
Translating Java Code

to Graph Transformation Systems?

Andrea Corradini1, Fernando Lúıs Dotti2, Luciana Foss3, and Leila Ribeiro3

1 Dipartimento di Informatica, Università di Pisa,
Pisa, Italy — andrea@di.unipi.it

2 Faculdade de Informática, Pontif́ıcia Universidade Católica do Rio Grande do Sul,
Porto Alegre, Brazil — fldotti@inf.pucrs.br

3 Instituto de Informática, Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil — {lfoss,leila}@inf.ufrgs.br

Abstract. We propose a faithful encoding of Java programs (written in
a suitable fragment of the language) to Graph Transformation Systems.
Every program is translated to a set of rules including some basic rules,
common to all programs and providing the operational semantics of Java
(data and control) operators, and the program specific rules, namely one
rule for each method or constructor declared in the program.
Besides sketching some potential applications of the proposed transla-
tion, we discuss some desing choices that ensure its correctness, and we
report on how do we intend to extend it in order to handle several other
features of the Java language.

1 Introduction

Graph Transformation Systems (GTSs) were introduced about four decades ago
as a generalization of Chomski Grammars to non-linear structures. Since then,
the theory evolved quickly [24], and a growing community has applied GTSs to
diverse application fields [7]. Along the years, GTSs have been used to provide an
operational semantics to programming languages [22], to systems made of agents
(or actors) interacting via message passing [15, 16, 6], to object-oriented speci-
fication formalisms [26], to process calculi [10], and to several other languages
and formalisms.

By encoding a computational formalism into GTSs, usually one enjoys several
benefits. Firstly, the representation of states as graphs is often quite abstract and
intuitive, as it allows to ignore irrelevant details: in fact, graphs are considered
usually “up to isomorphism”, and this corresponds to considering states up to
the renaming of bound variables or names. Secondly, the rich theory of GTSs
provides interesting results that may be applied to the original formalism via the
encoding. As an example, the concurrent behavior of GTSs has been thoroughly

? Work partially supported by projects IQ-Mobile (CNPq and CNR), PLATUS

(CNPq), AGILE (EU FET – Global Computing) and SegraVis (EU Reserach
Training Network).



studied and a consolidated theory of concurrency is now available, including
event structure, process and unfolding semantics [23, 3]; the encoding of process
calculi as GTSs equips such calculi with a concurrent operational semantics [10],
to which the mentioned results can be applied.

Along these lines, in this paper we propose a translation of Java programs,
written in a suitable fragment of the language, into Graph Trasformation Sys-
tems. The fragment of Java for which we present such an encoding is small,
but still significant. It includes operators on primitive data types, class decla-
rations, assignments, conditional statements, (static or instance) method invo-
cations with parameter passing and value returning, and construction of new
objects. A Java declaration, i.e., a closed set of class definitions, is translated
into a graph of types and a set of typed rules that specify the (potential) behavior
of the program. The states of execution of a Java program are represented by
graphs which encode aspects related to both the data structures and the control
of the program. As expected, information which are not relevant at run-time,
like names of local variables or of formal parameters of methods, do not appear
explicitly in the graphical representation of states. The rules resulting from the
translation of a Java declaration are divided in two kinds: the basic rules, that
are common to all Java programs and specify the operational meaning of the var-
ious (functional and control) operators of the language; and the program specific
rules, one for each method or constructor, which replace a method/constructor
call with the corresponding body. After presenting the translation, we discuss
some design choices we made, and also how do we intend to extend the transla-
tion in order to handle other features of Java, including arrays, inheritance and
multi-threading.

There are several potential applications of the kind of translation we propose:
we sketch here two of them. Recently, various analysis techniques for GTSs have
been proposed, some of which are based on the unfolding semantics (see, e.g., [2]
for the finite-state case, and [4] for the general case). We intend to investigate how
far such techniques can be applied to the systems obtained from the translation
of Java programs, and thus, indirectly, to the Java programs themselves: the
leading intuition is that relevant properties of Java programs can be formulated,
in a GTSs setting, as structural properties of the graphs reachable in the system.
Having this application in mind, we restricted the format of the rules obtained
from the translation in order to match the constraints imposed by [2, 4], the
most relevant of which is that rules must be injective.

Another application we have in mind is to provide a pure GTS-based seman-
tics to Java-attributed GTSs, the graph transformation model adopted in tools
like AGG [1]. In this model, the items of a graph can be associated with arbitray
Java expressions (the attributes), and in a rewriting step such expressions are
evaluated to compute the attributes of the newly created items. By exploiting the
proposed translation of Java to GTS, we may translate a Java-attributed GTS
to a plain typed GTS by first encoding the attributes as graphs, and then simu-
lating an attributed graph rewriting step as a sequence of typed graph rewriting
steps, where the evaluation of the attributes is performed graphically.

2



On the one hand, the translation just sketched would allow us to explore
the applicability of the above mentioned analysis techniques to Java-attributed
GTSs. On the other hand, we are confident that it will provide a formal ground on
which to address a well-known limitation of the expressive power of attributed
GTSs, namely the fact that graphical items may refer to attributes, but at-
tributes cannot refer back to graphical items. For example, according to the
standard approaches [17], it is not possible to define a graph where a vertex has
as attribute a list of vertices of the graph itself.

