
Principles	of	Programming	Languages	
h"p://www.di.unipi.it/~andrea/Dida2ca/PLP-16/	

Prof.	Andrea	Corradini	
Department	of	Computer	Science,	Pisa	

•  Control	Flow	
–  Iterators	
– Recursion	
– Con>nua>ons	

Lesson 25!

1	

Iterators	
•  Containers	(collec.ons)	are	aggregates	of	homogeneous	

data,	which	may	have	various	(topo)logical	proper>es	
–  Eg:	arrays,	sets,	bags,	lists,	trees,…				

•  Common	opera>ons	on	containers	require	to	iterate	on	
(all	of)	its	elements	
–  Eg:	search,	print,	map,	…	

•  Iterators	provide	an	abstrac>on	for	itera>ng	on	
containers,	through	a	sequen>al	access	to	all	their	
elements	

•  Iterator	objects	are	also	called	enumerators	or	
generators	

2	

Iterators	in	Java	
•  Iterators	are	supported	in	the	Java	Collec>on	Framework:	interface	

Iterator<T>!
•  They	exploit	generics	(as	collec>ons	do)	
•  Iterators	are	usually	defined	as	nested	classes	(non-sta.c	private	

member	classes):	each	iterator	instance	is	associated	with	an	
instance	of	the	collec>on	class	

•  Collec>ons	equipped	with	iterators	have	to	implement	the	
Iterable<T> interface	

3	

class BinTree<T> implements Iterable<T> {
 BinTree<T> left;
 BinTree<T> right;
 T val;
 ...
 // other methods: insert, delete, lookup, ...
 public Iterator<T> iterator() {
 return new TreeIterator(this);
 }	

4	

class BinTree<T> implements Iterable<T> {
 …
 private class TreeIterator implements Iterator<T> {
 private Stack<BinTree<T>> s = new Stack<BinTree<T>>();
 TreeIterator(BinTree<T> n) {
 if (n.val != null) s.push(n);
 }
 public boolean hasNext() {
 return !s.empty();
 }
 public T next() { //preorder traversal
 if (!hasNext()) throw new NoSuchElementException();
 BinTree<T> n = s.pop();
 if (n.right != null) s.push(n.right);
 if (n.left != null) s.push(n.left);
 return n.val;
 }
 public void remove() {
 throw new UnsupportedOperationException();
 } }
}

Iterators	in	Java	(cont’d)	

Iterators	in	Java	(cont’d)	
•  Use	of	the	iterator	to	print	all	the	nodes	of	a	BinTree:	

for (Iterator<Integer> it = myBinTree.iterator();

 it.hasNext();)
 { Integer i = it.next();
 System.out.println(i);
 }

•  Java	provides	(since	Java	5.0)	an	enhanced	for	statement	(foreach)	which	exploits	

iterators.	The	above	loop	can	be	wriXen:	

for (Integer i : myBinTree)
 System.out.println(i);

•  In	the	enhanced	for,	myBinTree	must	either	be	an	array	of	integers,	or	it	has	to	

implement	Iterable<Integer>!
•  The	enhanced	for	on	arrays	is	a	bounded	itera<on.		On	an	arbitrary	iterator	it	depends	

on	the	way	it	is	implemented.	

5	

Iterators	in	C++	
•  C++ iterators are associated with a container object and used in loops

similar to pointers and pointer arithmetic
•  They exploit the possibility of overloading primitive operations.

vector<int> V;
…
for (vector<int>::iterator it = V.begin(); it !=
V.end(); ++it)

 cout << *it << endl;

An in-order tree traversal:

tree_node<int> T;
…
for (tree_node<int>::iterator it = T.begin(); it !=
T.end(); ++it)

 cout << *it << endl;

6	

True	Iterators	

•  While Java and C++ use iterator objects that hold
the state of the iterator, Clu, Python, Ruby, and C#
use “true iterators” which are functions that run in
“parallel” (in a separate thread) to the loop code to
produce elements
–  The yield operation in Clu returns control to the loop body
–  The loop returns control to the generator’s last yield

operation to allow it to compute the value for the next
iteration

–  The loop terminates when the generator function returns

7	

True	Iterators	(cont’d)	

