Refinement Mining:
Using Data to Sift Plausible Models

Antonio Cerone

IMT Institute for Advanced Sudies, Lucca, Italy
antonio.cerone@imtlucca.it
http://sysma.imtlucca.it/people/antonio-cerone/

Abstract. Process mining techniques have been developed in the ambit
of business process management to extract information from event logs
consisting of activities and then produce a graphical representation of
the process control flow, detect relations between components involved
in the process and infer data dependencies between process activities.
These process characterisations allow the analyst to discover an anno-
tated visual representation of the conceptual model or the performance
model of the process, check conformance with an a priori model to detect
deviations and extend the a priori model with quantitative information
such as frequencies and performance data. However, a process model
yielded by process mining techniques is more similar to a representation
of the process behaviour rather than an actual model of the process: it
often consists of a huge number of states and interconnections between
them, thus resulting in a spaghettilike net which is hard to interpret or
even read.

In this paper we propose a novel technique, which we call model min-
ing, to derive an abstract but concise and functionally structured model
from event logs. Such a model is not a representation of the unfolded
behaviour, but comprises, instead, a set of formal rules for generating
the system behaviour. The set of rules is inferred by sifting a plausible
a priort model using the event logs as a sieve until a reasonably con-
cise model is achieved (refinement mining). We use rewriting logic as
the formal framework in which to perform model mining and implement
our framework using the MAUDE rewrite system. Once the final formal
model is attained, it can be used, within the same rewriting logic frame-
work, to predict future evolutions of the behaviour through simulation,
to carry out further validation or to analyse properties through model
checking. We illustrate our approach on a case study from the field of
ecology.

Keywords: Formal Methods; Model-driven Approaches; Process Min-
ing; Application to Ecosystem Modelling.
1 Introduction

The large amount of data available in online repositories have recently driven
research towards the development of techniques and methodologies aiming at ex-
tracting meaningful information from such data and exploiting it to describe and

2 Antonio Cerone

understand the processes that have generated such data. Large online reposito-
ries exist in various areas, ranging from economy, learning, sociology and other
social sciences to biology, medicine and ecology.

One of these data analysis techniques is process mining, which emerged in the
field of business process management (BPM). It is used to extract information
from event logs consisting of activities and then produce a graphical representa-
tion of the process control flow, detect relations between components/individuals
involved in the process and infer data dependencies between process activities
[17]. Process mining supports not only the discovery of an a posteriori process
model and its representation as a process map, but also the extension of a pre-
existing a priori model by enriching it with new aspects and perspectives and
the comparison, by using a technique called conformance analysis [13], of the a
priori model with the event logs.

These three approaches, i.e. discovery, extension and conformance analysis,
are alternative ways of using process mining and, although it is possible to apply
them all to the same case, their outcomes cannot be automatically integrated,
but require the analyst to proceed manually with a comparison work [10].

Only recently the potentialities of process mining in disciplines other than
BPM are starting to be understood and realised. Process mining and confor-
mance analysis can be used in a number of contexts, in and across areas such as
human-computer interaction (HCI) and learning [3]. Some of these ideas have
already resulted in research outputs. This is the case for the use of process min-
ing to extract learning processes from FLOSS project repositories and check
conformance of learning models based on the literature [10, 11].

Process mining aims at understanding the process and validating its effi-
ciency. It is therefore appropriate for descriptive purposes but not for actual
modelling. We want to take a step forward and exploit real data in a constructive
rather than descriptive way by integrating techniques from the realm of process
mining with modelling approaches. In particular, we are interested in formal ap-
proaches to modelling, which have the potential to make the modelling process
automatic, by appropriately manipulating the information extracted from data
logs, and produce a model that can be automatically verified. Although there are
a number of works in the areas of synthesis of programs [7, 14, 15] and synthesis
of biological and probabilistic systems from data [5, 8,12], to our knowledge, the
only attempt to integrate process mininig and formal verification is a work by
van der Aalst, de Beer and van Dongen’s, which aims at verifying whether an
event log satisfies a property expressed in linear temporal logic (LTL) [16]. To
accomplish our objective we use rewriting logic [9], and the Maude system [6], a
tool based on rewriting logic that has a great expressive power and is equipped
with an efficient model checker.