The paper is organized as follows. Section 2 introduces the basics of typed
(hyper)graph transformation systems according to the Single-Pushout Approach.
Section 3 presents the fragment of Java that we shall consider, and Section 4
shows how to translate programs written in this fragment into typed GTSs.
Section 5 discusses some design choices underlying the proposed translation and
how do we intend to handle other features of Java, and Section 6 concludes
sketching some subjects of future work.

2 Typed Graph Transformation Systems

In this section we recall the definition of graph transformation systems (GTSs)
according to the Single-Pushout (SPO) approach [18, 8]. However, it is worth
stressing that we could have used equivalently other approaches, like for example
the Double-Pushout approach: in fact, for the kind of graphs and rules generated
by the translation of Java to GTSs, the two approaches are equivalent.

We shall define GTSs over (typed) hypergraphs, i.e., graphs where edges can
be connected to any (finite) number of vertices. Graphically, an edge is depicted
as a box (whose shape may vary), and the connections to the vertices are drawn
as thin lines, called tentacles. Usually the tentacles of an edge are labeled by
natural numbers: here we propose a slightly more general definition, allowing us
to label tentacles with labels taken from a fixed set (see Figure 2).

The definition of the SPO approach is based on a category of graphs and
partial morphisms.

Definition 1 (weak commutativity). Given two partial functions f, f ′ : A →
B, we say that f is less defined than f ′ (and we write f ≤ f ′) if dom(f) ⊆
dom(f ′) and f(x) = f ′(x) for all x ∈ dom(f). Given two partial functions
f : A → B and f ′ : A′ → B′, and two total functions a : A→ A′ and b : B → B′,
we say that the resulting diagram commutes weakly if b ◦ f ≤ f ′ ◦ a.

Now we introduce hypergraphs and partial morphisms. Each hyperedge is
associated to a finite, labeled set of vertices (formally, to a partial function from
a fixed set of labels to vertices). This definition makes use of a labeling functor,
defined as follows: Let L be a set of labels. The labeling functor IL : SetP →
SetP maps each set V ∈ |SetP | to the set of L-labeled sets over V (i.e., to
the set of partial functions L → V ), and each partial function f : V → V ′ ∈
MorSetP (V, V ′) to the function IL(f), defined for all l : L → V ∈ IL(V ) as
IL(f)(l) = f ◦ l.

3



Definition 2 ((hyper)graph, (hyper)graph morphism). A (hyper) graph
G = (VG, EG, cG) over a set of labels L consists of a set of vertices VG, a set of
(hyper)edges EG, and a total connection function cG : EG → IL(VG), assigning
a finite L-labeled set of vertices to each edge.4

A (partial) graph morphism g : G → H is a pair of
partial functions gV : VG → VH and gE : EG → EH

which are weakly homomorphic, i.e., IL(gV ) ◦ cG ≥
cH ◦gE (if an edge is mapped, the corresponding vertices,
if mapped, must have the same labels). A morphism is
called total if both components are total. The category
of hypergraphs and partial hypergraph morphisms is de-
noted by HGraphP (identities and composition are de-
fined componentwise).

EG EH

IL(VG) IL(VH)

gE
//

_

cG

²²

_

cH

²²

IL(gV )
//

≥

To distinguish different kinds of vertices and edges, we will use the notion
of typed hypergraphs, analogous to typed graphs [5, 16]: every hypergraph is
equipped with a morphism type to a fixed graph of types.5

Definition 3 (typed hypergraphs). Let TG be a fixed graph called the graph
of types. A typed hypergraph over TG is a pair HGTG = (HG, typeHG)
where HG is a hypergraph called instance graph and typeHG : HG → TG is
a total hypergraph morphism, called the typing morphism.

A morphism between typed hypergraphs HGTG
1 and HGTG

2 is a partial graph
morphism f : HG1 → HG2 such that typeHG1 ≥ typeHG2 ◦ f . The category
of hypergraphs typed over a graph of types TG, denoted by THGraphP(TG),
has hypergraphs over TG as objects and morphisms between typed hypergraphs as
arrows (identities and composition are the identities and composition of partial
graph morphisms).

Definition 4 (graph transformation systems). Given a graph of types TG,
a rule r : L → R is a partial injective graph morphism in THGraphP(TG)
such that 1) L and R are finite, 2) L has no isolated vertices, 3) r is total on
the vertices of L (i.e., vertices are preserved), 4) r is not defined on at least one
edge in L (i.e., the rule is consuming). A graph transformation system is a
pair G = (TG,Rules) where TG is the graph of types and Rules is a set of rules
over TG.

Conditions 3) and 4), as well as the injectivity of rules, are required by the
unfolding constructions or by the analysis techniques based on them (see [4, 2])
that we intend to apply to our systems. Condition 2) guarantees that vertices
that become isolated have no influence on further rewriting. Thus one can safely
assume that isolated vertices are removed by some kind of garbage collection,
mitigating condition 3).

4 Intuitively, for each edge e ∈ EG, the partial function c
G(e) : L → VG is defined on

a label a ∈ L iff e has a tentacle labeled a pointing to vertex c
G(e)(a).

