
Graph Rewriting Based Search for Molecular
Structures: Definitions, Algorithms, Hardness

Ernst Althaus, Andreas Hildebrandt, Domenico Mosca

Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
[ernst.althaus,andreas.hildebrandt,mosca]@uni-mainz.de

Abstract. We define a graph rewriting system that is easily understandable by
humans, but rich enough to allow very general queries to molecule databases. It
is based on the substitution of a single node in a node- and edge-labeled graph
by an arbitrary graph, explicitly assigning new endpoints to the edges incident
to the replaced node. For these graph rewriting systems, we are interested in the
subgraph-matching problem. We show that the problem is NP-complete, even
on graphs that are stars. As a positive result, we give an algorithm which is
polynomial if both rules and query graph, have bounded degree and bounded cut
size. We demonstrate that molecular graphs of practically relevant molecules in
drug discovery conform with this property. The algorithm is not a fixed-parameter
algorithm. Indeed, we show that the problem is W[1]-hard on trees in the degree
as the parameter.

1 Introduction

Small molecules are of crucial importance in molecular biology. They serve in various
functions, e.g., as inhibitors or activators of proteins, as carriers of information, or
energetic storage. Consequently, small molecules are a focus of numerous research fields
(e.g., [4], [3], [2]). A prominent example is drug design, where small molecules are
used to inhibit or activate proteins to achieve a desired biological function, or to prevent
undesirable ones. Often, certain substructures of these small molecules are crucial for
different aspects of their biological role: For example, a given molecular substructure
might be favorable for an interaction with a given target, while another substructure
may be responsible for toxic activity. Working with molecular substructures is hence an
important task in computational chemistry, biology, and pharmacy. In fact, substructure
representation is a core component of most applications in computational chemistry,
including structure drawing, database search, or virtual screening [5].

Traditionally, substructures are modeled in chemical description languages such as
Daylight’s SMARTS1. These languages tend to be very complex and require significant
training efforts before they can be routinely used. Furthermore, these languages are very
restricted in their ability to describe patterns of typologies of the underlying graphs. This
is relevant e.g. for searching certain cyclic peptides. To make matters worse, parsing and
matching such patterns against databases of molecules is NP-complete. Furthermore,
these description languages often suffer from the lack of a formal definition of their
semantics.

1 http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

To circumvent these problems, we propose a simple graph rewriting system (or graph
transformation) to describe substructures: experience shows that it is more intuitive to
use methods to describe graphs directly compared to a string based description. Even
graph rewriting systems of very simple form allow a high expressive power which almost
reaches that of SMARTS and allow to specify some interesting substructures beyond
the expressive power of SMARTS. Although the related search problem remains NP-
complete, it becomes polynomial if each minimal cut of the query graph has bounded
size, which we empirically find to be true for most molecules contained in the standard
databases.

Using graph grammars instead of established molecular description languages not
only allows a more intuitive representation of graph topology, but also enables queries
that cannot be realized within the framework of, e.g., SMARTS and would typically have
to be formulated as an additional external filter. One such example of practical relevance
is the search for cyclic peptides. Many important drugs have such a structure, since they
tend to resist digestion quite effectively.

Molecular function is rooted in molecular interactions. Such interactions typically
do not require contributions from all atoms of the molecule, but rather involve specific
groups of atoms. Hence, molecules that share certain molecular subgraphs can be
expected to share some of their interactions, and hence, of their function. We find that
functional groups can be intuitively described by devising graph grammars that produce
the molecular subgraphs belonging to this kind of group. Hence, matching such a graph
grammar against a molecular database allows to query for instances that contain certain
chemical groups and thus potentially show a desired chemical function.

A graph rewriting system is used to define a language of graphs, similarly to well-
known string grammars. Therefore, graph rewriting systems are also known as ‘graph
grammars’. A graph rewriting system consists of a set of rules defining how a graph can
be transformed into another. The corresponding language is the set of all graphs that
can be constructed from the rules starting with a graph consisting of a single node of
a specific label. There are several known definitions of the transformation rules, such
as node replacement, hyperedge replacement, and single- and double-pushout. We will
relate our definition to those latter ones. Our definition is particularly simple and intuitive,
as the graphs we are interested in are of bounded degree (atoms in molecules can form
only a finite and typically very small number of covalent bonds) and thus we typically
have rewriting systems of bounded degree. This allows a model where the rules explicitly
reroute all edges that lose an endpoint due to the removal of a node of the graph. More
precisely, we assume that the graphs are node- and edge-labeled multigraphs without
self-loops. A rule replaces a single node with a specific label and specific labels of the
incident edges by a subgraph. The edges originally incident to the removed node are
given new endpoints in the new subgraph. The labels of these edges may not be changed.

The paper is structured as follows. In the following sections, we give the formal
definitions and review some related work. Before we state our algorithm for graphs with
bounded size of minimal cuts in Section 5, we show how the rules of our graph grammar
can be transformed in some easier form. In Section 6, we show that the problem is NP-
complete even on stars. If we use the degree as parameter, the problem is W[1]-hard even
on trees, as shown in Section 7. For graphs of degree 5, the problem is even NP-complete,

even if they have bounded pathwidth. The proof of this result is not given in this extended
abstract. Finally, we give some experimental justification for the assumption that the
graphs have bounded size of minimal cuts in Section 8 and conclude in Section 9.

