Programming Tools for Distributed and Parallel Systems (SPD)

• Teacher name: Massimo Coppola, massimo.coppola@isti.cnr.it, 050 621 2992
• When, how much : 6 credits, 2nd semester
• Exam mode: lab project + written report + oral (includes project discussion)
• Pre-requisites: HPC; SPM is strongly suggested
• Area: Computer Science
• Course home page https://didawiki.cli.di.unipi.it

The course relies on knowledge about parallel skeletons, their performance models and techniques to exploit them in the design and evaluation of parallel software.

The course presents a selection of parallel and distributed programming languages and frameworks, covering parallelism exploitation at different scales.

We address exploitation of parallelism via software at different architectural levels, targeting distributed systems, shared-memory/multicore CPUs and GPUs
A changing landscape where parallelism is pervasive

Intel's Xeon Phi Knight's Landing 72-cores with 4 HW threads/core

Nvidia Pascal GPU architecture 2560 shader cores on-chip

Fujitsu K supercomputer 705000 SPARC VIII fx cores next generation will be based on ARMV8 customized CPUs

Home made cluster of 120 Raspberry PI (ARM 32 bit core)
Syllabus

Parallel tools & platforms for HPC and large scalable systems. Lessons + lab time

• MPI – Message Passing Interface standard
 • Message passing standard, linked library with support for multiple languages

• TBB – Intel Thread Building Blocks library
 • C++ template library for shared memory multi-thread programming
 • Multi core CPUs and multiprocessor systems

• OpenCL – High-level, portable standard to exploit many-core on-chip parallelism
 • Multithread, high-memory bandwidth algorithms with streaming/regular access patterns
 • Targets graphic units (GPUs), CPU vector instruction sets, APUs, Digital Signal Processors

• Other frameworks
 • Assist, BSP/Map&Reduce based (Spark / Graphx, Hama)

• Some application examples for laboratory time (changes from year to year): Data Mining, Graph and Optimization Algorithms, Stream Data Processing
Some potential topics for Master Thesis or Research fellowships

• Clouds, Cloud-Federations and Edge / Fog computing:
 • Dynamical System Modeling, Resource Brokering, Scheduling Optimization strategies
 • Hierarchical and skeleton-based programming frameworks and performance models
 • Genetic programming, (mixed integer) linear programming, other optimization approaches to brokering and autonomic/adaptive resource management
 • Container-based and VM-based application composition, deployment and elastic scalability
 • Peer to peer based approaches
 • High-performance implementation of authorization mechanisms for data security and privacy
 • Scalable policy evaluation and enforcing mechanisms at the hypervisor, cloud and/or federation manager levels as well as on edge devices

• High-performance applications for Data Mining, Stream Mining, Data Analysis
 • Applications to HealthCare
 • Application of stream and Big-data Analysis for Clouds