GPU-Accelerated and Storage-Efficient Implementation of the QR Decomposition

Peter BENNER a, Martin KÖHLER a and Carolin PENKE a,1

a Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Germany

Abstract. The LAPACK routines GEQRT2 and GEQRT3 can be used to compute the QR decomposition of a matrix of size $m \times n$ as well as the storage-efficient representation of the orthogonal factor $Q = I - TV^\top$. A GPU-accelerated algorithm is presented that expands a blocked CPU-GPU hybrid QR decomposition to compute the triangular matrix T. The storage-efficient representation is used in particular to access blocks of the matrix Q without having to generate all of it. The algorithm is presented in two variants using one and two GPUs, respectively. To avoid redundant computations or communication between devices, a scheme is developed to additionally compute TV^\top during the iteration. As a result the algorithm outperforms the standard LAPACK routine by a factor of 3 for square matrices on a single GPU and by a factor of 5 on two GPUs.

Keywords. QR Decomposition, Numerical Linear Algebra, GPU Acceleration, Storage Efficiency, Block Algorithm, BLAS Level-3

1. Introduction

Along with the LU decomposition, the QR decomposition [1] is one of the basic matrix factorizations used in many numerical linear algebra algorithms. Especially when orthonormal bases come into play, e.g. in least-squares problems, the QR decomposition is commonly involved. During the last decades many different strategies to compute the orthogonal matrix $Q \in \mathbb{R}^{m \times m}$ and the upper triangular matrix $R \in \mathbb{R}^{m \times n}$ from a general matrix $A \in \mathbb{R}^{m \times n}$ fulfilling $QR = A$ were developed. The most common ones are based on Householder reflections [2]. These algorithms represent the matrix Q as a product of orthonormal Householder matrices $H_i \in \mathbb{R}^{m \times m}$:

$$ Q = H_1 \cdots H_n, $$

where $H_i = I_m - 2 v_i v_i^\top / v_i^\top v_i$ and v_i is the i-th Householder vector. Typically, Q is not stored explicitly but implicitly in factored-form representation, where the scaled Householder vectors v_i and the scalar factors $\tau_i = 2 / v_i^\top v_i$ are stored explicitly [1,3].

1 Corresponding Author: Carolin Penke, Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtor-Str. 1, 39106 Magdeburg, Germany; E-mail: penke@mpi-magdeburg.mpg.de.