2 Definitions and Summary of the Results

We now turn to the formal definitions. Let LV and LE be a set of node- and edge-labels.
A node- and edge-labeled multi-graph over (LV ,LE) is a tupleG = (V,E,N,LV , LE),
where V and E are finite disjoint sets, N : E → V (2) is assigning each edge its two
endpoints, LV : V → LV is assigning each node a label and LE : E → LE assigns
each edge a label. Notice that V (2) denotes the subsets of cardinality 2 of V . In the
following, we always mean a node- and edge-labeled multi-graph when we talk about a
graph.

For a graph G = (V G, EG, NG, LGV , L
G
E) and U,U ′ ⊆ V G with U ∩ U ′ = ∅, let

δG(U) = {e ∈ EG | ∅ 6= U ∩N(e) 6= N(e)}, δG(U,U ′) = {e ∈ EG | U ∩N(e) 6=
∅ and U ′ ∩N(e) 6= ∅} and let G[U] be the induced subgraph of U . If the graph is clear
from the context, we write δ(U) instead of δG(U) and furthermore, we write δ(v) for
δ({v}). Let ∆(G) be the maximal degree of a node of G. A cut (U, V \U) is a partition
of the nodes of a graph into two disjoint subsets, often referred to as the cut U . A cut U is
minimal, if there is no cut U ′ such that δ(U ′) is a proper subset of δ(U). It is well known
that in a connected graph, a cut U is minimal, if G[U] and G[V \ U] are connected.

A graph rewriting system in our definition is a tuple (S, P), where S ∈ LV is a label
and P is a finite set of replacement rules of the form (L,L1, . . . , Ld)→ (G,n1, . . . , nd),
where L ∈ LV , L1, . . . , Ld ∈ LE , G is a graph and n1, . . . , nd are nodes of G. We
call d the degree of the rule and G the replacement graph. For a graph rewriting system
(S, P), let∆(S, P) be the maximal degree of any rule in P . Such a rule allows to replace
a node with label L whose incident edges have labels L1, . . . , Ld by the graph G. The
edges incident to the removed node are assigned new endpoints n1, . . . , nd in this order.
More formally, given a graph H = (V H , EH , NH , LHV , L

H
E), a rule (L,L1, . . . , Ld)→

((V G, EG, NG, LGV , L
G
E), n1, . . . , nd) can be applied to a node v ∈ V , if there is a

bijection m : {1, . . . , d} → δH(v) such that LE(m(i)) = Li for 1 ≤ i ≤ d. If we apply
this rule using m at v, the resulting graph is H ′ = (V H

′
, EH

′
, NH′ , LH

′

V , LH
′

E) with

– V H
′

= V H \ {v} ∪ V G, where the nodes of V G are assumed to be disjoint from
the nodes V H (if they are not, we first make an isomorphic copy of G),

– EH
′

= EH \ {m(1), . . . ,m(d)} ∪ EG ∪ {e1, . . . , ed}, where e1, . . . , ed are new
edges,

– NH′ defined byNH′(e) = NH(e), if e ∈ EH′∩EH ,NH′(e) = NG(e) if e ∈ EG
and NH′(ei) = {ni} ∪ (NH(m(i)) \ {v}) for 1 ≤ i ≤ d,

– LH
′

V defined by LH
′

V (v) = LHV (v) for v ∈ V H′ ∩ V H and LH
′

V (v) = LGV (v) for
v ∈ G

– LH
′

E defined by LH
′

E (e) = LHE (e) for e ∈ EH′ ∩EH , LH
′

E (e) = LGE(e) for e ∈ EG,
LH

′

E (ei) = LHE (m(i)) for 1 ≤ i ≤ d.

In the definition, we do not distinguish terminal and non-terminal node-labels. Never-
theless, in our examples there are node-labels that do not appear in the query graph and

only those appear on the left hand side of the replacement rules. Hence these labels are
in principal the non-terminals and drown in boxes in the examples and all other labels
are the terminals and drawn in circles. We refer to Figure 1 for a pictorial description. In
the following, we will sometimes additionally require that the graph G in a replacement
rule is connected.

S

L

N C C

R O

cLnL

L
nL cL

C C

O R

N L
nL cL

nL

L
nL cL

C C

O R

N
nL cL

Fig. 1: A grammar for cyclic peptides: The starting label is S. The left-hand side shows the rule
in which the starting symbol can be replaced by an initial graph, where the label L stands for an
arbitrary chain of amino acids and R for a single amino acid side chain residue. With the upper
rule, one can expand the chain by one further amino acid. After application of the lower rule, the
chain can not be extended further. The edge labels are used to ensure that an N -node is always
connected to a C-node and not to another N -node. An edge has label nL if it is between an
N -node and an L-node on its creation and has label cL if it is between a C-node and an L-node.
Whether there are rules that transform R into one of the amino acids or that transform R to a
single node depends on whether it is necessary to describe that we have a peptide or not.

