing and Overall Viewing patterns where the probabilities
p to do so are the highest over all states (see in bold), while in the In-depth View-
ing pattern PG5 either does not hold, or it holds for close to zero values of p.
While for the views UBCOverall and UBCApps this effect was expected because
of their lowest level in the hierarhical menu, we were intrigued by the results for
Stats. We discussed these results with the designers of AppTracker and found
out that Stats does not show much information up until the first 30 days of
usage; therefore they subsequently suggested changing the monthly Stats view

Table 4: GPAM results for property PG5, for K = 2 and K = 3, and first and second
months of usage. The two values in each cell are the probability bound p for the first
month and the second month of usage respectively such that PG5 holds; if no value for
p is given, the property does not hold for any value of p.

State K=2 K=3

label Overall In-depth Overall In-depth Glancing

OverallUsage 0.39 / 0.63 – / 0.69 0.55 / 0.17 – / 0.08 0.33 / 0.87

StackedBars 0.46 / 0.63 – / 0.76 0.55 / 0.66 – / 0.01 0.37 / –

PeriodSelector 0.26 / 0.43 – / 0.62 0.37 / 0.05 – / 0.09 0.14 / 0.51

AppsInPeriod 0.15 / 0.14 0.07 / 0.56 0.28 / 0.03 0.06 / 0.01 0.12 / 0.32

Stats 0.71 / 0.59 – / 0.68 0.68 / 0.22 0.01 / 0.13 0.62 / 0.86

UBCOverall 0.81 / 0.56 – / – 0.38 / – 0.02 / 0.02 0.08 / 0.77

UBCApps 0.84 / 0.14 0.01 / – 0.61 / 0.02 – / 0.05 0.47 / –

to show something engaging (e.g. default illustrations of monthly stats and/or
quick tutorial) up until the first 30 days of usage so that users do not get put
off and end the session. During the second month of usage, for K = 2 the prob-
abilities p are similar for both patterns. For K = 3, during the first month of
usage Stats is most likely across all screen views to disengage users, whereas
during the second month we see other screen views such as OverallUsage and
StackedBars as likely as Stats to disengage users.

6 Discussion

Which models, which temporal properties. PAM and GPAM analyses with
generic properties and models generated from different usage intervals provide
insight into the main characteristics of the patterns. We suggest this is a good
starting point for any study of usage styles. This is followed by GPAM-specific
analysis, which allows us to reason about changing patterns within a tempo-
ral property. This analysis may be focused around interesting characteristics
revealed during the initial, generic analysis (e.g. the unusual activity around
Stats view). A feature of PAM is the user trace distribution: this informs us
about which user traces are “interesting” to investigate further. Here we gave
only PAM and GPAM results, ideally we would also pick certain individual user
traces (e.g. those engaged for a long /short time period), define sub-populations
(according to ranges of θ), and analyse the relevant models.
Temporal aspects. Our approach has two temporal aspects: data logging in-
tervals and path formulae in the generated model, they should not be confused
as they are at different scales.
Effect of parameter inference. Models depend on the data and inferred pa-
rameters, so property checking will give different results for different models
(and different runs of the inference algorithm), but we expect to see similar
ratios between sets of learnt parameters.

Longitudinal and other types of analysis. Our example indicates results
may be sensitive to the chosen time interval for logged data. Common sense
indicates this is to be expected, for example differences between the first day of
use and use after several weeks. However, there may be software-specific tempo-
ral sensitivities: our example indicated an unanticipated sensitivity in the first
month of use. We note there are other categorisations: device type, timezone,
length of user trace in number of sessions, frequency of sessions, and average
length of sessions, to name a few. The plethora of possible categorisations and
parametrised properties can be overwhelming and even more so the considera-
tion of how to present the analysis results (e.g. as tables, as plots). Systematic
approaches to categorisation and interpretation of results are needed.

Related work. User behaviours are considered in [10] where models are based
on static user attributes rather than on inferred behaviours, assuming within-
class use to be homogeneous, whereas we demonstrate within-class variation.
Zang et al. [16] extended probabilistic model checking to HMMs, this is not ap-
plicable as we are interested in properties involving both latent and observed
states; moreover, we do not analyse properties directly on AR-HMMs, but on
their flattened version as DTMCs. The two hidden Markov models we use, PAM
and GPAM, are examples of dynamic Bayesian networks (DBNs) [5, 17]. DBNs
can be analysed using Bayesian statistical model checking [18], however our mod-
els are easily encoded and analysed using probabilistic model checking. Extensive
works on inferring parameters for first-order HMM models (as DBNs) from user
traces for runtime verification purposes can be found in [14,19], however we are
looking at a different class of HMM, namely admixture models, for identifying
and analysing usage models within a population of user traces.