8	

class BinTree:
 def __init__(self): # constructor
 self.data = self.lchild = self.rchild = None
 ...
 # other methods: insert, delete, lookup, ...
 def preorder(self):
 if self.data != None:
 yield self.data
 if self.lchild != None:
 for d in self.lchild.preorder():
 yield d
 if self.rchild != None:
 for d in self.rchild.preorder():

 yield d

•  Generator	func>on	for	pre-order	visit	of	binary	tree	in	Python	
•  Since	Python	is	dynamically	typed,	it	works	automa>cally		
for	different	types	

Iterators	in	some	func>onal	languages	

•  Explo>ng	“in	line”	defini>ons	of	func>ons,	the	body	of	
the	itera>on	can	be	defined	as	a	func>on	having	as	
argument	the	loop	index	

•  Then	the	body	is	passed	as	last	argument	to	the	
iterator	which	is	a	func>on	realising	the	loop	

•  Simple	iterator	in	Scheme	and	sum	of	50	odd	numbers:	

9	

(define uptoby
 (lambda (low high step f)
 (if (<= low high)
 (begin
 (f low)

 (uptoby (+ low step) high step f))
 ’())))

(let ((sum 0))
 (uptoby 1 100 2
 (lambda (i)
 (set! sum (+ sum i))))
 sum)

Recursion
•  Recursion: subroutines that call themselves directly or indirectly

(mutual recursion)
•  Typically used to solve a problem that is defined in terms of simpler

versions, for example:
–  To compute the length of a list, remove the first element, calculate the

length of the remaining list in n, and return n+1
–  Termination condition: if the list is empty, return 0

•  Iteration and recursion are equally powerful in theoretical sense
–  Iteration can be expressed by recursion and vice versa

•  Recursion is more elegant to use to solve a problem that is naturally
recursively defined, such as a tree traversal algorithm

•  Recursion can be less efficient, but most compilers for functional
languages are often able to replace it with iterations

10	

Tail-Recursive	Func>ons	
•  Tail-recursive functions are functions in which no operations follow

the recursive call(s) in the function, thus the function returns
immediately after the recursive call:
 tail-recursive not tail-recursive
 int trfun() int rfun()
 { … { …
 return trfun(); return 1+rfun();
 } }

•  A tail-recursive call could reuse the subroutine's frame on the run-
time stack, since the current subroutine state is no longer needed
–  Simply eliminating the push (and pop) of the next frame will do

•  In addition, we can do more for tail-recursion optimization: the
compiler replaces tail-recursive calls by jumps to the beginning of
the function

11	

Tail-Recursion	Op>miza>on	
•  Consider the GCD function:

 int gcd(int a, int b)
 { if (a==b) return a;
 else if (a>b) return gcd(a-b, b);
 else return gcd(a, b-a);
 }

•  a good compiler will optimize the function into:
 int gcd(int a, int b)
 { start:
 if (a==b) return a;
 else if (a>b) { a = a-b; goto start; }
 else { b = b-a; goto start; }
 }

•  which is just as efficient as the iterative version:
 int gcd(int a, int b)
 { while (a!=b)
 if (a>b) a = a-b;
 else b = b-a;
 return a;
 }

12	

Conver>ng	Recursive	Func>ons	to	Tail-
Recursive	Func>ons	

•  Remove the work after the recursive call and include it in some other
form as a computation that is passed to the recursive call

•  For example, the non-tail-recursive function computing

can be rewritten into a tail-recursive function:

13	

f (n)
n=low

high

∑

summationTR = \(f, low, high, subtotal) ->
 if (low == high)
 then subtotal + (f low)
 else summationTR (f, low + 1, high, subtotal + (f low))

summation = \(f, low, high) ->
 if (low == high) then (f low)
 else (f low) + summation (f, low + 1, high)

Conver>ng	recursion	into		
tail	recursion:	Example	

•  Here is the same example in C:

typedef int (*int_func)(int);

int summation(int_func f, int low, int high)
{ if (low == high)
 return f(low)
 else
 return f(low) + summation(f, low+1, high);
}