Let G(S, P) be the set of all graphs that can be obtained by iteratively applying rules
starting from the graph consisting of a single node with label S and no edges. Given
a graph G and a graph rewriting system (S, P), we are interested in the existence of
a subgraph of G contained in G(S, P). Note that this query differs from the question
typically addressed in the literature on graph rewriting systems, where one is typically
interested in whether G is contained in G(S, P). Another related question would be the
existence of an induced subgraph of G in G(S, P). Our algorithm can be generalized to
these questions easily.

We further note that we will use the edge-labels only to restrict the applicability of the
rules to have a richer expressive power, while our input graphs typically have node-labels
only. If we are given a graph G without edge-labels, we are interested whether there
exists a labeling of the edges, such that the resulting graph has a subgraph contained in
G(S, P). Our algorithm can easily be extended to this question.

Finally, it is important to note that the complexity of graph rewriting algorithms is
usually investigated under the assumption that the graph rewriting system is fixed (and
hence a polynomial algorithm can exponentially depend on the description size of the
system), whereas we assume that the graph rewriting system is part of the input.

Notice that if the degree of a replacement graph of a rule is larger than the maximum
of ∆(S, P) and ∆(G) for a query graph G, the corresponding rule can not be used to
derive a subgraph of G, as a node of the replacement graph with degree larger than

this maximum can neither be a node of the query graph nor replaced by any rule of
the rewriting system. Hence, we will assume in the following that the degree of any
replacement graph is at most max(∆(S, P), ∆(G)) if we apply our algorithm for query
graph G.

We will show that the problem is NP-complete, even if the pattern graph (and hence
all graphs in the rules) is a star. Let ζ(G) be the maximal size of a minimal cut of
G. In other words, ζ(G) is the maximal cardinality of a cut U ⊆ V such that G[U]
and G[V \ U] are connected. For a graph rewriting system (S, P) let ζ(S, P) be the
maximum value ζ(G) for a replacement graph G. We give a polynomial time algorithm
solving the subgraph matching problem for a graph G and a graph rewriting system
(S, P) for the special case where∆(G), ζ(G),∆(S, P) and ζ(S, P) are bounded. Notice
that ζ(T) = 1 for every tree T (and hence for every star). We sketch a proof for the
fact that the problem is NP-complete even for graphs with bounded degree and bounded
treewidth. Hence this well known parameter to describe the complexity of a graph can
not be used for our problem.

Our algorithm is not a fixed-parameter algorithm in the degree and the maximal size
of a minimal cut. We show the problem is W[1]-hard even on trees with the degree as
the parameter and hence, there is no such algorithm unless W[1]=FPT.

Notice that the algorithm of Lautemann [7] gives an algorithm for the graph matching
problem if the degree of the input graph is bounded without the need to additionally
bound an other parameter. We show that the subgraph matching problem is NP-hard in
this case and hence, it is unlikely that the algorithm can be generalized without increasing
the running time. Nevertheless, our algorithm can be considered as a generalization of
the algorithm of Lautemann.

Figure 2 gives a summary of our results.

3 Related Work

There are many chemical description languages that are currently in use, such as the
Sybyl Line Notation (SLN) [1] or the SMILES Arbitrary Target Specification (SMARTS).
All of those describe molecular structures in the form of strings. Using graph rewriting
systems to describe structures is more direct and hence more intuitive.

Graph rewriting systems have been studied since the 1960s. Three main approaches
to formalize the basic idea to successively replace graphs by other graphs to define
classes of graphs have been proposed. We relate our definition to the most important
other definitions of graph rewriting systems, i.e. algebraic methods (single- and double-
pushout-method), node-replacement grammars and hyperedge replacement grammars.
The following definitions are sometimes abbreviated where the full details are not needed
for this work. We refer to [9] for details.

In the double-pushout method, a rule of a graph rewriting system is described by two
graphs L = (V L, EL, NL, LLV , L

L
E) and R = (V R, ER, NR, LRV , L

R
E) with a common

set of nodes K (formally, we need a mapping of the nodes K to the nodes V L and V R

respectively). To apply a rule, we look for an isomorphic copy of L in G. We remove
L[V L \K] and all edges in δL(K). Then we insert R[V R \K] and add the edges in

general graphs

bounded size of
minimal cuts

NPC6

XP 5

W [1]7

bounded degree

trees

bounded pathwidth NPC−

Fig. 2: Overview of our results for the subgraph matching problem. The algorithm which is
polynomial-time if the size of the parameters are bounded (XP-algorithm), can clearly also be
applied on more specialized classes, whereas the hardness results (NP-completeness (NPC) and
W[1]-hardness (W[1])) generalize to larger graph classes. The superscript numbers the results
indicate the section of the proof, the hardness-proof for graphs with fixed degree and pathwidth
is not given in this extended abstract. All hardness results except 6 also hold for a fixed set of
rules, whereas the algorithm can be used if the rules are part of the input. For the graph matching
problem, the algorithm of Lautemann [7] is an XP-algorithm for all bounded degree graphs and
the respecting NP-hardness proof does not carry over. The other two hardness proofs also hold for
the graph matching problem.

δR(K) to the original nodes of K. Our rules can be interpreted as a restricted double-
pushout method, in which L is a star, K are all nodes except the center of the star, and R
is a connected graph. Furthermore each node of K has the same number of edges with
the same labels in L and R.

