The Fractal Model

Reflective components for configurable distributed
systems

Jean-Bernard Stefani -- INRIA

(joint work with: E. Bruneton, T. Coupaye [Fractal], A. Schmitt [Kell
Calculus])

Executive summary

Programming for large scale, dynamic systems must be
component-based programming

open systems, constantly evolving, many sources of functionality
and service

Component (run-time entity)
membrane + content
object + reflection

No pre-defined semantics for component membranes and
component bindings

component = composition operator
Components can be shared
DAG composition structures (not just trees)
A “Fractal semantics” can be formally defined
abstract co-algebraic one, more concrete operational one

Outline

Motivations

Fractal: concepts & principles

Programming with Fractal: the Julia example
Kells: co-algebraic foundations for Fractal

Kell calculus: operational semantics for Fractal
Perspectives

Conclusion

Motivations

Components for computing in the wide: a fact of life
plug-ins, xBeans, packages, COM & .Net, etc

Components: at the crossroad of multiple concerns
modularity
software architecture
unplanned software evolution
distribution
mobility
deployment
configuration management

Motivations

Building dynamically configurable & manageable distributed
systems

Applications & their software infrastructures (OS & middleware)

System software architecture
< maintenance, reuse, design communication

Distributed dynamic configuration

<> distributed deployment, un-planned on-line system/software evolution,
adaptive behavior, specialization and optimization

Control & management
<r instrumentation, monitoring & controlling behavior
Limitations in current component programming models & ADLs
limited support for extension and adaptation
fixed forms of composition
fixed forms of introspection & intercession (fixed MOPs)

Fractal

A component model
for building dynamically reconfigurable distributed systems
programming language-independent
with lightweight implementations (C, C++, Java)
Used in particular for building distributed systems
infrastructures
operating systems
middleware (application servers, grids, etc)

Fractal: « classical » concepts

Components are runtime entities.
Not only design time or load time.
Interfaces are the only access points to components.

Interfaces emits and receives operation invocations.

Bindings can be primitive (in the same adress space) or
composite.

In the latter case, they are represented as components and
bindings.

No fixed semantics for bindings.

Fractal: more original concepts

A component comprises a membrane and a content

A membrane is made of controllers.
< It can export control interfaces for some of these controllers.
<> The membrane exercises an arbitrary control over its content.
<> Components can export arbitrary details of their implementation.

<> No fixed meta-object protocol for component introspection &
intercession

A content is made of other components.

A component has state.

Components can be shared by multiple enclosing components.

Shared components are crucial for modeling software architectures
with resources.

A Fractal Component

control interface

server interface
(exported) I_

client in’rerfacel_
(exported)

interface I_

\

content

J

/

internal control interface —

— internal interface

Fractal: concepts

Structure of a component
interfaces: named access points (can be “client” or “server”)
membrane: set of controllers

controllers exercize arbitrary forms of control on the
content of a component

controllers = meta-objects, meta-groups, advices
content: set of components
contents may overlap: sharing

Opaque membrane = no visible control: plain objects
dealing with legacy object-based systems

Component sharing

components

contents

Fractal: useful controllers

Minimal introspection:
Component interface

Interface interface
< ¢f COM, IUnknown

Component introspection (I)

Content controller
<> to add/remove sub-components

Attribute controller
< to set/get component attributes

Fractal: useful controllers

Component introspection (II)

Binding controller
< to set up/remove communication paths to/from component
< a “binding” between components:

- a component
- can have arbitrary communication semantics

<> connecting components via a binding involves:
- creating a binding (component)

- using binding controllers on components to bind to set up ‘primitive bindings’
(e.g. language references) with binding (component)

Lifecycle controller
< to start/stop a component

Fractal: additional elements

Instantiation

Factories
<> esp. binding factories

Templates: “homomorphic” factories
Bootstrap: “"well-known” generic factory

Simple type system
Interface
Component

Supporting the Fractal model

General component structure
membrane = set of controllers
content = set of components

No pre-determined control => support must facilitate
the definition of membranes
library of controllers
< default ones from Fractal specification
< interceptors
ability to combine controllers
< e.g. using mixins, components

Supporting the Fractal model: Julia

Supporting Fractal in Java
primitive components defined by Java classes
primitive bindings are Java references
controllers are Java objects

controller (mixin) classes can be combined at load-time
using a byte-code generator

