
A High-Level Model Checking Language with
Compile-time Pruning of Local Variables

Giovanni Pardini and Paolo Milazzo

Dipartimento di Informatica, Università di Pisa
Largo B. Pontecorvo, 3, 56127 Pisa
{pardinig,milazzo}@di.unipi.it

Abstract. Among Model Checking tools, the behaviour of a system is
often formalized as a transition system with atomic propositions asso-
ciated with states (Kripke structure). In current modelling languages,
transitions are usually specified as updates of the system’s variables to
be performed when certain conditions are satisfied. However, such a low-
level representation makes the description of complex transformations
difficult, in particular in the presence of structured data.
We present a high-level language with imperative semantics for modelling
finite-state systems. The language features are selected with the aim
of enabling the translation of models into compact transition systems,
amenable to efficient verification via Model Checking. To this end, we
have developed a compiler of our high-level language into the modelling
language of the PRISM probabilistic model checker.
One of the main characteristics of the language is that it makes a very
different treatment of global and local variables. It is assumed that global
variables are actually the variables that describe the state of the modelled
system, whereas local variables are only used to ease the specification of
the system’s internal mechanisms. In this paper we describe the proce-
dure for the pruning of local variables that is executed at compile time.

1 Introduction

Expressing the model of a system in order to analyze it by means of model
checking can require time. Modelling in itself is often a challenging task, since
it requires (i) understanding the mechanisms that govern the dynamics of the
system, (ii) performing suitable abstractions that allow such mechanisms to be
expressed in a concise way, and (iii) constructing an unambiguous representa-
tion of the system mechanisms at the chosen abstraction level, by exploiting a
notation that usually depends on the analysis method one wants to apply.

In the case of model analysis by means of model checking, the system dynam-
ics has usually to be formalized as a transition system. Often, such a transition
system has the form of a Kripke structure, namely it has atomic propositions
associated with states, which are used as the basis for the specification of prop-
erties to be verified. The way in which a transition system is expressed in the
input languages of model checking tools can vary significantly from tool to tool.

In many cases the input language allows transitions to be specified as updates
of the system’s variables to be performed when certain conditions are satisfied
(as if-then clauses or rewrite rules). However, if-then clauses and rewrite rules
are often too low level as a modelling paradigm to express systems’ mechanisms
in a natural way. Such a low level nature often requires modellers to formulate
complex expressions as transition conditions, or to introduce in the model un-
necessary variables and transitions just to represent intermediate values for the
computation of the next state reached by a transition. This situation is partic-
ularly frequent in the case of languages that offer no or few data structures.

The aim of this paper is to propose a new language, called Objective/MC, for
the specification of system models to be analysed by means of model checking.
We plan to include in Objective/MC rich data structures, object-oriented features
and concurrent processes. In this paper, however, we start with the definition of
a core version of the language with the main imperative constructs and a basic
notion of array and of object.

One of the main characteristics of the language is that it makes a very differ-
ent treatment of global and local variables. It is assumed that global variables are
actually the variables that describe the state of the modelled system, whereas
local variables are only used to ease the specification of the system’s internal
mechanisms. Hence, in this paper we focus on the problem of pruning local vari-
ables and generating transitions that correspond to updates of global variables.

The language is developed with the aim of allowing translation of Objec-
tive/MC models into the input language of an existing model checking tool.
Since in the long term we plan to allow probabilistic and stochastic systems to
be dealt with, we choose PRISM as the target model checking tool in this pa-
per. We also include in the language an operator to perform non-deterministic
choices that are translated into probabilistic choices in PRISM.

An implementation of the translator from Objective/MC into the modelling
language of the PRISM model checker is available [1]. The translator transforms
the model in order to make all local variables disappear. Hence, the generated
transition system will consist of transitions that correspond to the updates of
only the global variables used in the model.

Related works Among model checkers with an input language essentially based
on if-then clauses or rewrite rules we mention NuSMV [2], PRISM [7] and UP-
PAAL [8]. In these cases the state of system is merely represented as a set of
variables or by simple data structures.

Maude [4] offers a declarative input language based on rewrite rules with the
possibility of using complex structures such as terms and objects. The Maude
language is presently richer than Objective/MC in terms of functionalities. Differ-
ently, Objective/MC is an imperative language and offers compile-time pruning
of local variables to combine the ease of specification with the generation of a
compact transition system. Moreover, Objective/MC is already designed with the
aim of extending it with rich data structures and object oriented features.

Other tools have rich modelling languages, the features of which are often
related with the specific kind of systems addressed. This is for instance the case

Declarations

Model ::= D G M run {Com} (model)

D ::= class c {F} (class)

M ::= void w(Tv I) {Com} (proc.)