In a node replacement grammar, a single node u with a given label in a graph G is
replaced by a graph D, as in our rule. The difference is how the embedding into the
former neighborhood is done. Whereas in our case, the edges are explicitly assigned new
endpoints, the embedding in node replacement grammars is done purely by the node
labels. More specifically, a set of tuples of node-labels (µ, δ) is given and edges added
between each node of label µ in G without u and each node of label δ in D.

The definition which is in some sense closest to ours are hyperedge replacement
grammars. A hypergraph is a graph where N is not necessarily a set of cardinality two,
but of arbitrary cardinality. A rule of a hyperedge replacement grammar specifies a label
of an hyperedge e which is to be replaced by a hypergraph whose nodes are a superset
of the nodes N(e) incident to e. Notice that due to the fact that we remove an edge (and
no nodes), the embedding is quite simple.

For a hypergraph H its dual hypergraph is the graph which has a node for each
hyperedge of H and a hyperedge for each node of H whose incident nodes are those
corresponding to the hyperedges of H incident to the node. Our rules can be viewed as
hyperedge replacements in the dual hypergraph with the additional condition that the
degree of each node is exactly two (i.e. that the dual of the hypergraph is a graph).

Notice that we can consider our algorithm as an extension of the membership
algorithm of Lautemann [7] to the subgraph matching problem. We will not elaborate on
this due to space limitation.

4 Normal Form of the Rules

In order to simplify the description of the algorithm, we will assume next replacement
graphs consists of exactly two nodes (and an arbitrary number of edges between them).
If all replacement graphs have this property, we call the rules in normal form. In the
following, we show that general replacement rules as defined above can always be
reduced to a set of rules in normal form. The maximal degree of a rule with replacement
graph G increases at most by ζ(G) ·∆(G). As discussed before, we can bound ∆(G)
by the maximum of the degrees of the rules and the query graph.

First, we argue that we do not need rules in which the new graph has exactly one
node. Such rules can only change the label of the node. We can remove such rules exactly
as in the case of context-free (string) grammars when constructing the Chomsky normal
form.

Let (L,L1, . . . , Ld) → ((V,E,N,LV , LE), n1, . . . , nd) be a rule in general form
with V = {v1, . . . , vn}, n ≥ 3 and E = {e1, . . . , em}. We assume that the edges are
ordered such that there is 1 ≤ i ≤ d with n1, . . . , ni = v1 and ni+1, . . . , nd 6= v1. If we
only consider rules with connected graphs, we assume that the nodes are numbered by
descending depth-first-search (DFS) completion numbers and let {v1, . . . , vn} be the
nodes in this order. This ensures that G[{v2, . . . , vn}] is connected. We show how we
can replace this rule by one rule in normal form and one rule where the replacement
graph has n− 1 nodes. Iterating this replacement, we can ensure that all rules have the
normal form.

The idea is that the first rule generated the node v1 and a node with a new label `
which will be replaced by the remainder of the graph later. The number of edges between
v1 and ` corresponds to the number of edges of the graph between v1 and the remainder
of the graph, i.e. |δ(v1)|. In order to ensure that all edges get the correct endpoints, we
introduce new edge-labels of all these edges.

More formally, we introduce a new node-label ` and new edge-labels `e1 , . . . , `en .
In the first rule, the graph of the rule consists of the node v1 with its label and a new
node with label `. This node ` will later be replaced by the graph G[{v2, . . . , vn}]. For
each edge in e ∈ δE(v1), we create an edge between the two nodes with label `e. The
new endpoint for the edges e1, . . . , ei is v1 and for the edges ei+1, . . . , ed it is the node
with label `.

The second rule will replace a node with label ` whose incident edges have labels
(Li+1, . . . , Ld, (`e)e∈δG(v1)) by the graph G[{v2, . . . , vn}]. The new endpoints of the
edges with labels Li+1, . . . , Ld are those of the original rule and the endpoints of the
edges with labels `e for e ∈ δG(v1) are the endpoints different from v1 in G. See Figure
3 for a pictorial description.

As the second rule will be the only rule for the node label `, we can only apply the
two rules in common and hence they exactly replace the original rule.

We now argue that we can bound the degree of all rules created by the sum of
the original degree of the rule and ∆(G) · ζ(G) for G being the replacement graph.
We distinguish between the contribution of the edges defining the original degree and
additional the edges due to the replacement. The original edges were partitioned into
the two created rules and hence their number can not increase in any rule. For the
additional edges, we argue as follows. Any constructed rule either creates a node of G or

a subgraph G[{vi, . . . , vn}]. In the first case, the number of additional edges is bounded
by the degree of the node. In the second case, the the nodes {vi, . . . , vn} are the nodes
of a subtree of the DFS-tree that is cut at vi, as we numbered the nodes according to
descending DFS completion numbers and vi is the root of the tree. We have to bound
the number of edges of G with exactly one endpoint in vi, . . . , vn. Consider now the
DFS-tree as an undirected tree rooted at vi. The nodes of each subtree of vi that is not
contained in vi+1, . . . , vn form a minimal cut and con contribute at most ζ(G) to the
degree of the rule. Hence the degree of the rule is bounded by ∆(G) · ζ(G).