5 Note that, due to the use of partial morphisms, this is not just a comma category
construction: the morphism type is total whereas morphisms among graphs are par-
tial, and we need weak commutativity instead of commutativity.

4



Definition 5 (derivation step, derivation). Let G = (TG,Rules) be a GTS,
r : L → R ∈ Rules be a rule, and G1 be a graph typed over TG. A match for
r in G1 is a total morphism m : L → G1 in THGraphP(TG). A deriva-

tion step G1
r,m
=⇒ G2 using rule r and match m is a pushout in the category

THGraphP(TG).

L R

G1 G2

r
//

_

m

²²

m′

²²

r′

//

(PO)

A derivation sequence of G is a sequence of derivation steps

Gi
ri,mi

=⇒ Gi+1, i ∈ {0, . . . , n}, n ∈ IlN, where ri ∈ Rules for all
i ∈ {0, . . . , n}.

3 Java

Java [11] is a general-purpose object-oriented programming language designed
to be highly portable and to ease the deployment of programs in distributed
settings. Therefore the choice of a run-time environment based on interpretation
(the Java Virtual Machine) and allowing for dynamic class loading from remote
code bases. Garbage collection is also supported by the run-time environment.
Java supports multi-threading as well as a synchronization mechanism close to
Monitors. Altogether, the characteristics of Java led many developers to adhere
to the language and currently a rich set of Java libraries can be found for the
most different application areas.

In the following we present the BNF syntax of the fragment of Java considered
in this paper and next a corresponding example of Java code. The fragment
includes operators on the primitive data types char, int and boolean, class
declarations, assignments, conditional statements, (static or instance) method
invocations with parameter passing and value returning, and construction of
new objects.

Declaration ::= Modifier class Id { ClassBody } | ;

Modifier ::= static | public | private | ε

ClassBody ::= Modifier ClassMember ClassBody | ; | ε

ClassMember ::= MethodDeclaration | ConstructorDeclaration | VarDeclaration
MethodDeclaration ::= MType Id ( ParameterList ) { Block }
MType ::= void | Type
ConstructorDeclaration ::= Id ( ParameterList ) { Block }
VarDeclaration ::= Type VarDeclarationList ;
VarDeclarationList ::= Id VarInitializer | VarDeclarationList , Id VarInitializer
VarInitializer ::= = Expression | ε

ParameterList ::= Type Id ParameterRest | ε

ParameterRest ::= , Type Id ParameterRest | ε

Block ::= BlockStatement Block | ε

BlockStatement ::= VarDeclaration | Statement
Statement ::= StatementExp | { Block } | if ( Expression ) Statement |

if ( Expression ) Statement else Statement | return Expression ; | ;

5



StatementExp ::= Assignment | MethodInvocation | NewExpression |
this ( ArgumentList )

Assignment ::= QualifiedId = Expression | FieldAccess = Expression
FieldAccess ::= Primary . Id
Primary ::= FieldAccess | MethodInvocation | newExpression | ( Expression )

| this | Literal | null
Expression ::= Assignment | Expression InfixOp Expression | PrefixOp Expression

| QualifiedId | Primary
MethodInvocation ::= Id ( ArgumentList ) | Primary . Id ( ArgumentList )
NewExpression ::= new Id ( ArgumentList )
InfixOp ::= || | && | == | != | < | > | + | - | * | /

PrefixOp ::= ! | + | -

ArgumentList ::= Expression ArgumentRest | ε

ArgumentRest ::= , Expression ArgumentRest | ε

Literal ::= Integer | Character | true | false

Type ::= QualifiedId | BasicType
BasicType ::= char | int | boolean

QualifiedId ::= Id Qualification
Qualification ::= . Id Qualification | ε

We call a Java declaration a set JSpec of Java class declarations written in
the above fragment of the language, closed under definitions (i.e., every class
referred to by a class in JSpec is in JSpec as well), correct with respect to
syntax and static semantics (i.e., the definitions compile safely), and satisfying
some additional requirements described next.

Without loss of generality, we assume that all (static or instance) variables of
the classes in JSpec are declared as private, (read/write access to a variable x
can be provided by the standard accessor methods getX/setX); that no variable
is accessed using the dot-notation “class.var” or “obj.var”,6 unless obj is
this; and that all local variables of methods are initialized (possibly with the
standard default value) at declaration time.

Figure 1 shows a sample Java declaration satisfying the above constraints.

4 Translating Java to GTSs

We present here the translation of Java declarations, as defined in the previous
section, into graph transformation rules. A Java declaration JSpec is translated
into a graph of types and a set of typed rules that specify the (potential) behavior
of the program. The graphs which are rewritten represent aspects related to both
the data structures and the control of the program under execution.