F,G ::= T I (field/global var)

Commands

Com ::= Tv I = E (local var decl)∣∣ Loc = E (assignment)∣∣ {Com} (block)∣∣ if (E) {Com} else {Com} (if)∣∣ while (E) {Com} (while)∣∣ times (E) {Com} (times)∣∣ w(E) (procedure call)∣∣ yield (yield)

Types

Tv ::= int(n .. m)
∣∣ bool (basic)

T ::= Tv

∣∣ c ∣∣ T [n] (compound)

Expressions

Loc ::= I (identifier)∣∣ Loc[E] (array)∣∣ Loc.f (field)

E ::= v (literal value)∣∣ Loc (location)∣∣ E opb E (binary op.)∣∣ opuE (unary op.)∣∣ E ? E : E (conditional)∣∣ E as int(n .. m) (ascription)∣∣ select(n,m) (select)

Fig. 1: Syntax of Objective/MC, where v denotes a value in Z ∪ {true, false},
opb ∈ {+,−, ∗, /,<,≤, >,≥, ==, !=,&&, ||}, opu ∈ {+,−,¬}.

of Software Model Checkers (such as SPIN [6], CBMC [3] or Java Pathfinder [5])
that are based on rich languages for the specification of concurrent processes,
or can even executed directly on C or Java source code. In particular, as re-
gards SPIN (and its input language Promela), it includes high level imperative
programming constructs and concurrency features. The same holds for Rebeca
(Reactive Objects Language) [9], an actor-based language for modelling and
verification of reactive systems. With respect to these languages, Objective/MC
offers the novelty of the compile-time pruning of local variables.

We remark that the long-term aim of our work is to propose a new high-
level modelling language with imperative semantics. The definition of the local
variable pruning methodology is a step in this direction. For this reason, we have
defined the methodology on a new language rather than on an existing language.

2 The Core Objective/MC Language

In this section, we present a core version of the Objective/MC language, which
allows us to focus on the foundational aspects of the translation of models into
transition systems, in particular as regards the handling of global/local variables.
The core language provides only a limited support for object-oriented features;
an extensive treatment of those aspects will be the object of a future paper.

The syntax of the Objective/MC language is shown in Figure 1. For con-
ciseness, we denote a sequence of symbols (of either a syntactical category or
terminal symbols) by using an overbar. The concrete syntax follows C-like con-
ventions, such as using semicolons as command terminators.

A Model is composed of sequences of class declarations D, global variables
declarations G, and procedure declarations M (akin to static methods). In a pro-
cedure declaration, the notation Tv I denotes a sequence of pairs T 1

v I
1, . . . , T kv I

k.

The language provides two basic data types: bounded integers, declared as
int(n ..m) with n ≤ m, which can hold any integer value x in the range [n,m]1,
and booleans, declared as bool, holding values {true, false}. There are also
two compound types: fixed-length arrays, and classes. Each definition of a class
introduces a type (different from any other type) which is identified by the name
of the class itself. A class contains a number of fields F of any type. However,
only class types which have been declared previously may be referenced, thus
ruling out any recursive type.

Global variables are statically allocated, and they are meant to constitute
the global state of the system which is updated by the assignment statements
occurring in the program model. There are no restriction on the types of the
global variables; that is, any valid type according to the grammar, and referring
only to classes already declared, may be used. In particular, this allows objects
and arrays to be defined as global variables. On the other hand, objects/arrays
can be neither defined as local variables nor dynamically allocated. As regards
the declaration of procedures M , they may take any number of parameters, and
their types are restricted to the basic types.

The main entry point of the program model is the run command block.
Commands are executed sequentially, and the canonical control flow commands
(if, while, procedure calls) are provided by the language. Actually, there are two
different cycle construct: a standard while (E) {...} command which executes its
body as long as the guard E evaluates to true, and a times (E) {...} command
which instead executes the body for a fixed number of iterations, obtained by
evaluating the integral-type expression E. Recursion is not allowed.

Local temporary variables having basic type int/bool may be declared and
used, and they must be initialized at the same time of their declarations. The
syntax of expressions is quite standard, where the syntactical category Loc for
locations is used to access: (i) local/global variables from their identifier I, (ii)
elements of arrays as Loc[E], or (iii) object fields as Loc.f . A non-deterministic
construct select(n,m), with n,m ∈ Z, is also provided, which “generates” an
integral value in the range [n,m] every time the expression is evaluated.

An assignment of the form Loc = E may refer to either a global or local
variable, where E is an expression which evaluates to a basic type, and Loc
must refer to a variable of a compatible type. Formally, either both Loc and E
are expressions of type bool, or the type of the right hand side expression is
an integral type int(n2 .. m2) with range fully contained in the range of the left
hand side variable int(n1 ..m1), namely [n2,m2] ⊆ [n1,m1]. In order to fulfil this
requirement, the ascription construct E as int(n .. m) may be used to force an
expression to be considered in the type system as a different (stricter) integral
type than the one which can be derived from the subexpressions of E.2

1 The notation [n,m] indicates the integral range of values {x | n ≤ x ≤ m} ⊂ Z.
2 The formal definition of the type system is omitted due to lack of space.

Semantics The semantics of a model M is a transition system, whose states
are characterized by the all and only global variables defined in the program
model (except for a hidden global “program counter” variable needed for the
translation of sequential commands). As a consequence, assignments to global
variables give rise to transitions in the resulting transition system. A special
command yield is used to generate a transition for which no declared global
variables are modified, and actually only the hidden program counter is updated.
Since the Objective/MC language is geared towards the model checking of the
resulting transition systems, in defining the semantics we strictly adhere to the
following principle:

No transitions may be implicitly introduced by the compilation process beyond
those transitions which correspond to updates to global variables.