L
nL cL

C C

O R

N
nL cL

L
nL cL

O

`
nL cL

e

`

e
cLnL

C C

R

N
nL cL

e

Fig. 3: The rule on the left-hand side is replaced by the two rules on the right-hand side. In the
first rule, only the node with label O is created and a node with label ` is added as a placeholder
for the remaining graph. The edge between these two nodes gets label e in order to ensure that it
gets the correct endpoint in the end. In the second rule, the node with label ` is replaced by the
remaining graph and the edges with labels nL, cL and e get the correct endpoints.

5 A Matching Algorithm

We start with an exponential-time algorithm that simply enumerates backward substitu-
tions in all possible ways until either the starting label is found or no further backward
substitutions are possible. We store all subgraphs we used to generate a label in a table in
order to avoid multiple enumerations of the same structures. Afterwards, we characterize
the graphs on which the algorithm runs in polynomial time. We assume that the rules are
in normal form in the following.

If G can be obtained from the graph H by a single application of a rule, we say
that H is a possible predecessor of G. Notice that if the rules and the input graph have
bounded degree, given a graph G, we can simply enumerate all possible predecessors
in polynomial time by iterating over all rules and trying to apply them backward on all
pairs of nodes.

5.1 An Exponential Algorithm

Let (S, P) be a graph rewriting system and G = (V,E,N,LV , LE) be a query graph.
For L ∈ LV and L1, . . . , Ld ∈ LE , let G(L,L1, . . . , Ld) be the star with d edges
with labels L1, . . . , Ld, whose center has label L (the labels of the other nodes are not
specified).

Our exponential algorithm stores the following dynamic programming table:

DP (L,U, e1, . . . , ed) ∈ {true, false},

where L is a node label, U is a subset of the nodes, d is the degree of a rule replacing
node-label L, and e1, . . . , ed are edges of the graph with one endpoint in U , which is
true, if it is possible to obtain a subgraph ofG[U] unioned with the edges e1, . . . , ed from
G(L,LE(e1), . . . , LE(ed)). Notice we have derived from G(L,LE(e1), . . . , LE(ed))
and not from a subgraph of it. Furthermore, the labels of the endpoints of e1, . . . , ed that
are not in U do not matter for this derivation. A subgraph of G is in G(S, P), if there is
a table entry DP (S,U, e1, . . . , ed) set to true for the starting symbol S and arbitrary U
and e1, . . . , ed.

As our problem asks whether there is a subgraph of G in G(S, P), we only have to
consider minimal subsetsU , i.e. ifDP (L,U, e1, . . . , ed) is true, thenDP (L,U ′, e1, . . . , ed)
should be true for each U ′ ⊇ U . We will not set these to true, as every entry of the table
that can be set to true after some steps from DP (L,U ′, e1, . . . , ed) can also be set to
true from DP (L,U, e1, . . . , ed).

In the beginning, we set DP (LV (v), {v}, e1, . . . , ei) = true for all nodes v, 1 ≤
i ≤ |δ(v)|, and e1, . . . , ei being a subset of cardinality i of the edges incident to v. All
other values are set to false. Notice that intuitively, we select the subgraph (V ′, E′) by
deriving true for the table entry with node set V ′ and the empty set of edges from the
entries of DP for the node set {v} and the edge set δ(v) ∩ E′ for all v ∈ V ′.

Then we iterate over all pairs of entries (L1, U1, e11, . . . , e
1
d1) and (L2, U2, e21, . . . , e

2
d2)

labeled true with U1 ∩ U2 = ∅ and try to mark further entries with true by com-
puting all possible predecessors when we apply an arbitrary rule (L,L1, . . . , Ld) →
(H,n1, . . . , nd) with V H = {u1, u2} and H = ({u1, u2}, EH) of our grammar.
Let Ē = {e11, . . . e1d1} ∩ {e21, . . . , e2d2} and Ei = {ei1, . . . , eidi} \ Ē. We can label
(L,U1 ∪ U2, e1, . . . , ed) to true using such a rule, if

– the two nodes of H have labels L1 and L2, respectively. Let ui be the node with
label Li (i = 1, 2),

– there is a one-to-one correspondence m : Ē → EH of the edges in Ē and the edges
of H respecting such that LE(e) = LEH (m(e)) for all edges e ∈ Ē,

– there is a one-to-one correspondence m′ : E1 ∪ E2 → {1, . . . , d} between the
edges E1 ∪ E2 and the indices 1, . . . , d such that for an edge e of Ei, its label is
Lm′(e) and nm′(e) = ui,

Notice that if all rules have bounded degree d, the running time of the algorithm is
polynomial in the size of the table, which is |LV | · 2|V | · |E|d.

5.2 Reducing the Number of Considered Subsets

In the following, we only consider rules whose graphs are connected graphs. In this case,
the sets U always induce connected subsets of the graph.

Let (L,U, e1, . . . , ed) be an entry with value true in the dynamic programming
table. Remove the edges δ(U) \ {e1, . . . , ed} from G. If this graph has more than one
connected component, we will not be able to apply a rule which contains nodes from

different components. Hence, we can add all nodes not reachable from the component
containing U to U . In the following, we restrict to entries P (L,U, e1, . . . , ed) such that
U can not be enlarged in this manner.