•  rewritten into the tail-recursive form:

int summationTR(int_func f, int low, int high, int subtotal)
{ if (low == high)
 return subtotal+f(low)
 else
 return summationTR(f, low+1, high, subtotal+f(low));
}

14	

When	Recursion	is	Bad	
•  The Fibonacci function implemented as a recursive function is very

inefficient as it takes exponential time to compute:

•  with a tail-recursive helper function, we can run it in O(n) time:

15	

fib = \n -> if n == 0 then 1
 else if n == 1 then 1
 else fib (n - 1) + fib (n - 2)

fibTR = \n -> let fibhelper (f1, f2, i) =
 if (n == i) then f2
 else fibhelper (f2, f1 + f2, i + 1)

 in fibhelper(0,1,0)

Con>nua>on-passing	Style	
•  Makes	control	explicit	in	func>onal	programming	

(including	evalua>on	order	of	operands/arguments,	
returning	from	a	func>on,	etc.)	

•  A	con<nua<on	is	a	func>on	represen>ng	“the	rest	of	the	
program”	taking	as	argument	the	current	result	

•  Func>ons	have	an	addi>onal	(last)	argument,	which	is	a	
con>nua>on	

•  Primi>ve	func>ons	have	to	be	encapsulated	in	CPS	ones	

16	

Encapsula>on	of	primi>ve	operators
(*&) x y k = k (x * y)
(+&) x y k = k (x + y)
(==&) x y k = k (x == y)
sqrtK x k = k (sqrt x)

17	

Direct	style:	evalua>on	order	is	implicit

diag x y = sqrt ((x * x) + (y * y))
diag 3 4 ! 5.0

Con<nua<on-passing	style:	evalua>on	order	is	explicit

diagK x y k =
 (*&) x x (\x2 ->
 (*&) y y (\y2 ->
 (+&) x2 y2 (\x2py2 ->

 (sqrtK x2py2 k))))
diagK 3 4 (\x -> x) ! 5.0

•  Func>on	call	arguments	must	be	either		variables	or	lambda	
expressions	(not		more	complex	expressions)	

Making	evalua>on	order	explicit	

18	

Direct	style:	non-tail-recursive	factorial

factorial n = if (n == 0) then 1
 else n * factorial (n – 1)

Con<nua<on-passing	style:	non-tail-recursive	factorial

factorialK n k = (==&) n 0 (\b ->
 if b then (k 1) else
 (-&) n 1 (\nm1 ->
 factorialK nm1 (\f-> ((*&) n f k))))

Non-tail-recursive	func>ons	cause	
con>nua>on	in	recursive	call	to	grow	

19	

Direct	style:	tail-recursive	factorial
factorialTR n = faux n 1
faux n a = if (n == 0) then a
 else faux (n - 1) (n * a) –tail recursive

Con<nua<on-passing	style:	tail-recursive	factorial
factorialTRK n k = fauxTR n 1 k

fauxTR n a k = (==&) n 0 (\b ->
 if b then (k a) else
 (-&) n 1 (\nm1 ->
 (*&) n a (\nta ->
 (fauxTR nm1 nta k))))

Tail-recursive	func>ons:	con>nua>on	
in	recursive	call	is	iden>cal	

On	con>nua>on-passing	style	
•  If	all	func>ons	are	in	CPS,	no	run>me	stack	is	necessary:	all	

invoca>ons	are	tail-calls	
•  The	con>nua>on	can	be	replaced	or	modified	by	a	

func>on,	implemen>ng	almost	arbitrary	control	structures	
(excep>ons,	goto’s,	…)	

•  Con>nua>ons	used	in	denota>onal	seman>cs	for	goto’s	
and	other	control	structure	(eg:	bind	a	label	with	a	
con>nua>on	in	the	environment)	

20	

Con<nua<on-passing	style:	returning	error	to	the	top-level

sqrt n k = if (n < 0) 'error
 else k (safe-sqrt n)

Direct	style:	the	callers	should	propagate	the	error	along	the	stack