The motivation for the above principle is that we want to avoid enlarging the
state space implicitly. Nevertheless, the modeller may always introduce global
variables if necessary to describe an intended behaviour, which explicitly enlarge
the state space. In the current definition of the language, each single assignment
to a global variable causes a transition in the resulting transition system.

The language allows local variables to be defined and used according to their
intuitive imperative semantics. However, rather than storing them in the global
state, the compiler instantiates each access to a local variable with an equivalent
expression containing only literal values and references to global variables. For
this reason, some limitations on their usage apply.

Constraints Due to the semantics of Objective/MC, there are three constraints
on the usage of the language, exemplified by the following model fragments.

1 int(0..5) x = g + 1;
2 if (x > 0)
3 g = 0; // global assm.
4 else
5 q = 0; // global assm.
6 int(0..6) y = 0;
7 y = x + 1; // error

(a)

1 int (0..5) x = 0;
2 while (g > 0) {
3 if (q == x)
4 x = g; // error
5 q = g; // global assm.
6 }
7 int(0..6) y = x;

(b)

1 while (g > 0) {
2 if (q < g) {
3 g = 0; // global assm.
4 } else {
5 // empty
6 }
7 } // error in ‘while’ loop

(c)

(a) A local variable cannot be read after the global variables it depends upon
may have been modified. In the example, at line 1, the local variable x is
initialized with the global variable g, and it is then accessed (i.e. read) at
line 7. However, since local variables are handled as unevaluated expressions
by the compiler, at line 7 its definition may have been invalidated due to the
assignment to the dependant global variable g at line 3. A possible solution
is to promote variable x into a global variable, thus allowing the previous
value of g + 1 to be retained across transitions.

(b) A local variable declared outside of a while loop cannot be reassigned in the
loop body. Since the loop may be executed an unbounded number of times,
it is generally impossible to know the value of a local variable which may

1 int(0..10)[5] P; // array of five processors
2 int(0..10) nextjob; // duration of the next job
3 void execute_step() { // decreases the load of each processor by one unit
4 int(0..4) i = 0;
5 times (5) {
6 if (P[i] > 0) { P[i] = P[i] as int(1..10) - 1; }
7 i = (i < 4 ? i + 1 : i) as int(0..4); }
8 }
9 run {

10 while (true) {
11 execute_step();
12 if (nextjob == 0) nextjob = select(0,3);
13 int(0..4) min_idx = 0;
14 int(0..4) i = 1;
15 times (4) {
16 if (P[i] < P[min_idx]) min_idx = i;
17 i = (i < 4 ? i + 1 : i) as int(0..4); }
18 if (P[min_idx] + nextjob <= 10) {
19 P[min_idx] = (P[min_idx] + nextjob) as int(0..10);
20 nextjob = 0;
21 } else yield;
22 }
23 }

Fig. 2: An Objective/MC model of a job processor scheduler.

be reassigned inside the loop body. In the example above, the local variable
x may be assigned at line 4 hence (analogously to the previous case) when
it is read at lines 3 and 7, its value cannot be definitely known. Note that
times loops do not have this limitation.

(c) Each execution path inside the body of a while loop must contain at least one
global variable assignment or a yield. This constraint is useful to simplify
the translation, since it frees the compiler from the need to identify infinite
loops at compile-time, as in the example, for which an infinite loop occurs
if 0 < g ≤ q. A possible solution is to insert a yield command at line 5, in
such a way that a transition is generated for each branch of the if.

Constraints (a) and (b) avoid situations in which one or more transitions in the
semantics of the model make it impossible to reconstruct the value of the local
variable from current values of the global variables. This could be due either, in
case (a), to a change in a global variable upon which the local variable depends,
or, in case (b), to the impossibility of knowing the function that allows the local
variable to be computed from the global ones. Hence, these language constraints
reflect potential constraints arising from the model itself, namely situations in
which information needs to be included in the states of the model.

Example 1. Fig. 2 contains a model of a job scheduler for a fixed number of
processors, which may execute jobs of different durations. A processor is char-
acterized by its load, modelled as an integer in the range [0, 10]. At line 1, an
array of 5 processors is declared as a global variable P. Each element of the array

is initialized by default at 0. At line 2, a global variable nextjob is declared,
representing the duration of the next job to be scheduled (initially 0).

At line 3, a procedure with no parameters is declared. Its purpose is to
decrease the load of each processor by one unit each time it is invoked, in order
to simulate the progress of the system. A temporary local variable i is used as the
index in the array of processors, and as such it will not appear in the translated
model. At each iteration of the times cycle, the current processor load P[i], if it
is not already nil, is decreased by the assignment at line 6.

The system executes an infinite loop where, at each iteration: (i) procedure
execute_step() is called, (ii) if there are no jobs waiting (nextjob = 0), the dura-
tion of the next job is selected non-deterministically in the range [0, 3] (line 12),
(iii) the index of the least-loaded processor (min_idx) is computed (lines 13–17),
and finally (iv) the new job is tentatively assigned to processor P[min_idx] if it
can accommodate it and, in this case, nextjob is reset (lines 18–21).