Section 2 introduces the notion of structured event used in our framework
and shows how to instantiate it within various application fields, also provid-
ing motivations for our work. Section 3 introduces our Model Mining Formal
Framework (MMFF) by defining the required data structure while Section 3.1
describes the model mining engine. Section 4 presents how to sift a plausible a

Refinement Mining: Using Data to Sift Plausible Models 3

priori model using event logs and illustrates the approach using a case study
on the dynamics of a mosquito population. Section 5 describes the possible uses
of the generated model and the advantages of the model mining approach to
modelling. Finally, Section 6 illustrate further possible applications and future
research challenges.

2 Event Structure and Instantiation

In order to be successfully processed with the purpose of extracting process
control flow information, event logs have to meet a number of structural prop-
erties, namely to contain adequately organised and clustered data. Therefore,
unstructured data contained in event logs stored in repositories have first to
be semantically interpreted according to the purpose of the model we aim to
devise, so that such interpretation can drive their structuring and clustering.
Structural and semantical organisation can be attained by applying text mining
techniques, in particular semantic indexing, in combination with an appropriate
ontology from the given application domain. This approach is commonly used
in process mining, which is thus applied to a set of pre-processed event logs.

For the purpose of model mining we assume to have already pre-processed
events organised as a sequence of structured entities. In order to devise a general
methodology to efficiently apply formal methods to drive the mining engine, we
consider an essential structure of events, as a list of attributes that are general
enough to be instantiated depending on the application domain and purpose.
In particular, we aim to define a methodology that is partly independent of the
precise semantics of the attribute.

We consider the reality to be modelled as an ecosystem of dynamic entities
linked together through causality relationships and activity flows. These causal-
ity relationships and activity flows are what we need to discover in order to build
the ecosystem model. The dynamic evolution of the ecosystem is visible through
events.

An event is defined as a quadruple

[It,d, s,v]]
where

— t is the time at which the event occurs;

d is the domain name to which a dynamic entity belongs;

s is the subdomain name, namely a further categorisation of the entity within
the domain;

— v is the concrete value that refers to domain and subdomain.

We consider two level of domains (domain and subdomain), but this could be
generalised to n levels.

Moreover, we have entities which are the target of our modelling process and
others that make up the environment in which our target entities evolve. Thus
we identify two categories of events:

4 Antonio Cerone

target event which describes the activities or actions to be modelled;
environmental event which modifies the conditions that enable activities and
actions.

We denote an environmental event by env[|t,d, s,v|] and a target event by
target[|t,d, s,v]]. We describe below possible instantiations of target and en-
vironmental events in various application fields, as summerised in Table 1, in
which a “Value” within the “Domain” quantifies or qualify the event, while
“Weight” quantifies a relevant attribute of the “Value” within the environment.

In the field of ecology, if we wish to model the dynamic of a population,
target events may describe the population size (hence its growth activity) or
location (hence its movement or migration activity). In a typical target event,
the domain is the population species, the subdomain is the maturation stage of
the individual (e.g. larva, juvenile and adult) and the concrete value is the actual
population size. Environmental events determine or modify all conditions that
affect the life and maturation of the population (e.g. food availability, predation,
human impact, temperature, humidity, etc.).

For more examples, we can consider the realm of social networks. In a review
community (about resorts, hotels, restaurants, books, or specific products) activ-
ities are reviews, ratings, replies, recommendations, while possible environmental
conditions are changes to or launch, closing/discontinue of services/products. In
an online product support forum, activities are postings and replies while possi-
ble environmental conditions are release of upgrades and new products.

One of the most popular social networking website is Facebook. If we wish to
analyse the friendship relationships (target domain) between community mem-
bers, we need to characterise the level of friendship or the trustiness or rep-
utation of the friend (value). Conditions that affect these values are intensity,
richness/rate and valence (weight) of posts, “likes” and comments (value) on
the friend’s wall (environmental domain). Intensity comprises the frequency and
size of the post/like/comment, richness refers to the contents (e.g. text, stickers,
photos) and valence is the emotional impact (positive, neutral or negative).

