Self-scheduling for a Heterogeneous Distributed Platform

Luis A. García-González, Cesar R. Jacas-García, Liesner Acevedo-Martínez, Rafael A. Trujillo-Rasúa, and Dirk Roose

Centro de Estudios de Matemática Computacional, Universidad de las Ciencias Informáticas, Cuba
Instituto de Química, Universidad Nacional Autónoma de México, México
Timeout Group, España
Department of Computer Science, KU Leuven, Belgium

Abstract. We discuss schedulers for a heterogeneous distributed platform, designed to execute a variety of tasks in a non-dedicated environment. The platform uses and controls a large number of non-dedicated heterogeneous computational resources in a local network. Several self-scheduling algorithms have been adapted to take into account the computational capacity of each workstation of the network. To evaluate the schedulers we use the platform to execute a software tool for molecular docking of a set of 1000 molecules in the 4UDC protein. We analyze the performance of the self-scheduling algorithms and their impact on the execution time of the application.

Keywords. Heterogeneous distributed system, Task scheduling, Self-scheduling, Resilient distributed computing

1. Introduction

Task scheduling is an important factor in the development of a heterogeneous distributed software platform. To optimally use the resources, task scheduling should find a trade-off between load imbalance and communication cost. A static scheduler defines the task allocation at compilation time, has a low overhead but typically achieves a poor load balance in a dynamic environment. Dynamic scheduling uses adaptive strategies to allocate tasks at execution time and thus can achieve a better load balance at the expense of interaction and communication. Self-scheduling adaptive strategies have been introduced to solve parallel loop scheduling problems in homogeneous shared-memory systems, where the loops can be handled as independent tasks [1], but they can also be used in other contexts.

1 Corresponding Author; Centro de Estudios de Matemática Computacional, Universidad de las Ciencias Informáticas, Carretera a San Antonio de los Baños, 25 Km, La Lisa, Havana, Cuba; E-mail: luisgarcia@uci.cu.