The yield command at line 21 is necessary in order to satisfy constraint (c),
since it might be the case that no assignments to global variables are executed
in an iteration of the while loop.

3 Control Flow Graph

The run block is translated into a Control Flow Graph (CFG), which allows
us to abstract from the syntactical representation of the model, and simplify
the definition of the subsequent transformations. Let Πin and Πout be countable
disjoint sets of input and output endpoints, respectively. A CFG G is a pair
(N(G),E(G)) composed of a set of nodes N(G) of the form [T]π0

π1,...,πk
, with

π0 ∈ Πin and {π1, . . . , πk} ⊂ Πout, and a set of edges E(G) ⊂ Πout ×Πin such
that ∀(α, β1), (α, β2) ∈ E(G). β1 = β2. Assuming input([T]π0

π1,...,πk
) = π0 and

outputs([T]π0
π1,...,πk

) = {π1, . . . , πk}, we define, for any N ⊆ N(G): inputs(N) =⋃
x∈N{input(x)}; outputs(N) =

⋃
x∈N outputs(x); endpoints(N) = inputs(N)∪

outputs(N). For conciseness, we also define outputs(π0) = {π1, . . . , πk}.
Let G be a graph. Given π ∈ inputs(N(G)), its predecessors are defined as

predG(π) = {α | (α, π) ∈ E(G)}, while, given π ∈ outputs(N(G)), its successors
are defined as succG(π) = {α | (π, α) ∈ E(G)}. Note that |succG(π)| ≤ 1.

3.1 Construction of the Control Flow Graph

The types of nodes defined for the Control Flow Graph are the following.

[let I = E]π0
π1

[`⇐ E]π0
π1

[yield]π0
π1

[if E]π0
π1,π2

[selectk]π0
π1,...,πk

[begin]π0
π1

[end]π0 [skip]π0
π1

The first two nodes represent assignments to either a local variable I or a global
variable ` ∈ Loc, respectively, while the third directly corresponds to the yield
command. The if node is used to translate both if and while commands, where
the output endpoints π1, π2 denote the branches to follow when the condition

` 6= I or ` ∈ Globals
J` = EK 7→ [`⇐ E]π0

π1
, π0, {π1}

I /∈ Globals
JI = EK 7→ [let I = E]π0

π1
, π0, {π1}

JTv I = EK 7→ [let I = E]π0
π1
, π0, {π1} JyieldK 7→ [yield]π0

π1
, π0, {π1}

JC1K 7→ G1, in1, out1 JC2K 7→ G2, in2, out2 out′ = out1 ∪ out2
Jif (E) {C1} else {C2}K 7→ G1 +G2 + [if E]π0

π1,π2
+ (π1, in1) + (π2, in2), π0, out

′

JComK 7→ G, in, out

Jwhile (E) {Com}K 7→ G+ [if E]π0
π1,π2

+ (π1, in) + (out× {π0}), π0, {π2}
type(E) = int(n0..m) n = max(0, n0) ∀i ∈ [1,m]. JComK 7→ Gi, ini, outi

Jtimes (E) {Com}K 7→
∑m
i=1Gi +

∑m
i=2(outi × {ini−1}) +

∑m
i=n[if E == i]αi

βi,γi

+
∑m
i=n(βi, ini) +

∑m
i=n+1(γi, αi−1), αm, out1 ∪ {γn}

decl(w) = w(T1 I1, . . . , Tk Ik) {Com} with k > 0 JComK 7→ G, in, out

Jw(E1, . . . , Ek)K = G+
∑k
i=1[let Ii = Ei]

αi
βi

+
∑k−1
i=1 (βi, αi+1) + (βk, in), α1, out

decl(w) = w() {Com}
Jw()K = JComK J{Com}K = JComK

|Com| = 0

JComK 7→ [skip]π0
π1
, π0, {π1}

JComK 7→ G1, in1, out1 JComK 7→ G2, in2, out2 |Com| > 0

JCom ComK 7→ G1 +G2 + (out1 × {in2}), in1, out2

Fig. 3: Construction rules for the Control Flow Graph.

if E

Gcom

 Y

N

Fig. 4: While loop.

if E == 5

Gcom

Y

if E == 4N

Gcom

Y

if E == 3N

Gcom

Y

N

Gcom Gcom

Fig. 5: Times loop, when type(E) = int(3 .. 5).

E is either satisfied or not, respectively. The select node is parameterized by
the number of choices k ≥ 1. There is also a begin node, an end node (without
output endpoints), and a skip node for empty command blocks.

Given two graphs G1, G2, we define a union operation as G1+G2 = (N(G1)∪
N(G2),E(G1)∪E(G2)), provided that endpoints(N(G1))∩endpoints(N(G2)) = ∅.
Moreover, we define the addition of a set of edges E to a graph G as G + E =
(N(G),E(G) ∪ E), provided that E ⊆ outputs(N(G)) × inputs(N(G)). Given
G1, G2 such that N(G2) ⊆ N(G1) and E(G2) ⊆ E(G1), we define a difference
operation as G1−G2 = (N ′, E′) where N ′ = N(G1) \N(G2), and E′ = (E(G1) \
E(G2)) ∩ (outputs(N ′)× inputs(N ′)).