A very articulated case of social network is an Open Source Software (OSS)
community. Project contributors perform a large range of activities: post, reply
to a post, send a message, review code and commit code. If we consider these
activities as environmental domains, as in Table 1, with aspects of their con-
tents as value, and their persistence (posts, replies and messages persist when
they generate conversations/interactions) and impact (the impact of reviews and
commits is their effectiveness in improving the code) as weights, these can be
seen as conditions that affect the growth of individual community members in
terms of knowledge, expertise and skills, the evolution of the entire community,
as well as the project productivity and, to a greater extent, the quality of the
produced software [2]. Table 1 shows how these environmental conditions af-
fect domains in the ambit of collaborative learning: learning process and skill
acquisition. The learning process can be described in terms of learning stages.
Examples of learning stages of a project contributor are: “understanding”, the
initial stage wherein the contributor observe community activities, use the code,

Refinement Mining: Using Data to Sift Plausible Models 5
Applic. Environmental Target
Field Domain [Value [Weight [Domain [Value [Activity
Food |availability| duration location migrate
grow
Ecology || Temper. level duration Population
Predation|life impact| periodicity size intervent.
Human | habitat extension measures
Impact | deterior. severity
Quake | intensity frequency Casualties | number
Emerg. amount water monitor
Rain persistence Damage amount
Manag. intensity duration severity | response
Temper. level duration Bushfires | extension | activities
Social post intensity level increase
Network Wall like richness/rate || Friendship trust or
(Facebook) comment valence reputation | decrease
Collab. Post persistence Learning | learning achive
Learning Reply content |(conversation,|| Process stage |maturation
in Message | aspects interaction) or
0SS Review impact Skill contributor| acquire
Commun. || Commit (effectiveness)||Acquisition| activity skill
H HCI H Task ‘ outcome ‘ frequency H Interface ‘ state ‘ transition H
Cognitive || Interface |experience| frequency Mental interface expect
Science Model state transition

Table 1. Example of Event Instantiations depending on the Environment and Target
Domains from a number of application fields.

exchange emails and post messages with the purpose of understanding contents
but does not produce new content; “practising”, wherein the contributor pro-
poses new contents and production activity starts as a trial and error process;
and “developing”, an advanced stage wherein the contributor already commits
code [2]. Skill acquisition can be described in terms of the activities carried out
by the contributor: coding, reviewing, etc.

In the field of HCI, state and transition of an interface depend on the tasks
performed by the human in interacting with the interface, with the value repre-
senting the outcome of the task (successful outcome or failures) and a possible
weight given by the frequency with which the task is performed. In the more
general view of human behaviour considered in cognitive science, humans have
the skill of exploiting their experiences to build mental models of the reality. In
a way, we can say that humans realise a form of “model mining” when building
models out of experiential data. Interacting with a specific interface produces
this kind of experiencial data and allows the human to build a mental model of
the way the interface works. We can describe this situation in our framework as
shown in the last row of Table 1.

6 Antonio Cerone

The last column of Table 1 shows the activities that refer to the target
domains. Most of these activities are descriptive, namely they describe how the
domain values change. For example, if we consider a population as a domain,
a change in its location is a migration, while a change in its size is a growth.
Activities shown in italic are instead responsive, namely they aim to modify or,
at least, contain the descriptive activity. For example, in ecology, intervention
measures are carried out to favour or control the growth of a population.

3 Model Mining Formal Framework

In order to characterise the effect of events on their domain, we need to define
the notion of domain state. Moreover, while events are concrete entities that
accurately represent the reality, states rather refer to the model than to the
reality. They are thus abstract entities, whose values are abstract values.

A domain state is defined as a quadruple

(Id, s, a,wl|)
where

— d is the domain name to which a dynamic entity belongs;

s is the subdomain name, namely a further categorisation of the entity within
the domain;

— a is the abstract value that refers to domain and subdomain.

— w is the weight of the value.