In the graph modeling the current state of a computation every available data
element is represented explicitly, including objects, variables, constant values
of basic data types, and also the classes of JSpec, which are needed to handle
static variables and methods. Each such data element is represented graphically
by a vertex (its identity, typed with the corresponding Java data type) and by an

6 This last assumption is necessary even if all variables are private.

6



public class LinkedList List {

private ListNode first;

private ListNode last;

public ListNode getFirst() {

return first;}

public ListNode getLast() {

return last;}

public void setFirst(ListNode f) {

first=f;}

public void setLast(ListNode l) {

last=l;}

public LinkedList( ) {

first = last = null; }

public boolean isEmpty( ) {

return first == null; }

public void clear( ) {

first = last = null; }

public boolean add( Person x ) {

if ( isEmpty() ) first = last = new ListNode( x );

else { last.setNext(new ListNode( x ));

last = last.getNext(); }

return true; }

public boolean remove( ) {

if ( isEmpty() ) return false;

else { first = first.getNext();

return true; } }

}

public class ListNode {

private Person element;

private ListNode next;

public Person getElement() {

return element;}

public ListNode getNext() {

return next;}

public void setElement(Person e) {

element = e;}

public void setNext(ListNode n) {

next = n;}

public ListNode(Person element) {

this( element, null ); }

public ListNode(Person element, ListNode next ) {

this.element = element;

this.next = next; }

}

public class Person {

private int identifier;

public int getIdentifier() {

return identifier;}

public void setIdentifier(int n) {

identifier = n;}

public Person(int identifier) {

this.identifier = identifier; }

}

Fig. 1. Example of Java Declaration.

edge carrying the relevant information, connected to the identity with a tentacle
labeled by val (for constants) or id (for all other cases). Such edges may have
additional tentacles: for example, the edge representing a class (depicted as a
double box) has one tentacle for each static variable of the class; an edge
representing a class instance has one tentacle for each instance variable of the
class; an edge representing a variable has a val tentacle pointing to the (identity
node of the) current value of the variable.7

The control operators are also represented as hyperedges, and they are con-
nected through suitable tentacles to all the data they act upon. Their operational
behavior is specified by rules. The rules are divided in two kinds:

– Basic rules: These rules are common to all Java programs, and specify the
operational meaning of the various (functional and control) operators of the
language, including operators on primitive data types, like arithmetic and
relational ones; assignment and new operators; if and if-else control struc-
tures; return statement; get and set operators for accessing local variables;
and rules for handling value indirections (val edges).

– Program specific rules: These rules encode the methods and construc-
tors of the classes in JSpec. For each method and constructor declaration

7 Technically, when restricted to the data part, the graphs we are considering are term
graphs [20].

7



in JSpec there is one rule, where the left-hand side encodes the method
or constructor call and the right-hand side encodes the whole body of the
method.

Conceptually, the execution of a method call is modeled by a derivation sequence
where the first rule (a program specific one) replaces the method invocation edge
by a graph that encodes the body of the method, and next the control edges in
the body are evaluated sequentially using the corresponding rules. In order to
guarantee that statements are evaluated in the same order as in the Java Virtual
Machine, we supply every control edge with two additional tentacles (labeled in

and out) and we use a unique GO hyperedge system-wide, acting as a token, to
enforce sequential execution. In fact, every rule consumes the GO token connected
to the in-vertex of the control edge (thus the rule cannot be applied if the token
is not present), and generates the token again to the out-vertex.

For a given Java declaration JSpec, the following definition describes the
graph of types TG(JSpec) obtained from the translation.

Definition 6 (graph of types of a Java declaration). Let JSpec be a Java
declaration. The graph of types TG(JSpec) = (V,E, c) associated to JSpec is
the hypergraph defined as follows:

• V = BDT∪CT∪{◦}, where BDT = {t | t is a basic data type used in JSpec},
CT = {c | c is a class name in JSpec}. Thus there is one vertex for each
data type in JSpec, and an additional vertex “◦” which is the type of all
control vertices.

• E = { GO , if , +b , −b , ∗ , / , < , > , || , && , +u ,

−u , ! } ∪ CH ∪ BH ∪ CTE, where

- subscripts b and u stand for “binary” and “unary”;

- CH = { C , C , nullC , newC , 〈init〉Cp thisC

| C is a class in JSpec} ∪ { mC
p | m is a (static or instance) method

in C with parameter type list p} ∪ { 〈init〉Cp | there is a constructor with

parameter type list p in C, or C has no constructors and p is the empty
list};

- BH = { vart , gett , sett , returnt , valt , ==t , ! =t | t is

a basic data type or a class in JSpec};

- CTE = { ctet | cte is a constant of a basic data type t in JSpec}.

• The set of tentacle labels L is defined as L = {g, exp, in, out, out T, out F,
left, right, result, val, id, target, return, value}∪NAT∪PAR, where
NAT = {at | at is a (static or instance) variable name of a class C ∈ CH}
and PAR = {i | i ∈ N ∧ 0 < i ≤ n, where n is the maximum number of
formal parameters of any method or constructor in JSpec}.