The translation of (a sequence of) commands Com is obtained through the re-
lation JComK 7→ 〈G, in, out〉, where in ∈ inputs(N(G)) and out ⊆ outputs(N(G))
are the designated input endpoint and output endpoints of the whole graph, re-
spectively. Relation J·K is the smallest relation satisfying the rules shown in
Fig. 3 (brackets 〈 〉 are omitted for clarity) where, for conciseness, a single node
[T]π0

π1,...,πk
also denotes the graph composed of only such a node. Moreover, we

int(-50..50) Q = 0;
run {

while (Q != -50 && Q != 50) {
int(0..1) x = select(0,1);
if (x == 0)

Q = (Q - 1) as int(-50..50);
else

Q = (Q + 1) as int(-50..50);
}

}

Fig. 6: A random walk model.

assume local variable names (includ-
ing parameters) to be unique, and
distinct from the global ones (de-
noted Globals); decl(w) to denote
the declaration of a procedure w;
and type(E) the type of E as in-
ferred by the type system. The def-
inition is quite straightforward. We
just point out the different transla-
tion of while and times loops, de-
picted in Fig. 4, 5 (the designated

input and output endpoints are depicted with symbols ◦ and •, respectively). In
the times case, the type of E determines the number of copies of the translated
loop body Gcom (obtained from JComK) in the CFG. Finally, the resulting CFG
is obtained by connecting a begin node to the designated input endpoint in, and
by connecting the out endpoints to an end node. Given a graph G, we denote the
input endpoint of the begin and end nodes by begin(G) and end(G), respectively.

Example 2. Fig. 6 shows an implementation of a one-dimensional random walk.3

The position is modelled as a global variable Q, initialized at 0, which can vary
in the range [−50, 50]. The process goes on until the limits of the allowed range
for the position are reached. At each iteration of the while loop, the position is
either decreased or increased by 1, in a non-deterministic way, according to the
choice performed by the select(0,1) operation. Its CFG is shown in Fig. 7a.

3.2 Transformations

The first transformation consists in the elimination of the skip nodes; that is, for
all nodes x = [skip]π0

π1
∈ N(G), we apply G G−x + (predG(π0)× succG(π1)).

The second transformation concerns the expansion of select operators, and
consists in replacing each node containing one or more select(n,m) operators
with an explicit [selectk] node, with k = m − n + 1. We introduce the func-
tion alt : E → P(E) which expands an expression E into a set of expressions,
one for each different combination of values which can be generated by the
all select operators appearing in E. We define alt(v) = {v}, alt(I) = {I},
alt(select(n,m)) = {n, . . . ,m} and, for any other expression operator ϕ 6=
select, alt(ϕ(E1, . . . , En)) =

⋃
{ϕ(E′1, . . . , E

′
n) | E′i ∈ alt(Ei), i = [1, n]}. The

actual transformations applied are shown in Fig. 8.

Normalization The next transformations involve let nodes for local variables.
The aim is to obtain an equivalent normalized CFG, namely such that for any
node in which a local variable I is read, the definition of I is univocally de-
termined. To this purpose, two different transformations are needed, which are
based on the duplication of parts of the CFG.

We define, for each π ∈ endpoints(N(G)), the relation RDπ ⊆ I×inputs(N(G))
such that (I, α) ∈ RDπ implies that there exists a path from π to an ancestor

3 In this example, we have assumed that global variable Q can be initialized inline.

begin

if pos != -50 && pos != 50

end

N

let x = select(0, 1)

Y

if x == 0

pos ⇐ (pos - 1) as int(-50..50)

Y

pos ⇐ (pos + 1) as int(-50..50)

N

(a) Initial graph.

begin

if pos != -50 && pos != 50

end

N

select2

Y

let x = 0

1

let x = 1

2

if x == 0

pos ⇐ (pos - 1) as int(-50..50)

Y

pos ⇐ (pos + 1) as int(-50..50)

N

(b) Expansion of select(0, 1).

begin

if pos != -50 && pos != 50

end

N

select2

Y

let x = 0

1

let x = 1

2

if true if false

pos ⇐ (pos - 1) as int(-50..50)

Y

pos ⇐ (pos + 1) as int(-50..50)

N Y N

(c) Normalization step.

begin

if pos != -50 && pos != 50

end

N

select2

Y

pos ⇐ (pos - 1) as int(-50..50)

1

pos ⇐ (pos + 1) as int(-50..50)

2

(d) Final graph.

Fig. 7: Various transformations of the CFG in the random walk example.