We mentioned in Sect. 2 that the weight quantifies a relevant attribute of the
value within the environment. Thus the weight quantifies a relevant attribute of
the abstract value. Weight normally varies as time progressed, independently of
the occurrence of events. For example, in Table 1, we note that in Ecology, a rel-
evant attribute of the value for “Food availability” is “duration”, since it is the
duration of food availability that modifies the state of the environment. Simi-
larly, relevant attributes of the value for “Habitat deterioration” are “extension”
and “severity” and, in the area of Collaborative Learning in OSS Communities,
relevant attributes of a “Post content” are its “persistence” in conversations and
interactions and its “impact” on the OSS product, in terms of effective contri-
bution to its improvement.

We denote an environmental state by env(|d, s,a,w|) and a target state by
target(|d, s, a,w|). The global state of the ecosystem we are modelling consists
of a set of domain states.

Concrete and abstract values are linked by an abstraction relation

{d,8|’l)1,1)2 — a’}a

where v, and vy may be distinct only if domain d is totally ordered and in this
case v1 < vg. This relation maps any value v of domain d and subdomain s such
that v; < v < vy to abstract value a.

Refinement Mining: Using Data to Sift Plausible Models 7

The occurrence of environmental event envl[|t, d, s, v|] changes environmental
state env(|d, s, ag, wo|) to env(|d, s, a,w|) iff there exist an abstraction

{d, s|v1,v2 — a} such that v; < v < vy,
and a function f from abstract domains to weights such that

w:{f(a)ifa7éa0 (1)

wo otherwise

Therefore, the state weight is reset to f(a) only if there is a change in the abstract
state. In the examples in this paper, we will always have f = 0. The state weight
is then regularly incremented by the passage of time.

We use rewriting logic to define the state transitions. Since one purpose of
model mining is the application of model refinement to a plausible set of models,
we need to consider sets of alternative plausible rules.

A plausible rule is defined as

{i|preu, ..., pre, = post}
where

— 1 is the identification number of the plausible rule;

— pre; = [d;, s, a;, T;]> are preconditions, with d; and s; environmental domain
and subdmain, respectively, for i = 1,...,n, and 7; denoting a threshold | 7; |
for the effect of the precondition abstract value on the postcondition;

— post =< d,s | ag — a > is a postcondition, with d and s target domain
and subdomain, respectively.

The plausible rule is enabled on environmental state (|dg, so, ag, wo|) iff, for each
precondition
pre; = [du 5i7ai77—i]>7 1= 17)

such that d; = dy, s; = sg and a; = ag, the following conditions hold

1. 7 —wy > 0if 7, > 0;

The application of the rule causes a transition from state (|dp, so, ao, wo|) to state
(|do, so, @, w|), where w is defined as in Equation (1) above.

A positive threshold 7; > 0 means that the precondition is satisfied only if
the abstract value ag in the current state has been persisting for at most a time
wp (Condition 1 above is satisfied). A non positive threshold 7; < 0 means that
the precondition is satisfied only if the abstract value ag in the current state has
been persisting for at least a time wy (Condition 2 above is satisfied).

In order to illustrate the definitions presented in this section, let us consider
the following example. Let env(|Temp, avg, med, 3|) be the temperature state
at day 131. It denotes that astract value med, defined according to the the
abstraction relation given in Table 2, persisted for 3 days. Environmental event

8 Antonio Cerone

env[|131, Temp, avg, 25|], which describes a concrete temperature value of 25
degrees at day 131, changes such temperature state to env(|Temp, avg, high, 0]).

Let us consider an application to ecology where the target domain is rep-
resented by a mosquito population of species Aedes albopictus, which rapidly
increases in size when the temperature is high. Let us consider the abstraction
relations in Table 2. Plausible rule

increase

{1|[Temp, avg, high, —10]> =< Aedes, adult | med " —"" high >}

has a single precondition and states that if a high temperature persists for at
least 10 days, then the size of the adult population of Aedes a. increases from
medium to high. If between day 131 and day 141 there are no events that
change the temperature state, env(|Temp,avg, high,0|) at day 131 becomes
env(|Temp, avg, high,10|) at day 141. The latter state satisfies Condition 2
above, thus, at day 141, a population state env(|Aedes, adult, med,w|) would
be changed by the plausible rule above to env(|Aedes, adult, high, 0|).