7 Conclusions and future work

We have defined new temporal analytics for software usage based on two new
admixture, latent variable Markov models: PAM and GPAM. Both models are
admixtures of activity patterns (DTMCs) and are generated from logged data
sets of interactions of actual deployments, over different time intervals. Tem-
poral logic property analysis is by model checking. We defined two sets of
(parametrised) temporal logic properties: generic ones for analysis of individual
activity patterns and GPAM-specific for properties that combine patterns. The
generic properties provide insight into the main characteristics of the patterns,
and we suggest this is a good starting point for any study of usage styles. This
is followed by GPAM-specific analysis, which may be focused around interesting
or unusual results from the generic analysis. Application to logged data from
a real-life interactive software system indicates the new analytics are tractable
and useful; future work includes guidance on how and when to investigate each
of the models, and a systematic approach to interpretation of results.

Acknowledgment. This research is supported by EPSRC Programme Grant
A Population Approach to Ubicomp System Design (EP/J007617/1).

References

1. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of Proba-
bilistic Real-Time Systems. Proc. of CAV’11 6806 (2011) 585–591

2. Andrei, O., Calder, M., Chalmers, M., Morrison, A., Rost, M.: Probabilistic Formal
Analysis of App Usage to Inform Redesign. In: Proc. of iFM 2016. Volume 9681
of LNCS., Springer (2016) 115–129

3. Andrei, O., Calder, M., Higgs, M., Girolami, M.: Probabilistic Model Checking of
DTMC Models of User Activity Patterns. In: Proc. of QEST 2014. Volume 8657
of LNCS., Springer (2014) 138–153

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
5. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press (2012)
6. Borges, J., Levene, M.: Data Mining of User Navigation Patterns. Web Usage

Analysis and User Profiling: International WEBKDD’99 Workshop (2000) 92–112
7. Chierichetti, F., Kumar, R., Raghavan, P., Sarlós, T.: Are web users really Marko-

vian? Proc. 21st World Wide Web Conference 2012 (WWW’12) (2012) 609–618
8. Singer, P., Helic, D., Taraghi, B., Strohmaier, M.: Detecting Memory and Structure

in Human Navigation Patterns Using Markov Chain Models of Varying Order.
PLOS ONE 9(7) (2014) 1–21

9. Singer, P., Helic, D., Hotho, A., Strohmaier, M.: HypTrails: A Bayesian Ap-
proach for Comparing Hypotheses About Human Trails on the Web. In: Proc.
of WWW’15, ACM (2015) 1003–1013

10. Ghezzi, C., Pezzè, M., Sama, M., Tamburrelli, G.: Mining Behavior Models from
User-Intensive Web Applications. Proc. of ICSE’14 (2014) 277–287

11. Kostakos, V., Ferreira, D., Gonçalves, J., Hosio, S.: Modelling smartphone usage:
a Markov state transition model. Proc. ACM Intl. Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp’16) (2016) 486–497

12. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 39(1) (1977) 1–38

13. Welch, L.: Hidden Markov Models and the Baum-Welch Algorithm. IEEE Infor-
mation Theory Society Newsletter, Dec. 2003. (2003)

14. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E.,
Seyster, J.: Adaptive Runtime Verification. In Qadeer, S., Tasiran, S., eds.: Proc.
of RV’12. Volume 7687 of LNCS., Springer (2012) 168–182

15. Bell, M., Chalmers, M., Fontaine, L., Higgs, M., Morrison, A., Rooksby, J., Rost,
M., Sherwood, S.: Experiences in Logging Everyday App Use. ACM Proc. of
Digital Economy’13 (2013)

16. Zhang, L., Hermanns, H., Jansen, D.N.: Logic and Model Checking for Hidden
Markov Models. Proc. of FORTE 2005 3731 (2005) 98–112

17. Sucar, L.: Probabilistic Graphical Models: Principles and Applications. Advances
in Computer Vision and Pattern Recognition. Springer London (2015)

18. Langmead, C.J.: Generalized Queries and Bayesian Statistical Model Checking in
Dynamic Bayesian Networks: Application to Personalized Medicine. In: Proc. of
CSB’09. (2009)

19. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime Verification with State Estimation. In: Proc. of RV’11. Volume
7186 of LNCS., Springer (2011) 193–207