α of the form [let I = E]αβ , with no other intervening definitions of I along the
path. We write RDπ(I) = {α | (I, α) ∈ RDπ}. Formally, RD is defined by the
following equations derived from the nodes of the CFG:

[begin]π0
π1
7−→ RDπ1 = RDπ0 = ∅

[let I = E]π0
π1
7−→ RDπ1 = (RDπ0 \{(I, α) ∈ RDπ0}) ∪ {(I, π0)}

[`⇐ E]π0
π1
, [yield]π0

π1
7−→ RDπ1 = RDπ0

[if E]π0
π1,π2

7−→ RDπ1 = RDπ2 = RDπ0

[selectk]π0
π1,...,πk

7−→ RDπ1 = RDπ2 = · · · = RDπk = RDπ0

while ∀π ∈ inputs(N(G)) 7−→ RDπ =
⋃
{RDπ′ | π′ ∈ predG(π)}. We also

assume a function usedG(π) = {I1, . . . , Ik} giving, for all π ∈ inputs(N(G)), the
set of local variable names read in any node reachable from π (including itself).

Definition 1. A Control Flow Graph G is normalized iff, for all [T]π0
π1,...,πk

∈
N(G) and I ∈ usedG(π0): |RDπ0(I)| = 1.

x = [let I = E]π0
π1
∈ N(G) alt(E) = {E1, . . . , Ek} k > 1

G G− x + [selectk]π0
α1,...,αk

+
∑k
i=1[let I = Ei]

βi
γi + (predG(π0)× {π0})

+ {(αi, βi) | i = [1, k]}+ ({γ1, . . . , γk} × succG(π1))

x = [`⇐ E]π0
π1
∈ N(G) alt(`) = {`1, . . . , `k} alt(E) = {E1, . . . , Eh} k + h > 2

G G−x + [selectk·h]π0
α1,1,...,αk,h

+
∑k
i=1

∑h
j=1[`i⇐ Ej]

βi,j
γi,j + (predG(π0)×{π0})

+ {(αi,j , βi,j) | i ∈ [1, k], j ∈ [1, h]}+ ({γ1,1, . . . , γk,h} × succG(π1))

x = [if E]π0
π1,π2

∈ N(G) alt(E) = {E1, . . . , Ek} k > 1

G G− x + [selectk]π0
α1,...,αk

+
∑k
i=1[if Ei]

βi
γi,δi

+ (predG(π0)× {π0})
+ {(αi, βi) | i = [1, k]}+ ({γ1, . . . , γk} × succG(π1)) + ({δ1, . . . , δk} × succG(π2))

Fig. 8: Transformation rules for the expansion of select operators.

To obtain a normalized CFG, for all nodes x = [T]π0
π1,...,πk

violating the above
condition, namely such that |RDπ0

(I)| > 1, two cases need to be considered.

Case 1 This case allows duplicating one node at a time. Given α ∈ RDπ0
(I), let

Bα = {β ∈ predG(π0) | RDβ(I) = {α}}. Then, if ∀β ∈ predG(π0). |RDβ(I)| =
1, the following transformation can be applied:

G G− (Bα × {π0}) + x′ + (Bα × {γ0}) +
∑k
i=1({γi} × succG(πi))

where x′ = [T]γ0γ1,...,γk is a duplicate of x. This transformation detaches
parent β from x and attaches it (as the only parent) to x′. The output
endpoints of the duplicate node are connected to the same children of x, in
the same manner. This transformation is applied in a maximal way, until its
applicability condition is no longer satisfied by any node.

Case 2 After Case 1, if there are still nodes for which |RDπ0
(I)| > 1, it implies

that, for some node identified by π0, its predecessors predG(π0) can be parti-
tioned into two (non-empty) sets B(1), B(2) such that ∀β ∈ B(1). |RDβ(I)| =
1, and ∀γ ∈ B(2). RDγ(I) = RDπ0(I). Note that Bα ⊆ B(1). Then the
following transformation can be performed:

G G− (Bα × {π0}) +N ′ + E′ + (Bα × {γ0})

which duplicates a subgraph of G which includes x. In particular, N ′, E′, γ0
are obtained through the function cloneG(x, π0) = (N ′, E′, γ0), where: N ′

are the duplicated nodes, E′ are the duplicated edges (which may also point
to old nodes still present in G), and γ0 is entry node of the cloned subgraph,
corresponding to π0.
In order to define the clone function, let us assume a one-to-one mapping
α 7→ α̃ between endpoints such that ∀α, β. α 6= β̃. Moreover, let us consider
the subgraph G′ of G restricted to the nodes N(G)\B(1), and let N0 ⊆ N(G)
be the Strongly Connected Component (SCC) of G′ containing node x (i.e.
π0 ∈ inputs(N0)). Assuming Ec = E(G) ∩ (N0 × N0) and Ec = E(G) \ Ec,
we define cloneG(x, α) = (N ′, E′, α̃), where:

1

· · ·
int(1..2) x =

select(1,2);
2 while (g < x) {
3 g = (g + 1) as

int(0..10);
4

· · ·
}

select2

let x = 2

2

let x = 1

1

if g < x

N

g ⇐ (g + 1) as …

Yeb

select2

let x = 1

1

let x = 2

2

if g < x if g < x

N

g ⇐ (g + 1) as …

Y
N

g ⇐ (g + 1) as …

Y

Fig. 9: Example of while loop duplication.