3.1 The Model Mining Engine

We perform model mining using rewriting logic. A prototype of the model mining
engine, implemented using the the MAUDE rewrite system [6], and its applica-
tion to the case study presented in Sect. 4.1 can be downloaded at

http://sysma.imtlucca.it/refinement-mining-datamod-2016/.

We consider discrete time with a granularity suitable to the specific applica-
tion domain. For example, a daily time progress would, in many cases, suit the
analysis of the dynamic of a population, while for a social network the granu-
larity depends on the frequency of the activity relevant to the model we want
to capture. The data structures defined in Sect. 3 are organised in a configura-
tion, which is manipulated by the model mining engine using rewrite rules. To
distinguish such rules from the plausible rules we call them meta-rules.
A configuration comprises:

abstraction a set of abstraction relations;

past events a list of events that have already been processed by the current
step of the engine;

current events a list of events that are currently being processed by the current
step of the engine;

future events a list of events that have not been processed yet by the current
step of the engine;

option set a collection of plausible rules stuctured as described in Sect. 4;

current state the global state at the current time, which consists in a set of
domain states;

control containing static information for reset purpose, i.e. initial domain state
for the target domain, initial time, start and end time for simulation and
model mining, and dynamic information, i.e. information to control the

Refinement Mining: Using Data to Sift Plausible Models 9

meta-rule selection and the current choice of plausible rules as well as incre-
mentally built constructed model and refinement, and possibly a list of
rejected models.

The engine makes use of the following meta-rules:

1. Time Progress to increase the current time and the weight of every domain
state at the beginning of each step and move the events occurring at the next
time from future events to current events;

2. Init Simulation to initialise future events as the list of all events and
control with the initial and final times for the simulation;

3. State Update via Events to modify the current state using environmen-
tal events and abstraction relations as shown in Sect. 3, if there are any
environmental events in current events;

4. State Update via Model to select a plausible rule with preconditions sat-
isfying the current state and modify the current state as shown in Sect. 3;

5. No State Update via Model to skip the selection of a plausible rule with
preconditions not satisfying the current state;

6. Model Validation via Events to compare the current state with the target
events, if there are any target events in current events;

7. Init Model Refinement initialise future events as the list of all events
and control with the initial and final times for the model refinement;

8. Refinement Step to sift the plausible model using the target events, if
there are any target events in current events.

Meta-rules 2—6 perform the simulation and meta-rules 7 and 8 perform the model
refinement. The architecture of our model mining engine is shown in Figure 1.
Each component consist of the evaluation and possibly application of the meta-
rule with the same name, apart form component State Update via Model
which comprises meta-rules 4 and 5.

4 Refinement Mining

Refinement mining is a data-driven model refinement that consists in sifting a
plausible a priori model using the event logs as a sieve until a reasonably concise
model is achieved. In order to carry out refinement mining, plausible rules must
be structured into sets of alternatives called option sets. An option set is defined
as

[i](pRuley, ..., pRule,)

where

— 1 is the identification number of the option set;
— pRule; are alternative plausible rules for ¢ = 1,... n.

A plausible model is a set of option sets.
A rule reference is defined as

[+i(j)]

where

10 Antonio Cerone

Plausible

Model Events
Model
Init Init Time
Refinement Simulation Progress

State Update

via Events

Environmental

Events

Refinement State Update
Step via Model

T

Model Validation

via Events

Refinement Validation

Fig. 1. Architecture of the model mining engine.

Refinement Mining: Using Data to Sift Plausible Models 11

— n is a reference to the option set whose identification number is n;

— 1 is a reference to the plausible rule whose identification number is ¢ within
the option set identified by n;

— j is the number of times the referred plausible rule has been applied during
the current simulation.

A model reference is a set of rule references, one for each option set.

A refinement is a set of model references.