Julia: component structure

control object

intercepto:r |

interface reference

list of interface references

Julia: component structure

e NO
! Optimization

o, Merge of
' 1 control objects
1 & interceptors

o Merge of
. 1 control
.1 objects

: merge of
@ control objects
. interceptors,

! & content

Fractal: Sample uses

Operating system kernels
Think (FTR&D & INRIA Sardes)
Asynchronous middleware & communication subsystems
DREAM (INRIA Sardes)
Transaction management
GOTM, Jironde (LIFL-INRIA Jacquard, INRIA Sardes)
Persistency services
Speedo, Perseus (FTR&D, LSR)
Software architecture for Grid applications
Proactive (INRIA Oasis)
Self-adaptive structures
(EMN-INRIA Obasco)

Fractal foundations: Kells

A Kell interacts with its environment through signals
signal : [myz vy, oo, mp 2 v]
m : label, v : argument
arguments can be names (e.g. labels), values and kells

The behavior of a Kell is a collection of possible transitions
[content: M((C), input: ML(S), output: ML(S), residue: M((C)]
content : finite multiset of kells
input : finite multiset of signals
output : finite multiset of signals
residue : resulting configuration (finite multiset of kells)

NB: ‘the membrane is the kell’

Fractal foundations: Kells

A co-algebraic definition of kells
characterize kells in a syntax-free manner

use hypersets to get final models with a straightforward
interpretation

hypersets = non-well-founded sets (cf. Aczel, Barwise &
Moss)

< a system of equations is a tuple (X,A,e), where X and A are 2
disjoint sets and e : X ->P(X U A)

<> AFA (Anti-Foundation Axiom): every system of equations
(X,A,e) has a unique solution s

Hypersets

Examples
<& streams : X -> A x X

-X=<a,Y> yYy=<b, x>
- X = abab... y = baba...

<> automata : X -> P(A x X)
- X = {<a, y>, <a, z>, <b, x>}
-y = {ca,y>, <b,z>}
- z = {<c,x>, <b,y>}

Coalgebras

Coalgebra

< An operator G on hypersets is monotone if for all a,b:
aC b=>G(a) C G(b)

<> A G-coalgebra is a pair <X,e> where X is a set, and e is a
function

e: X -> G(X)
Final coalgebra theorem
Let G be a monotone operator. Then:
G has a greatest fixed point G*,
and every G-coalgebra has a unique solution in G*

Kells: formal definition

Operator G (on hypersets)
& G(X) = P(MAX) x ML(S) x ML(S) x M(X))
$S=U, (L x D)
D=L+ V + X (names + values + kells)
< P: powerset M;: finite multisets

A Kell ¢ is the unique solution of a pointed G-
coalgebra, <X, e, x>

<X, e> is a G-coalgebra

< x is an element of X

< e is a set of (hyperset) equations: e: X -> G(X)

< the solution of <X, e, x> is s(x), where s is the solution of <X,
e>

Example Kkells

Simple objects

empty content

signal arguments : names and values only
Higher-order objects

empty content
Components with interfaces

named access points = receiving signals with target name
argument

Meta-objects, meta-groups
M[c], Mlaq,, ... a]
M intercepts, introspects, etc.

Fraktal: Fractal & the Kell calculus

Kell calculus

higher-order 1 + hierarchical localities + passivation
a family of process calculi, parameterized by input patterns (u)

common syntax
P,Q ::= stop
| x
| new a in P
| (u => P)
| a<P>.Q
| (P Q)
| a[P].Q

| a{P}.Q

-- inaction

-- process variable

-- restriction

-- input

-- output

-- parallel composition

—- locality or kell (strong form)

-- locality (weak form)

Fraktal: Local programming

Messages: a< li<vp | ... | [<v,> >

a : channel (or interface, or port) name on which messages
are sent and received

| : parameter name

v : parameter value

v can be a name, or a program (including another message)

Convention: a< v; ... ; v, > = a< levp | o | nev> >
Triggers: (u => P)

M : input pattern; specifies messages to receive

P : program triggered on receipt of messages matching u

Fraktal: Local programming

Standard m-calculus congruence rules apply
Operational semantics
M Lo M T (u=>P) -> P{x, := v}
if M, ..., M, match u
x, are formal parameters of pattern u
v, are values extracted by u from messages M,

Note: replication can be encoded (standard)
(u ==>P) =new tintcY o> |Y, o,
Yupt = (tey> | =P | tey>|y)

Fraktal: Components

As in Fractal, components have a membrane and a
content: a[P | Q]

alP | Q] : component named “a”, with membrane “P“, and
content “Q”

Q must take the form of a parallel composition of
components, i.e. Q = ¢,[..] | ... | ¢[..]