• The connection function c : E → (L → V ) is defined as follows, where for
each edge e ∈ E the graph of the partial function c(e) : L → V is shown:

8



- c( GO ) = {(g, ◦)};

- c( if ) = {(exp, boolean), (in, ◦), (out T, ◦), (out F, ◦)};

- ∀op ∈ { +b , −b , ∗ , / } . c(op) = {(left, int), (right, int), (result, int)};

- ∀op ∈ { > , < } . c(op) = {(left, int), (right, int), (result, boolean)};

- ∀op ∈ { || , && } . c(op) = {(left, boolean), (right, boolean), (result, boolean)};

- c( ! ) = {(right, boolean), (result, boolean)};

- c( C ) = {(at1, t1), . . . , (atn, tn), (id, C)}, where n is the total number

of static variables in C, and, for each 0 < i ≤ n, ati is a static variable
name in C and ti ∈ BDT ∪ CT is its type;

- c( C ) = {(at1, t1), . . . , (atn, tn), (id, C)}, where n is the total number
of instance variables in C, and, for each 0 < i ≤ n, ati is a instance
variable name in C and ti ∈ BDT ∪ CT is its type;

- c( nullC ) = {(val, C)};

- c( mC
p ) = {(1, t1), . . . , (n, tn), (target, C), (in, ◦), (out, ◦)} ∪ RETm,

where [t1, . . . , tn] is exactly the parameter type list p of method m, and if
the type t of method m is different from void, then RETm = {(return, t)}
else RETm = ∅;

- c( newC ) = {(target, C), (return, C), (in, ◦), (out, ◦)};

- c( 〈init〉Cp ) = {(1, t1), . . . , (n, tn), (target, C), (in, ◦), (out, ◦)}, where [t1, . . . , tn]

is the parameter type list p of the constructor;

- c( thisC ) = {(target, C), (result, C), (in, ◦), (out, ◦)};

- c( vart ) = {(id, t), (val, t)};

- c( gett ) = {(target, t), (result, t), (in, ◦), (out, ◦)};

- c( sett ) = {(target, t), (value, t), (result, t), (in, ◦), (out, ◦)};

- c( returnt ) = {(value, t), (result, t), (in, ◦), (out, ◦)};

- c( valt ) = {(return, t), (value, t)};

- c( ==t ) = {(right, t), (left, t), (result, boolean), (in, ◦), (out, ◦)};

- c( ! =t ) = {(right, t), (left, t), (result, boolean), (in, ◦), (out, ◦)};

- c( ctet ) = {(id, t)}.

For each class C ∈ JSpec, the edge labeled C represents the class itself,

providing access to its static variables: it is assumed to be unique in any legal
graph representing an execution state of a Java program, and it will be the target
of all static method invocation, as well as of the new operator. The edges labeled

C represent instead instances of C, each connected to its private copy of the
instance variables of C.

Concerning the rules obtained by the translation, many of the basic rules
for the Java operators in the sub-language we consider are shown in Figure 2.

9



return

value

1

GO
g

1

2

2

3

var

id

val

 valout      get

result
1

2

ing
target

1

2

var

id

val
3

GO

get
 val

val

value

return
1

var

2

id

34

GO 1

2
g

2

in

out      set

value

4

target
result

g

var

2

id

val

3

1

1
GO

set

: boolean

 true

id

g
2

3

GO

1out_Fout_T
     if

exp 13

in
2

g

: boolean

 true

id

GO

If_true 3

2

: boolean

 false

id

GO

1

g

out_F
exp

out_T
     if

3 1

in
2

g

: boolean

 false

id

GO

If_false

GO
 val

1

2

return

value

1

2

g

2

1

inGO

out   return

1

value

2

resultg
return

GO
in

1
out

2

result
3

left right

g

2

   Y

1 : Type

   X

id id

: Type

: Type

BinOper

GO
g

1

2

  val

4
id
: Type

X BinOper Y

4
id
: Type

3

2

   Y

1 : Type

   X

id id

: Type

: Type
return

value

X BinOper Y

BinOper

GO

   X

id

in

1
out

2

1g

right

2

 UnOper

result

: Type

: Type

GO
g   val

1

2

2

   X

id

: Type

1
: Type

value

3 : Type

return

id

UnOper X

3
id

: Type

UnOper X

UnOper

3 : boolean

  true

id
: Type

GO
g

: Type
3 : boolean

  true

id

  val

1

2

1 : boolean

2

value

returninGO
g

1
out

2

result
1

     ==

: boolean

left right

2

Equal_T

GO 3 : boolean

1 Const  Const2

: boolean4
id

 false 1 Const  Const2

1 2: Type : Type
id id

: boolean4
id

 false

GO
g

1

2

  val

: boolean3

value

return

in

1
out

2

right

1 2

left

: Type

     ==

: Type
id id

g
result

Equal_F

GO
     ==

3 : boolean
result

iVar 1

iVar n

iVar 1

iVar n

id

  C
. . .

: C: C 21
id

  C
. . .

 false
id
: boolean

4

GO
g

1

2

  val

iVar 1

iVar n

iVar 1

iVar n

id

  C
. . .

: C: C 21
id

  C
. . .

ing

out
2

1
EqObjF

left right

 false
id
: boolean

4

: boolean
3 return

value

1
: Class

result

GO

a1: Type an: Type

iVar 1 iVar n

a1: Type an: Type

iVar 1 iVar n

: Class1
return

 Val
value

GO
g

1

2

2
id

. . .

: Class

Class

54

this1

2

in

out

g

target

2
id

. . .

: Class

Class

54

this

1iVar iVarn
GO

1iVar

GO

iVarn

Class

. . .