Refinement mining is carried out by performing an event-driven simulation
on all possible choices of one plausible rule for each option set. Each choice
is represented by a model reference. At each step of the simulation, if there
are target events in the current state, then component Refinement Step of
the model mining engine compares the concrete value in each of such target
events with the simulated abstract value of the corresponding target state: if the
concrete value is covered by the abstract value then the current model reference
is added to refinement, otherwise it is added to rejected models (refinement
and rejected models are part of the control field in the engine configuration).
Refinement mining is completed once all possible choices of models are simulated.

4.1 A Case Study from Ecology

In previous work [1] we modelled the dynamic of a population of Aedes albopic-
tus, a mosquito species known as “tiger mosquito”, which is endemic of Asian
regions, where it is a carrier of dengue fever, and now widespread also in Eu-
rope. The model developed in that work is based on biological aspects of the
mosquito and considers the impact of changes in the environmental conditions
on such biological aspects to simulate the population dynamics. Among relevant
environmental conditions are average temperature and rain amount. The simu-
lation made use of data on the size of the mosquito population collected during
May-November 2009 in the province of Massa-Carrara (Tuscany, Italy) using
CO2 mosquito traps.

If we consider average temperature and rain as environmental domains and
the mosquito population as target domain, we can envisage a plausible model
whose option sets characterise the possible effects of average temperature and
rain amount on the mosquito population. A possible option set is as follows.

increase

[n] ({1][Temp, avg, high, —10]> =< Aedes, adult | high ~—"" extr >}

increase

{2|[Rain,amount, high, +5]> =< Aedes, adult | high ~—"" extr >}
{3|[Temp, avg, high, —1]t>, [Rain, amount, high, +10] >

increase

=<« Aedes, adult | high =" extr >}
)
The three alternative plausible rules of option set n state that

1. if a high temperature persists for at least 10 days, then the size of the adult
population of Aedes a. increases from high to extreme;

12 Antonio Cerone

2. if a high rainfall occurred at most 5 days earlier, then the size of the adult
population of Aedes a. increases from high to extreme;

3. if a high temperature persists for at least 1 day, and a high rainfall occurred
at most 10 days before, then the size of the adult population of Aedes a.
increases from high to extreme;

If we consider the sequence of events

— target||56, Aedes, adult, 360|]] —

env[|56, Temp, avg, 25|
|59, Temp, avg, 24|] — env[|59, Rain, amount, 72|] —

[
[
(160, Temp, avg, 23|
env[|62, Temp, avg, 23

env

env — en[|61, Temp, avg, 22|] —

[
— en[|64, Temp, avg, 24|] —
env[|66, Temp, avg, 25|] — env|[|67, Temp, avg, 26|] —
target[|67, Aedes, adult, 561

which is a fragment of the data collected in 2009 in the province of Massa-Carrara
and the abstraction relations defined in Table 2, we obtain the abstract values

Abstract Value Concrete Value for
Temp , aUg[Rain , amount[Aedes , adult
low (low) 0-19 0-5 0-100
med (medium) 20-24 6-40 101-300
high (high) 25-35 41-200 301-500
extr (extreme) 36-50 201-500 501-800

Table 2. Abstraction relations for average temperature (Temp, avg), amount of daily
rain (Rain, amount) and Aedes a. population size (Aedes, adult).

and weights shown in Table 3. We note that only plausible rule 3 is applicable
at day 67 and thus validated by the sequence of events (i.e. by the data). In
fact, plausible rule 1 is not applicable because the high temperature persisted
for just 1 day rather than the minimum of 10 required by the rule precondition;
plausible rule 2 is not applicable because the high rainfall occurred already 7
days earlier rather than the maximum of 5 required by the rule precondition.
If we suppose that the plausible model consists of just the option set n above
and the refinement mining is driven only by the dataset given in Table 3, then
the final refinement would be set {[n : 3(1)]}, which consists of just the rule
reference of 3 with 1 as the number of times rule 3 has been applied during the
only possible simulation.

5 Model Usage and Model Mining Advantages

The purpose of our framework is not only to generate a model refinement but
also to use it in three possible ways.

