Multi-GPU k-Nearest Neighbor search in the context of data embedding

Adrian Klusek a,1 and Witold Dzwinel a,2

aAGH University of Science and Technology, WIET, Department of Computer Science, al. A Mickiewicza 30, 30-059 Kraków, Poland

Abstract. The k-nearest neighbor (k-NN) search is the rudimentary procedure widely used in machine learning and data embedding techniques. Herein we present a new multi-GPU/CUDA implementation of the brute-force (BF) k-NN algorithm. We demonstrate its advantages over currently the fastest GPU/CUDA implementations of BF k-NN, e.g., [1] both in terms of computational time and memory requirements. Unlike its competitors, our code scales linearly with the number of GPUs (up to 8 units) what allows for scrutinizing much larger high-dimensional datasets. We also present a new GPU implementation of the approximate k-NN algorithm used in the LargeVis data embedding algorithm [2], which is more than two orders of magnitude faster than its original CPU version. We discuss its limitations in terms of accuracy, efficiency and usefulness in data embedding.

Keywords. k-Nearest Neighbor, multi-GPU CUDA implementation

1. Introduction

Finding k-nearest neighbors (k-NN) in a set of M N-dimensional vectors is the basic problem in diverse scientific disciplines from molecular and agent simulations to pattern recognition and machine learning. Developing the fast k-NN algorithms is of principal interest in big data science, where not only the number of samples M but also their dimensionality N are very challenging. The high-dimensional data are usually positioned on a manifold \(\Sigma \) embedded in the high-dimensional feature space \(Y \), such that \(\text{dim} \Sigma < \text{dim} Y \). In general, the dimension of \(\Sigma \), its size and shape are unknown and have to be guessed from data. Only the local Euclidean distances from a given vector to its k-nearest neighbors can approximate the real distances on the manifold. Thus, the data embedding (DE) methods based on the Isomap algorithm [3] assume that the pair-wise distances between the nearest neighboring vectors are only known while all other distances in the manifold \(\Sigma \) can be approximated by using, e.g., the FloydWarshall algorithm [3].

The growing popularity of visual analysis of medium-sized data through the data embedding [2–9] opens the debate of employing these methods also to visual inspection of truly big data. In this case, the concept based on excellent t-SNE embedding algorithm [4] cannot be used due to its high computational complexity and memory load. However,