If the input graph G is a tree, for each subset {e1, . . . , ed} of edges there is at
most one set U of nodes to be considered, namely the maximal subtree containing
e1, . . . , ed as edges leading to leaves, if such a tree exists (with the exception that we
have two possible sets, if the set of edges has cardinality 1). Hence our algorithm runs in
polynomial time on trees if the degrees of the rules are bounded. In the next section, we
show that the problem is NP-complete if the rules and the query graph can have arbitrary
degree.

More generally, we can characterize a set of nodes U by the edges of its cut δ(U)
(again, each set of edges can characterize two sets of nodes - the two sides of the cut).
As we are only interested in subsets that can not be enlarged, we can characterize subset
U uniquely by the edges {e1, . . . , ed} plus the edges on δ(U) that are reachable in
G[V \ U] from one of the endpoints of {e1, . . . , ed} that are not in U , where we only
need to report one edge for parallel edges.

We now argue that we only have a polynomial number of subsets U to be considered
if ∆(G) · ζ(G) are bounded by constants by showing that at most ζ(G) ·∆(G) edges
are needed to describe the cut. Assume that we need more than ζ(G) ·∆(G) edges to
describe the set U . This means that for at least one edge ei, we have more than ζ(G)
edges with different endpoints in V \ U that are reachable from the endpoint u of ei not
in U in the graph G[V \ U]. Take the set U ′ of nodes reachable from u in G[V \ U] as
one set and U as the other set. Both are connected sets and we have δ(U,U ′) > ζ(G), a
contradiction.

6 NP-completeness for Rules of Unbounded Degree on Stars

In this section, we show that the graph and subgraph matching problem become NP-
complete, if we do not bound the degree of the rules and the query graph, even if the
input graphs are stars. A star is a tree with only one internal node, called the center of
the star.

The proof uses a reduction of 1in3SAT to our problem. Recall that in the 1in3SAT
problem, we are given a formula φ = c1 ∧ · · · ∧ cm in conjunctive normal form such that
each clause ci consists of three literals, i.e. ci = li1 ∨ li2 ∨ li3 over a set {x1, . . . , xn} of
variables, i.e lij = xk or lij = ¬xk. We are interested whether there is a truth-assignment
of the variables such that exactly one literal is true for each clause. This problem was
proven to be NP-complete by Schäfer [10] and is already listed by Garey and Johnson
[6] as NP-complete problem LO4.

Let φ = c1 ∧ · · · ∧ cm with ci = li1 ∨ li2 ∨ li3 be a formula over the variables
{x1, . . . , xn}. The set of node-labels will be {c1, . . . , cm} ∪ {lij | 0 ≤ i ≤ n and 0 ≤
j ≤ m} and all edges will have the same label le. The query graph is the m-star whose
center has label lnm and the other nodes have labels c1, . . . , cm. The starting label is l00
(see Figure 5 for an example of the construction). The intuition is that the label l00 can be
replaced by two rules, one corresponding to setting x1 to true, the other to setting x1 to
false. Applying the rule corresponding to setting x1 = true will add the neighbors ci

to the center for all clauses having literal x1. We will change the label of the center to
the label l1j , where j is used to count the number of edges incident to the center, i.e. the
number of clauses that are satisfied by the truth-assignment in the first step. Such a label
can be replaced by the rule corresponding to setting x1 to a truth value. Hence the upper
index of the label of the center indicates which variables already have a truth-value. The
lower index is used to count the number of edges we already added to the star, i.e. if
there are j clauses having literal xi, the new label of the center is l1j . If we derive the
lnm, we created a star with m incident edges. This graph matches the query graph if each
label ci was created exactly once and hence, for each clause exactly one literal was true.

Formally, we define the rules as follows. Let Cit be the indices of all clauses with
literal xi and Cif the indices of all clauses with literal ¬xi. For each 0 ≤ i < n and each
0 ≤ j ≤ m, we have the following two rules:

– (lij , le, . . . , le︸ ︷︷ ︸
j-times

) → (G, c, . . . , c︸ ︷︷ ︸
j-times

), where G is the graph with center c having label

li+1
j+|Cit |

and |Cit | further nodes, one with label ck for each k ∈ Cit . We call this rule

ri,tj .

– (lij , le, . . . , le︸ ︷︷ ︸
j-times

) → (G, c, . . . , c︸ ︷︷ ︸
j-times

), where G is the graph with center c having label

li+1
j+|Cif |

and |Cif | further nodes, one with label ck for each k ∈ Cif . We call this rule

ri,fj .

The construction can clearly be performed in polynomial time. We now argue that
the 1in3SAT-problem has a solution if and only if there is a subgraph of the input star
that can be constructed by the graph rewriting system.