Refinement Mining: Using Data to Sift Plausible Models 13

Date |Day No.|| Temp , avg ||Rain , amount||Aedes , adult
val| abs |weight||val| abs |weight|| val abs

3 July 56 25 |high| 7 - - 0 {|360| high

6 July 59 24 |high| >0 || 72 |high
7 July 60 23 |med
8 July 61 22 |med
9 July 62 23 |med
11 July| 64 24 lmed
13 July| 66 25 |high
14 July| 67 26 (high

= O|W|IN O
LI |
LI |
| O U =W N -
1
1

561| extr

Table 3. Abstract values (abs) and weight (weight) for real data average tempera-
ture (T'emp, avg), amount of daily rain (Rain, amount) and Aedes a. population size
(Aedes, adult), collected in 2009 in the province of Massa-Carrara (the abstract values
are added in accordance with the abstraction relations in Table 2).

The most obvious usage is for prediction. Simulation can be run to predict
the behaviour of the target domain.

Another important usage is model validation. Although the refinement pro-
cess is based on validation against real data (target events), the resultant model
may need further validation due to changes in environmental domains as well as
in the target domain. This is a common situation both in biological/ecological
contexts and in socio-economic contexts. In ecological contexts the environment
changes due to natural degradation and human interventions while populations
get adapted to new environments. In socio-economic contexts the continuous de-
velopment of new technologies changes the environmental conditions while the
users of such technologies, on the one hand, get adapted to them and, on the
other hand, invent new ways to use them, often ways that the designer them-
selves could not predict. In these continuously evolving contexts, an important
advantage of model mining is that the generated model can be revised through
further validation and, if the model is invalidated by the data, then model mining
may be run again on the initial plausible model or on a revision of it.

The last possible usage of the generated model refinement is property check-
ing. This is possible by exploiting the model checking capabilities of the MAUDE
rewrite system by which plausible models are manipulated.

6 Conclusion and Future Work

We defined a formal framework (MMFF), based on rewriting logic and imple-
mented in the MAUDE rewrite system, for generating a data-validated model
starting from a plausible model defined a priori. We illustrated MMFF on a case
study from the field of ecology.

As our future work, we are planning to apply MMFF to the various fields
mentioned in Sect. 2 and illustrated in Table 1, in particular to collaborative

14 Antonio Cerone

learning, HCT and cognitive science. These applications will build on our previous
work and aim to investigate how refinement mining would scale to large datasets.
The initial plausible model may either be based on theoretical hypotheses or
be manually built through the observation of the dataset. In the former case
refinement mining can be used to verify such hypotheses. In the latter case,
however, the larger the dataset is the harder the definition of the plausible model
is, which possibly makes it difficult to apply refinement mining to big data.

In our previous work on the application of rewriting logic (also using the
MAUDE system) to HCI and cognitive science [4] we have characterised the
behaviour of a user that exploits a pre-defined mental model and compared two
interface designs with respect to the cognitive errors that may emerge during
interaction. We plan to use model mining to extend such work, on the one hand
by exploiting environmental events generated by the outcome of human tasks
carried out on a set of different interfaces and target events generated by the
interface states to identify the interfaces that support the successful completion
of the task and, on the other end, by extracting the mental model from event
logs produced by interactions between user and interface.

In our previous work on collaborative learning in OSS communities [11] we
analysed participants interaction and knowledge exchange in emails repositories
of OSS projects by retrieving data carrying information on the learning activities
that occur in distinct phases of the learning process to produce pre-processed
event logs. Such event logs were fed to a process mining tool to produce visual
workflow nets that represent the traces of learning activities in OSS as well as
their relevant flow of occurrence. However, such workflow nets consist of huge
numbers of states and interconnections between them, which make them hard to
interpret. To overcome this problem we plan to revisit our process mining work
and transfer our mining approach to the model mining context.

Finally, we must note that there are situations in which target domains do
not directly correspond to observable events. This happens, for example, in social
contexts, when social relationships either are characterised from an introspective
point of view (e.g. friendship), which is not directly externalised through events
(e.g. friendship level, trust and reputation are not directly observable in events),
or evolve over a long time (e.g. learning process), with no events characterising
the change of values (learning stages are not directly observable in events). With
reference to Table 1 we can observe neither a target event of domain Friendship
whose value directly describes a change in level of friendship or trust nor a
target event of domain Learning Process whose value directly describes a change
of learning stage. Since in these situations there are no observable target events,
refinement mining cannot be used.