N ′ =
{

[T]β̃2π̃1,...,π̃k

∣∣∣ [T]β2π1,...,πk
∈ N0 ∧ ∃β1. (β1, β2) ∈ Ec

}
;

E′ =
{

(β̃1, β̃2)
∣∣ (β1, β2) ∈ Ec

}
∪
{

(β̃1, β2)
∣∣ (β1, β2) ∈ Ec ∧ β̃1 ∈ outputs(N ′)

}
.

Normalization algorithm The algorithm alternates between the maximal appli-
cation of Case 1 and a single application of Case 2, until they are no longer
applicable. This alternation is necessary since the transformation performed for
one case may enable the application of the other case, for some nodes. Moreover,
before the application of each case, the compiler performs a constant propagation
phase, by instantiating each occurrence of any local variable with its defining
expression, whenever such a definition is univocally determined. Precisely, given
a node [T]π0

π1,...,πk
, the instantiation is carried out for each variable I being read

in T such that |RDπ0
(I)| = 1, which is replaced by an expression containing no

references to local variables. At the end, a normalized CFG is obtained, that
is then simplified by removing all let nodes, and also any if node for which its
condition has been already reduced to a truth value.

Example 3. Fig. 7 shows a few transformation of CFG for the random walk
model from Example 2. After the initial construction (Fig. 7a), the first trans-
formation consists in the expansion of the select operator present in node
[let x = select(0, 1)], giving Fig. 7b. The original let node is being replaced
by a select node followed by two new let nodes, one for each possible outcome 0
and 1. Then node [if x==0] is duplicated according to Case 1 of the normalization
algorithm, and the subsequent constant propagation causes both occurrences of
the local variable x in the if nodes to be instantiated, as shown in Fig. 7c. The
graph obtained after the final simplification step is shown in Fig. 7d.

Example 4. Consider the model fragment from Fig. 9 (left), in which a variable x
is non-deterministically selected and then accessed by the guard of a while loop.
In the CFG (after the expansion of select) the definition of x in the [if g < x]
node cannot be univocally determined; in fact, both definitions of x can be traced
back through the backward edge eb coming from the end of the loop body. Hence,
only Case 2 can be applied, which duplicates the SCC composed of the [if g < x]
and [g ⇐ (g + 1) . . .] nodes, yielding the CFG depicted in Fig. 9 (right).

4 PRISM Translation

A normalized Control Flow Graph (see Def. 1), containing only assignments to
global variables [` ⇐ E], yield nodes, if nodes, and select nodes, is taken as
input for the generation of the PRISM model. In the current paper we consider
only PRISM models for Discrete Time Markov Chains (DTMC).

Definition 2 (PRISM syntax). Let Var be a countable set of variables’ names.
The syntax of a subset of PRISM is defined by the following grammar:

PModel ::= Decl Rule

Decl ::= Var : Tv init v Rule ::= Expr A (p1 : Upds1 ⊕ · · · ⊕ pn : Updsn)

Upds ::= Upd1 & . . .& Updk Upd ::= Var ′ = Expr

Expr ::= v
∣∣ Var

∣∣ Expr opb Expr
∣∣ opu Expr

∣∣ Expr ? Expr : Expr

where Tv, v, opb, opu are as defined for Objective/MC (see Fig. 1).

A PRISM model consists of a collection of variables Decl , and a number of rule
schemata Rule describing the transitions of the DTMC. Allowed variable types
are bounded integers and booleans, analogous to the corresponding types of Ob-
jective/MC. Rules are of the form: guardA (p1 : alt1 ⊕ · · · ⊕ pn : altn) where
guard is a boolean condition over the global variables determining the appli-
cability of the rule, and alt1, . . . , altn are the possible probabilistic alternatives
chosen when the rule can be applied, where each pi ∈ R+ denotes the probabil-
ity of the corresponding alternative. Each alternative is composed of a collection
Upds of updates of the form Var ′ = Expr , one for each global variable Var to
be updated. Any global variable may occur at most once in the left hand side of
any update in Upds. Moreover, rule guards must all be disjoint.

As regards the semantics, the resulting DTMC is obtained from a PRISM
model by instantiating its rules for each possible state in the complete state space
of the model as determined by the global variables. Since the core Objective/MC
language does not currently provide operators for probabilistic choice, in the rest
of the paper we assume constant probabilities among rule alternatives, namely
for all rules p1, . . . , pn = 1/n, and thus omit them from the model descriptions.

Since PRISM only allows variables to be declared as basic types (either inte-
gers or booleans), without any structure, the first step in the translation consists
in flattening the Objective/MC (structured) global variables into a collection of
basic PRISM variables. An array a with type(a) = T [n] is translated into a set
of PRISM variables a[0], . . . , a[n − 1]. Similarly, each object o declared among
global variables (including those in arrays) is translated into a set of PRISM
variables o.I1, . . . , o.In, where I1, . . . , In are the instance variables of o. Such a
translation of objects into PRISM variables is possible since in Objective/MC
objects cannot be created dynamically.

First of all, we determine the nodes of the CFG which give rise to transitions
in the resulting PRISM model. They are the begin, assignment and yield nodes,
and, together with the end node, constitute the set States.