1

2 3

: Class

id

n: Type1: Type

1

2

gtarget

2

1

out

in

Class

. . .
2 3

: Class

id

n: Type1: Type

1

g

init

init

in

1
out

2

left right

g

32

GO
BinOper

: Type : Type

result

id id

: Type4

1 : Typer

const  val

in

1
out

2

left right

g

32

GO
BinOper

: Type : Type

result

id id

: Type4

1 : Typer

const  val

BOp_ValL

in

1
out

2
 UnOper

result
g 1 : Type

2 : Type

: Type3

  val

GO

return

value

right

in

1
out

2
 UnOper

result
g 1 : Type

right

2 : Type

: Type3

  val

GO

return

value

UOp_Val

n. . .

Class

4 3

stVar 1 stVar

2 id

val
GO

1
1

return

id

2
target

result

1

    new

. . .

id

Class

2

34

in

out

1

2

GO

g

stVar 1 stVar n

new

value

id

DefaultConst DefaultConst

id

Class

. . .
idid

iVar 1 iVar m

 var  var
val val

g

Fig. 2. Basic Rules

10



Several of such rules actually are rule schemata, and represent the (finite, even if
large) collection of all their instances. Some of the rules, including those handling
the equality operator and the val edges, are discussed in Section 5.

As far as the program specific rule r : L → R encoding a method (or
constructor) of the Java declaration is concerned, it is obtained as follows:

– the left-hand side L is the translation of the method invocation (see Figure
3(d) for a static method invocation);

– the right-hand side R is obtained by translating the body of the method;
this translation is obtained by replacing every Java statement in the method
body by a corresponding graph – as shown informally in Figure 3 – and
connecting such (sub)graphs sequentially using the control tentacles;

– the partial morphism r preserves all the items of its source, but for the edge
representing the method being called.

Figure 4 shows some of the rules resulting from the translation of the Java
declaration of Figure 1. Currently, such translation is defined in a precise but
informal way. We intend to formalize it using, for example, pair grammars [21].

5 Some considerations about the proposed translation

In this section we first discuss the design choices underlying some of the rules
presented in the previous section. Next we describe the way we intend to extend
our translation to a larger fragment of Java.

Handling of val edges. To model the fact that an expression returns a value, we
included a special indirection edge, labeled with val, linking the vertex where
the result should be placed to the identity of the result value (see for example, in
Figure 2, the rules get, which makes the value of the target variable accessible
at vertex 1 of the left-hand side, and set, which implements an assignment
by changing the value of the target variable and returning the assigned value).
In order to get rid of the val edges, which is necessary because otherwise the
execution cannot proceed, we need to add for each operator edge and for each
tentacle through which the operator may access a data value, an auxiliary rule
that allows to bypass any val edge connected to that tentacle. Rule schemata
BOp ValL and UOp Val of Figure 2 show the shape of such auxiliary rules.

It is worth noting that the simpler solution of adding a single non-injective
rule with a val edge in the left-hand side and a single node in the right-hand
side (thus the rule would consume the edge, “merging” the two nodes connected
to it), would not be legal according to Definition 4.

Handling of the equality operator “==”. Rule Equal T of Figure 2 shows that “==”
is interpreted as reference identity, and this both for reference types (classes) and
for basic data types. The correctness of this rule is ensured by assuming (as in
[14]) that all constants of basic data types are present in the start graph, and that
they are preserved by all rules. Such an assumption allows to deal with values
of all data types uniformly at the graphical level (that is, using non-attributed

11



id

target
    new

result

. . .

: Class

: Class

n         iVar

an: Typea1: Type
1         iVar

Class

pk
out in

init

out

in

. . .

target

: Type

k

p1: Type

GO g

1

targetout

ing
GO

this

: Class

result

id

. . .

: Class

n

an: Typea1: Type
1         iVar

Class

         iVar

g
GO

init

. . .

target

pk: Typep1: Type

out

in

id

. . .

: Class

n

an: Typea1: Type
1

Class

k

         iVar          iVar

1

: Type

: Type

exp

target
     set

result
out

out

in

Expression
in

: Type

: Type

var

val

id

return
1: Type

pk: Type

k

Expression

p1: Type

1Expression k

. . .

. . .

target
out

in

out
in

. . .
out in

Class

. . .

id

a1: Type

n

an: Type

2: Type

1

GO
g

1

  method

iVar iVar

Class

. . .

a1: Type

niVar

an: Type

1iVar

result

: Type

target
in

ax

id
1: Type

g
GO

x getIVarout

: Type

Const

val

obj.getVar()x(a) [left] Get value of identifier expression:
[right] Constant expression

),...,obj.method( Expression Expressionk1

Expressionx = 

k1new Class(x ,...,x )
(b) [left] Assign expression:

     [right] Method call expression:                
     [center] new expression:                

var

: Type

: Type

id

val
out

Statement

in

StatementList

  GO

g

in

out

: Type

value

: Type

result

  return

out

in

out in

g

Expression

  GO

GO
1: Type

pk: Typep1: Type

1Par kPar. . .

a1: Type an: Type

. . .

2: Type

in

out
target

g

  method

return

id

Class

1iVar iVar n

: boolean

     if

exp

in

out_Fout_T

outout

in in

out

Expression
in

2Statement1Statement

  GO

g

: boolean

     if

exp

in

out_T

out

in

out

out_F

Expression

Statement

in

  GO

g

Expression  Statementif(           )          

(d) LHS method call translation.