We first show that if the 1in3SAT problem has a solution then our problem has one.
For this, let π : {x1, . . . , xn} → {true, false} be an assignment such that each clause
has exactly one literal that is satisfied. In the following, we will identify true with t and
false with f . Starting with l00, we use the rules r0,π(x1)

0 , r
1,π(x2)

|Ci
π(x1)

|, . . . , r
n−1,π(xn)∑n−1
i=1 |Ciπ(xi))

|

and get the input star at the end.
On the other hand, assume that a subgraph of the star can be constructed from l00

using the rules. Notice that from the construction, it is clear that we always have a star
whose center has a label lij and only this node (and its incident edges) can be replaced.
Hence, we will use exactly n rules, one for each variable and we can interpret the rules
as a truth-assignment. Furthermore, the lower index of the label of the center will always
be equal to the number of edges of the star. As the final label has to be lnm, we will have
constructed the complete input star at the end (and not just a subgraph of it) and the
truth-assignment is such that each clause has exactly one literal that is satisfied.

Notice that we use the lower indices of the labels lij to count the number of nodes
that are created to eventually ensure that the complete star is constructed. Hence, this
construction can be used for the subgraph matching problem as well as for the graph
matching problem. For the graph machting problem, the lower indices can be dropped.

l00

rule for x1 = false

l00

rule for x1 = true
c2

c3

l12

c1l11

l1i

i− edges

l2i+2

c1

c2i− edges

rule for x2 = true

l1i

i− edges

l2i+2 c3

i− edges

rule for x2 = false

c1

c3

l23 c2

Fig. 4: The construction for the 2-SAT formula c1 ∧ c2 ∧ c3 with c1 ≡ ¬x1 ∨ x2, c2 ≡ x1 ∨ x2
and c3 ≡ x1 ∨ ¬x2. The query graph is depicted on the left, the rules on the right hand side.
With the rule corresponding to setting x1 to true, we can add nodes with label c2 and c3 to the
star and similarly for the other truth assignments. In this example it is not possible to select rules
corresponding to set the truth-value of x1 and x2 and construct the star with labels c1, c2, and c3
for the leaves and l23 for the center.

7 W[1]-hardness in the Degree for Trees

In this section, we show that the graph matching problem is W[1]-hard in the degree
even for trees. This is a strong hint that we will not find a FPT algorithm in the degree
even for trees. We show this by a reduction from the longest common subsequence
problem, which is shown to be W[1]-hard in the number of sequences, even for fixed
sized alphabets, in [8].

Recall that in the longest common subsequence problem, we are given d sequences
s1, . . . , sd over an alphabet Σ and a number k. The question is whether there is a
sequence s of length k which is a subsequence of each of the d strings s1, . . . , sd.

We have labels {c, t, h, e} ∪ Σ. We construct a tree and rules as follows. The
tree consists of a center node with label c, from which d paths evolve with labels
corresponding to the strings, terminated by a node with label e and a further path of k
nodes of label h followed by one of label t. See Figure 5 for a sketch of the construction.

We have rules that, when considered in a backward direction, allow to shrink a node
with a label from Σ into the center and rules which shrink a star of d nodes of the same
label from Σ and a node with label h to the center. Finally, we have the terminating rule
which shrinks the center with d nodes of label e and a node of label t to the starting
symbol.

We now argue that the query graph can be constructed, if there is a common substring
of length k. We do it again by showing how the query graph can be reduced to the starting
label by backward substitutions. Starting form the query graph, we shrink all nodes into
the center that are not part of the common substring of length k until the first remaining
node of each string is of the common substring (in arbitrary order). Then we shrink the d
nodes corresponding to the first letter of the common substring and one node of label
h to the center. We continue this way until all nodes of the strings but the last ones are

C

s21s11 sd1 h

s12

s1|s1|

e

s22

s2|s2|

e

sd2

sd|sd|

e

h

h

t

· · ·

· · ·

· · ·

· · ·

k
−
n
od
es

c

c C

c

A

c

h A

c

A A

s

t e

c

e e

Fig. 5: The sketch of the input graph on the left and the rules on the right. The rules have to be
created for all A ∈ Σ. The rule at the top left replaces an arbitrary string by an arbitrary symbol.
The rule at the bottom left extends an arbitrary string by an arbitrary symbol. The rule at the top
right extends all strings by the same symbol and the counter for the number of matching symbols
increases by one. The rule at the bottom right generates the starting configuration.

shrunken into the center. Finally, we can use the rule that creates the starting label from
this graph.

Finally, we argue that there is a common substring of length k if a (sub)graph of the
query graph can be constructed. Here, we use the forward direction when arguing. We
can only start with the rule that creates the star with d labels e and one label t for the
leaves and label c for the center. By the construction, it is only possible to emerge new
nodes from the node with label c and there will be only one such node. Hence, we can
only match the query graph and not a subgraph of it and we have to create exactly the
given strings, either by adding a single letter to a string or by adding the same letter to all
strings and one node of label h. Notice, that we have to add the node with label h always
to the part terminated by t as otherwise, we will not be able to construct (a subgraph of)
the query graph. During the creation of the strings, we have to create k nodes of label h
and hence, the corresponding substrings build a common substring of length k.

Notice that the rules only depend on d and the alphabet Σ, i.e. the hardness result
holds even for a fixed graph grammar. Furthermore, we do not need edge-labels in the
normal form of the rules by giving each string a unique copy of the alphabet.

The construction can be used to show the hardness of the graph matching problem
and the subgraph matching problem.