We also introduce a special global variable pc (program counter) of type
int(−1 .. N) where −1 = err denotes an error state used to catch violations
of integral ranges allowed in expression ascriptions, and N = |States|. We as-
sume a one-to-one mapping between States and pc values in {0, . . . , N − 1}. For
simplicity, we refer to pc values with their corresponding endpoints from States.

A PRISM rule is generated for each α ∈ States. This requires determining the
set of states next(α) = {β1, . . . , βk} ⊆ States which are directly reachable from α
in the CFG, namely those states which are reachable through a path containing
only if and select nodes. The generated rules have the following form, for each
state α (except for end and error):

pc == αA

(⊕k
i=1

{
U & (pc′ = Casc ? E : err)

})
while a deadlock transition pc==αA(pc′ = α) is generated for the end and error
states. As regards the first case, each alternative is composed of (i) a number
of global assignments U , implementing the assignment described in the current
node α, and (ii) an update of variable pc.

The different alternatives to be considered (for i ∈ {1, . . . , k}) emerge from
the presence of select nodes in the subtree between α and the nodes in next(α).
As regards the update (pc′ = Casc ? E : err) of the program counter, Casc rep-
resents the conditions obtained from the ascriptions in the subtree, and E is a
conditional expression that evaluates to the new program counter from the set
next(α), which is obtained from the if nodes present in the subtree.

Example 5. Consider the CFG of Fig. 7d, and let pc = 0 denote the begin node,
1 the left assignment node, and 3 the end node. Let Cif = (pos!=−50&&pos!=50)
be the condition of the if node; the rules generated for nodes 0 and 1 are:

pc == 0 A (pc′ = Cif ? 1 : 3)⊕ (pc′ = Cif ? 2 : 3)

pc == 1 A (pos′ = C−1
asc ? pos− 1 : pos) & (pc′ = (C−1

asc ? (C−1
if ? 1 : 3) : err)⊕

(pos′ = C−1
asc ? pos− 1 : pos) & (pc′ = (C−1

asc ? (C−1
if ? 2 : 3) : err)

where C−1if is used to evaluate, from the assignment node 1, the condition Cif as
if the current assignment (pos′ = pos − 1) would be already performed, while
C−1asc checks the ascription in the assignment expression; formally: C−1if = (pos−
1 !=−50 && pos− 1 != 50), C−1asc = (−50 ≤ pos− 1 && pos− 1 ≤ 50).

Discussion An implementation of the compiler for the core Objective/MC lan-
guage into PRISM models is available [1]. We have used the compiler to au-
tomatically generate a PRISM model of the job scheduler from Fig. 2, which
contains 19 transition specifications. The DTMC built by PRISM (in 0.125 sec-
onds) consists of 256 states and 343 transitions. Verification of properties can
be performed by model checking temporal logic formulas on the variables of
the generated PRISM model. A hand-made PRISM model of the job scheduler
example is available at [1]. It consists of 5 variables P 0, . . . , P 4 representing
processors, a nextjob variable to store the value of the next processing job to
be executed, and a state variable for the sequential execution of the steps. The

model built by PRISM in this case (in 0.035 seconds) consists of 264 states and
312 transitions.

In terms of DTMC dimension, the PRISM model obtained from the transla-
tion of the Objective/MC model turns out to be similar in size to the hand-made
PRISM models. This suggests that the pruning of local variables performed at
compile time has actually avoided too many useless states to be introduced by
the translation. Note also that in the hand-made PRISM model, changing the
range of possible values for the next processing job to be executed requires man-
ually modifying a number of transition specifications in the model source code.
Instead, in the Objective/MC model in Fig. 2, the same modification could be
done by simply changing the value of the select expression at line 12.

5 Conclusions

We have proposed an early version of an object-oriented language, called Objec-
tive/MC, for the specification of models to be analysed by model checking. In
particular, we have focused on the imperative constructs of the language and on
the handling of global and local variables. As future developments, we plan to
formally define the semantics of the language and prove the correctness of the
transformations performed on the models. Moreover, we will extend the language
with richer object oriented features (methods and inheritance), with richer data
structures and operations on them (array filters and a notion of graph) and with
probabilistic/stochastic operations. Finally, we plan to add some features to deal
with concurrency aspects.

References

1. ObjMC: The Objective/MC compiler, http://pages.di.unipi.it/pardini/ObjMC
2. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,

Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: Computer Aided Verification. pp. 359–364. Springer (2002)

3. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Tools
and Alg. for the Construction and Analysis of Systems, pp. 168–176. Springer (2004)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: specification and programming in rewriting logic. Theoretical
Computer Science 285(2), 187–243 (2002)

5. Havelund, K., Pressburger, T.: Model checking Java programs using Java Pathfinder.
Int. Journal on Software Tools for Technology Transfer 2(4), 366–381 (2000)

6. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on software engineer-
ing 23(5), 279 (1997)

7. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Computer aided verification. pp. 585–591. Springer (2011)

8. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer (STTT) 1(1), 134–152 (1997)

9. Sirjani, M., Movaghar, A., Shali, A., De Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informaticae 63(4), 385–410 (2004)

http://pages.di.unipi.it/pardini/ObjMC

	A High-Level Model Checking Language with Compile-time Pruning of Local Variables