P is an arbitrary program, e.g. P can be a parallel
composition of components, or simple local programs

The construct a[.] provides strong encapsulation

new a in a[c[Q]] is a perfect firewall : Q cannot
communicate with the environment surrounding a

Fraktal: Components

Patterns for communication across component
boundaries: a<...>YP“ and a<...>4 un.u

a<...>" matches a message of the form a<...> coming from
the environment of the current component

a<...>4wny Matches a message of the form a<...> coming from
a subcomponent

Semantics
a<v> | ¢ (a<z>wyv => P)] > c[P{u:= ¢, z:= v}]
c[a<v> | Q11 (a<z>y e => P) -> clQ] | Piz := v}

Fraktal: Components

Patterns for matching on sub-components
a[x] : pattern that matches a sub-component named a
Example: suspending and resuming a subcomponent “a“:
Suspend = (suspend<a> | a[x] => c<x>)
Resume = (resumec<a> | ¢ <x> => a[x])

suspend<a> | resume<a> | a[P] | Suspend | Resume
-> resume<a> | ¢ ,<P> | Resume
-> a[P]

Fraktal: Components

In a component a[P | Q], the membrane “"P” may
contain several constituent programs, running in
parallel

This is exactly as in Fractal, where a component
may have several controllers and interceptors

Note that the asymmetry between membrane “P”
and content "Q” is present due to the constrained

form of Q"

Fraktal: Components

Programming Fractal-like controllers and interceptors
interceptors: routing processes in membranes

content controller: adding and removing subcomponents

< the content Q of component a[P | Q] is supposed to be
composed of several components, i.e. Q = ¢,[..] | ... | ¢ [..].

<P can maintain a list <c,,...,c.> of its subcomponents (e.g. as a
message cons<cl; cons<...; cons<cn; nil>...>>)

<> the content controller CC in P (i.,e. P = CC | T, for some T), can
be written

CC = Add | Remove
Add = (add<w;x>uy ==> x | addToList<w>)
Remove = (rm<w> | wly] ==> rmFromList<w>)

Fraktal: Components

Programming Fractal-like controllers (bis)
life-cycle : as in Fractal, allow for the suspension and
resumption of sub-components

<> c¢f previous slide on suspension and resumption of sub-
components

<> more sophisticated controls of life-cycle are possible

binding controller : as in Fractal, put in place a local binding
with an external component (typically a binding component)

<{> assume the membrane P in component a[P | Q] maintains a list
of client interfaces

<+ a binding controller BC in P can be written
BC = (bindL<a,w,x>r:a | isClientItf<w,t> ==> Bc(w,x,1))
Be(w,x,t) = (wczydown:t ==3 x<z>)

Fraktal: Components

Binding factories and bindings between components

Assume two components a[..] and ef..]

<> Component a has a client interface of name c (i.e. a emits on
channel ¢)

<> Component e has a server interface of name s (i.e. e receives
on channel s)

A binding factory BF for creating bindings between a and e
can be written as follows

BF = (bindBF<a,c,s> ==> new s’ in B(c,s,s’) | bindL<a,c,s’>)
B(c,s,s’) = (s'<x>downa ==3 s¢x>)
BF creates a new binding between ¢ and s

Fraktal: Components

a [(C<Z>d°"‘m:Jr ==> S,<Z>) ‘ } client

A

4)
s'¢x>downia —=3 g<x> binding

component
N Y Y

e [(s<z>uPib ==5 ...) | } server

Perspectives

Bisimulation semantics for Fraktal

Type systems for Fraktal
e.g. adapting Hennessy & Yoshida process types
Dealing with sharing

early results obtained with D. Hirschkoff, T. Hirschowitz, D.
Pous [GPCE 05]

Dealing with failures & recoverable actions
failure detectors, non-fail-stop models
combining micro(nano) reboot and transactions
Fraktal as a basis for a type-safe, dynamic ADL

also a primitive workflow language with reconfiguration
capabilities

Conclusion

JCf. executive summary + perspectives

JNot mentioned
¢ extensible ADL
¢ code packages as components
¢ dynamic code evolution in Fractal/Java

¢ fowards Fractal v3:
<> combining Fractal & AOP, dynamic ADL, controller libraries, etc

JLinks:
¢ Web site: http://fractal.objectweb.org
¢ mailing list: fractal@objectweb.org