[right] if statement:
 StatementExpressionif(           )           else1  Statement2

(e) [left] Variable declaration
[center] return statement:   
[right] Statement list: 

return Expression

Statement;StatementList

(f) [left] if−else statement:

this(x ,...,x )1 k

(c) [left] this expression

    [right] this method call expression:

Fig. 3. Translation schema for Java statements.

12



return
1 : boolean

result

target
add : Person

3
id

LinkedList

4 : ListNode

5

val

id

first

: ListNode : ListNode

: ListNode

var

7

6
id

last

val

: Person2

1

element

n

element

value

result
target

     set

target

ListNode

ListNode

id

target
ListNode

result
target

3
id

LinkedList

4

5

val

first

7

6

last

val

target

id

target
result

target

in

out

in

out

in

out

in

return

out

in

out

in out

value

target
     set

result

value out

in

out

in

out

out
in

target

in

out

in

target
return

getLast

setNext

new

target
return

in

out

in

out_F out_T

exp

target
isEmpty

return

2

g

GO

in

out

value

result

val

true

1
12

id

  return

getNext

getLast

      if

1 in

out

2
g

GO

Add

var

var var

     set

new

1
: Person

return

GO

GO

g

3

1

2

1
: Person

2
id

3

Person

: int
identifier

target : Person

var

4

val

id

1 in

out

2
g

value

2
id

Person

: int
identifier

: Person

var

val

id

result

4

target

3in

out

in

out

result

4

getIdentifier
  return

     get

GetIdentifier

1

: int1

1

2

: int1

GO

: Persontarget
2

id

3

Person

: int

var

4

val

id

identifier
result

target
     set

out

in

setIdentifierin

g

2

1 out
: Person

2
id

3

Person

: int
identifier

var

val

id

4

g

GO

SetIdentifier

Fig. 4. The rules obtained from the translation of some instance methods of the
Java declaration of Figure 1, namely add(Person x) of class LinkedList, and
getIdentifier() and setIdentifier(int n) of class Person.

13



graphs), at the price of making the size of the graphs practically unmanageable.
Notice also that Equal F is a schema that represents one such rule for each pair
of distinct constants Const1 and Const2 of basic data types.

As a topic of further research, we intend to explore a different encoding
making use of attributed graphs, where only values of basic data types would
be allowed as attributes, and where equality on basic data types (as well as the
other predefined operators) would be evaluated in a suitable algebra. This would
reduce drastically the size of graphs as well as the number of rules, still having
at our disposal a rich theory, thanks to the recent results presented in [9] which
extend to attributed GTSs many classical results of typed GTSs.

Rule EqualObjF, states that “==” returns false if applied to two distinct
instances of a given class. But such a rule could be applied, using a non-injective
match, also to a match of rule Equal T, leading to an incorrect result. There
are several ways to fix this problem and to ensure correctness: (1) we could
require that all matches are injective (actually, edge-injectivity would suffice);
(2) we could establish a priority between rules Equal T and EqualObjF; or, (3)
we could use GTSs with negative application conditions. Both solutions (1) and
(3) have a solid thoretical background (see [13, 12]), but we still have to study in
depth how the various solutions affect the applicability of the analysis techniques
we are interested in.

Iterative statements. The fragment of Java we considered does not include any
kind of loops (while, for or do-while statements), which nevertheless can be
simulated by recursive method invocations: these are in general computationally
more expensive, but efficiency considerations go beyond the scope of this paper.
It is quite evident that iterative statements cannot be handled like the other
operators with a fixed set of basic rules. In fact, with the proposed rules, the
edge representing an operator is deleted when the operator is evaluated, and thus
it cannot be evaluated more than once. Instead, each iterative statement could
be represented by a distinct edge, with a corresponding rule replacing that edge
with the body of the statement: a solution basically equivalent to a recursive
method invocation.

We started investigating how to extend the proposed translation to several
other features of Java. Arrays could be modeled by adding ARRAY edges with
the desired arity(ies), and corresponding rules for getting and setting the array
element values. However, the most naive solution is not satisfactory, as it re-
quires one copy of such rules for each legal index. Multi-threading could be
modelled within our setting by adding multiple GO edges to create different ex-
ecution threads (synchronization mechanisms would also map to corresponding
manipulations of GO edges – for instance, the notion of “join” could be mapped
to the use of counters and elimination of some GO edges until a next command
should be executed). Concerning inheritance, we are investigating the use of
var edges to model sub-class relations (a related approach has been proposed in
[19]). The idea consists of adding to the graph of types one var edge for each
pair of classes related by inheritance: this would allow to model the fact that

14



a variable of type Class1 can store objects of class Class2 if Class2 extends
Class1.

6 Conclusion and Future Work

In this paper we presented a translation of a fragment of the Java language to
typed Graph Transformation Systems. The idea was to encode values of data
types as well as Java control structures graphically, and to use rules to simulate
the execution of Java programs.

The proposed translation is to be considered as a first contribution of a long-
term research activity, and there are several topics for further work.