Therefore, in our future work, we also plan to investigate the possibility
of directly constructing the model from the event logs, rather than extracting
it from a plausible model through refinement mining. We hope that this would
allow model mining to both scale well with big data and deal with target domains
that do not feature observable events.

Refinement Mining: Using Data to Sift Plausible Models 15

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

T. A. Basuki, A. Cerone, R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, and
E. Rossi. Modelling the dynamics of an aedes albopictus population. In Proc.
of AMCA-POP 2010, volume 227 of Electronic Proceedings in Theoretical Com-
puter Science, pages 37-58, 2010.

A. Cerone. Learning and activity patterns in OSS communities and their impact
on software quality. In Proc. of OpenCert 2011, volume 48 of ECEASST, 2012.
A. Cerone. Process mining as a modelling tool: Beyond the domain of business
process management. In SEFM 2015 Collocated Workshops, volume 9509 of Lecture
Notes in Computer Science, pages 139-144. Springer, 2015.

A. Cerone. A cognitive framework based on rewriting logic for the analysis of
interactive systems. In Proc. of SEFM 2016, Lecture Notes in Computer Science.
Springer, 2016. In press.

M. Ceska, F. Dannenberg, M. Kwiatkowska, and N. Paoletti. Precise parameter
synthesis for stochastic biochemical systems. In Proc. of CMSB 2014, volume 8859
of Lecture Notes in Computer Science, pages 86-98. Springer, 2014.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 System. In R. Nieuwenhuis, editor, Rewriting Techniques and
Applications (RTA 2003), number 2706 in Lecture Notes in Computer Science,
pages 76-87. Springer-Verlag, June 2003.

S. Gulwani. Automating string processing in spreadsheets using input-output ex-
amples. In A. S. Notices, editor, Proc. of POPL 2011, volume 46, pages 317-330.
ACM, 2011.

A. S. Koksal, Y. Pu, S. Srivastava, R. Bodik, J. Fisher, and N. Piterman. Au-
tomating string processing in spreadsheets using input-output examples. In A. S.
Notices, editor, Proc. of POPL 2013, volume 48, pages 469-482. ACM, 2013.

N. Marti-Oliet and J. Meseguer. Rewriting logic: roadmap and bibliography. The-
oretical Computer Science, 285(2):121-154, 2002.

P. Mukala. Process Models for Learning Patterns in FLOSS Repositories. PhD
thesis, Department of Computer Science, University of Pisa, 2015.

P. Mukala, A. Cerone, and F. Turini. Mining learning processes from FLOSS
mailing archives. In Open and Big Data Management and Innovation, volume
9373 of IFIP Lecture Notes in Computer Science, pages 287-298. Springer, 2015.
In press.

Y. H. C. M. W. H. K. Nicola Paoletti, Boyan Yordanov. Analyzing and synthesizing
genomic logic functions. In Proc. of CAV 2014, volume 8559 of Lecture Notes in
Computer Science, pages 343-357. Springer, 2014.

A. Rozinat and W. M. P. van der Aalst. Conformance checking of processes based
on monitoring real behavior. Information Systems, 33(1):64-95, 2008.

A. Solar-Lezama, R. M. Rabbah, R. Bodik, , and K. Ebcioglu. Programming by
sketching for bit-streaming programs. In Proc. of PLDI 2005, volume 40 of ACM
SIGPLAN Notices, pages 281-294. ACM, 2005.

S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program
synthesis. In A. S. Notices, editor, Proc. of POPL 2010, volume 45, pages 313-326.
ACM, 2010.

W. M. P. van der Aalst, H. T. de Beer, and B. F. can Dongen. Process mining
and verification of properties: An approach based on temporal logic. Beta Working
Paper Series WT 136, Eindhoven University of Technology, Eindhoven, 2005.

W. M. P. van der Aalst and C. Stahl. Modeling Business Processes: A Petri Net-
Oriented Approach. The MIT Press, May 2011.