8 Estimating the Size of the DP-Table in a Large Database

We showed in Section 5.2 that the running time becomes polynomial for a class of graphs
with bounded ζ-value. More precisely, we can estimate the size of the dynamic pro-
gramming table for a graph G = (V,E) as |LV | · |E|∆(G)·ζ(G). We calculated this value

over all purchasable structures in the Zinc-database2 and report on the statistics in this
section. The database contains about 22 million structures and is often scanned through
in computational drug discovery. For the vast majority of structures, the parameter value
is at most 6, but can become as large as 22. In Table 1, we give the histogram on the
distribution of this value.

Table 1: Histogram of ζ(G) over the all purchasable structures G in the Zinc-Database.
Number 1 2 3 4 5 6 7 8 9 10

ζ 105329 13429106 4027109 3450440 541304 308973 62943 25141 5649 1698

Number 11 12 13 14 15 16 17 18 19 20 21 22
ζ 518 268 152 72 29 35 11 10 1 2 0 1

Furthermore, we report on the number s of subsets U of the nodes such that G[U]
and G[V \ U] are connected. If u is this number, the size of the dynamic programming
table can also be bounded by |LV |s∆(G) and hence, if it is polynomially bounded in
the input size and the maximum degree is bounded as well, we obtain a polynomial
algorithm, too. For most of the instances, this value is between 16 and 2048, only about
2h have a larger value, and only 209 instances have a value exceeding 100, 000. Two
instances have more than 2 million components. See Figure 6 for a plot of the data.
Notice that it is a worst-case estimation and in practice the dynamic programming table
will be much smaller.

The results clearly indicate that these numbers are generally small in this database
and hence, we are confident that an implementation of this algorithm will be very
efficient.

On the other hand, there are known structures, such as fullerenes, where the ζ-value
becomes very large and hence, the algorithm proposed will not be efficient. These
structures typically are difficult as well for other query languages such as SMARTS,
which often rely on precomputation of properties such as the smallest set of smallest
rings [11] (known as the minimum cycle basis in computer science).

In the future, we will evaluate these values over the database pubchem 3 consisting
of more than 120 million structures.

9 Conclusion

In this work, we present an algorithm for graph rewriting-based molecular structure
search that is polynomial if the degree of the rules of the graph rewriting system and the
cut size between each pair of connected components are bounded. We further showed
empirically that this assumption is reasonable.

Our algorithm is a generalization of the graph-matching algorithm of Lautemann for
hyperedge replacement grammars. It only works on hypergraphs whose duals are graphs,

2 http://zinc.docking.org/
3 http://pubchem.ncbi.nlm.nih.gov

Fig. 6: The graph shows the percentage (y-axis) of the structures G for which the number of
subsets U of nodes such that G[U] and G[V \ U] are connected is below the value on the x-axis.
For more than 2h of the structures the value lies between 16 and 2048.

i.e. every node in the hypergraph has exactly two incident edges at any time during the
derivation. We will investigate whether it is possible to extend our algorithm to general
hypergraphs.

The algorithm is not a fixed-parameter algorithm and we showed that the problem
is W[1]-hard even on trees. Nevertheless, it is possible that there is an algorithm that
is exponential in the degree, but polynomial in the maximal size of a minimal cut or a
related graph parameter. We will investigate this further in future work.

Furthermore, we will implement our algorithm. In order to become efficient enough
to scan databases, suitable algorithm-engineering techniques have to be developed and
applied.

References

1. Sheila Ash, Malcolm A. Cline, R. Webster Homer, Tad Hurst, and Gregory B. Smith. Sybyl
line notation (sln): A versatile language for chemical structure representation. Journal of
Chemical Information and Computer Sciences, 37(1):71–79, 1997.

2. AK Dehof, HP Lenhof, and A Hildebrandt. Predicting protein NMR chemical shifts in the
presence of ligands and ions using force field-based features. In Proceedings of the German
Conference on Bioinformatics 2011, 2011.

3. Anna Katharina Dehof, Alexander Rurainski, Quang Bao Anh Bui, Sebastian Böcker, Hans-
Peter Lenhof, and Andreas Hildebrandt. Automated bond order assignment as an optimization
problem. Bioinformatics, 27(5):619–625, 2011.

4. Matthias Dietzen, Elena Zotenko, Andreas Hildebrandt, and Thomas Lengauer. Correction to
on the applicability of elastic network normal modes in small-molecule docking. Journal of
Chemical Information and Modeling, 54(12):3453, 2014.

5. Hans-Christian Ehrlich and Matthias Rarey. Systematic benchmark of substructure search in
molecular graphs - from ullmann to VF2. J. Cheminformatics, 4:13, 2012.

6. M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

7. Clemens Lautemann. The complexity of graph languages generated by hyperedge replacement.
Acta Inf., 27(5):399–421, 1990.

8. Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. J. Comput. Syst. Sci., 67(4):757–
771, 2003.

9. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

10. Thomas J. Schaefer. The complexity of satisfiability problems. In Richard J. Lipton, Walter A.
Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho, editors, Proceedings
of the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego,
California, USA, pages 216–226. ACM, 1978.

11. Antonio Zamora. An Algorithm for Finding the Smallest Set of Smallest Rings. Journal of
Chemical Information and Computer Sciences, 16:40–43, 1976.