Besides addressing the translation of other features of Java, as sketched in
the previous section, we intend to investigate the encoding of a relevant part
of the Java Virtual Machine, for example following the approach taken in [25],
and to explore how far a graphical specification method based on GTSs could
compete with the approach based on Abstract State Machines. Modelling the
JVM would be the natural way to address certain aspects of the language that
we deliberately ignored here, including, for example, dynamic class loading and
garbage collection.

In particular, the handling of garbage has a direct impact on the applicabil-
ity of the analysis techniques developed for GTSs. Notice that besides the usual
data garbage including the objects that are not reachable anymore, since we
also represent graphically the control structures, our graphs may include control
garbage, for example the control structures belonging to branches of computa-
tions which are not executed. A direction we are investigating is to get rid of
garbage in the analysis phase at an abstract level. More precisely, let us mention
that the analysis technique proposed in [2] applies to GTSs that are finite-state
up to isolated nodes. In the same vein, we would like to deal with graphs encoding
Java computational states up to garbage.

Acknowledgement We would like to thank the anonymous referees for their
detailed comments and constructive suggestions.

References

1. The AGG website. http://tfs.cs.tu-berlin.de/agg.
2. P. Baldan, A. Corradini, and B. König. Verifying Finite-State Graph Grammars: an

Unfolding-Based Approach. In Proc. of CONCUR’04. Springer, 2004. To appear.
3. P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure Se-

mantics for Graph Grammars. In Proc. of FoSSaCS’99, volume 1578 of LNCS,
pages 73–89. Springer, 1999.

4. P. Baldan and B. König. Approximating the behaviour of graph transformation
systems. In Proc. of ICGT’02, volume 2505 of LNCS, pages 14–29. Springer, 2002.

5. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-

maticae, 26:241–265, 1996.

15



6. F. Dotti and L. Ribeiro. Specification of mobile code systems using graph gram-
mars. In Formal Methods for Open Object-based Systems IV, pages 45–64. Kluwer
Academic Publishers, 2000.

7. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of

Graph Grammars and Computing by Graph Transformation. Vol. 2: Applications,

Languages, and Tools. World Scientific, 1999.
8. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.

Algebraic Approaches to Graph Transformation II: Single Pushout Approach and
comparison with Double Pushout Approach. In Rozenberg [24].

9. H. Ehrig, U. Prange, and G. Taentzer. Fundamental Theory for Typed Attributed
Graph Transformation. In Proc. of ICGT’04, LNCS. Springer, 2004. This volume.

10. F. Gadducci and U. Montanari. A Concurrent Graph Semantics for Mobile Ambi-
ents. In Proc. of MFPS’01, volume 45 of ENTCS. Elsevier Science, 2001.

11. J. Gosling, B. Joy, Steele G., and G. Bracha. The Java Language Specification.

2nd Edition. Sun Microsystems, Inc., 2000. http://java.sun.com/docs/books/jls/.
12. A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application

conditions. Fundamenta Informaticae, 26(3/4):287–313, 1996.
13. A. Habel, J. Müller, and D. Plump. Double-Pushout Graph Transformation Re-

visited. Mathematical Structures in Computer Science, 11(5):637–688, 2001.
14. R. Heckel, J.M. Küster, and G. Taentzer. Confluence of Typed Attributed Graph

Transformation Systems. In Proc. of ICGT’02, volume 2505 of LNCS, pages 161–
176. Springer, 2002.

15. D. Janssens and G. Rozenberg. Actor grammars. Mathematical Systems Theory,
22:75–107, 1989.

16. Martin Korff. True Concurrency Semantics for Single Pushout Graph Transforma-
tions with Applications to Actor Systems. In Proc. of IS-CORE’94, pages 33–50.
World Scientific, 1995.

17. M. Löwe, M. Korff, and A. Wagner. An algebraic framework for the transformation
of attributed graphs. In Term Graph Rewriting: Theory and Practice, pages 185–
199. John Wiley, 1993.

18. Michael Löwe. Algebraic approach to single-pushout graph transformation. Theo-
retical Computer Science, 109:181–224, 1993.

19. A.P. Lüdtke Ferreira and L. Ribeiro. Towards Object-Oriented Graphs and Gram-
mars. In Procs. FMOODS’03, volume 2884 of LNCS, pages 16–31. Springer, 2003.

20. Detlef Plump. Term graph rewriting. In Ehrig et al. [7], chapter 1, pages 3–62.
21. Terrence W. Pratt. Pair Grammars, Graph Languages and String-to-Graph Trans-

lations. Journal of Computer and System Sciences, 6:560–59, 1971.
22. Terrence W. Pratt. Definition of Programming Language Semantics using Gram-

mars for Hierarchical Graphs. In Proc. 1st Int. Workshop on Graph-Grammars

and Their Application to Computer Science and Biology, volume 73 of LNCS,
pages 389–400. Springer, 1979.

23. Leila Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.
PhD thesis, Technische Universität Berlin, 1996.

24. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by

Graph Transformation. Vol. 1: Foundations. World Scientific, 1997.
25. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine: Definition,

Verification, Validation. Springer, 2001.
26. A. Wagner and M. Gogolla. Defining Operational Behaviour of Object Specifica-

tions by Attributed Graph Transformations. Fundamenta Informaticae, 26:407–
431, 1996.

16


