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•  Standard	type	checking:	
							

–  Examine	body	of	each	funcFon																												
– Use	declared	types	to	check	agreement	

•  Type	inference:	

–  Examine	code	without	type	informaFon.	Infer	the	
most	general	types	that	could	have	been	declared.	

int f(int x) { return x+1; }; 
int g(int y) { return f(y+1)*2; }; 

Type	Checking	vs	Type	Inference	

int f(int x) { return x+1; }; 
int g(int y) { return f(y+1)*2; }; 

ML	and	Haskell	are	designed	to	make	type	inference	feasible.	
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Why	study	type	inference?	
•  Types	and	type	checking	
–  Improved	steadily	since	Algol	60	

•  Eliminated	sources	of	unsoundness.	
•  Become	substanFally	more	expressive.	

–  Important	for	modularity,	reliability	and	compilaFon	
•  Type	inference	
–  Reduces	syntacFc	overhead	of	expressive	types.	
– Guaranteed	to	produce	most	general	type.	
– Widely	regarded	as	important	language	innovaFon.	
–  IllustraFve	example	of	a	flow-insensiFve	staFc	
analysis	algorithm.	
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History	
•  Original	type	inference	algorithm		

–  Invented	by	Haskell	Curry	and	Robert	Feys	for	the	simply	typed	
lambda	calculus	in	1958	

•  In	1969,	Hindley	
–  extended	the	algorithm	to	a	richer	language	and	proved	it	
always	produced	the	most	general	type		

•  In	1978,	Milner		
–  independently	developed	equivalent	algorithm,	called	algorithm	
W,	during	his	work	designing	ML.	

•  In	1982,	Damas	proved	the	algorithm	was	complete.	
–  Currently	used	in	many	languages:	ML,	Ada,	Haskell,	C#	3.0,	F#,	
Visual	Basic	.Net	9.0.	Have	been	plans	for	Fortress,	Perl	6,	C+
+0x,…	
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uHaskell	

•  Subset	of	Haskell	to	explain	type	inference.	
– Haskell	and	ML	both	have	overloading	
– Will	do	not	consider	overloading	now	

<decl> ::= <name> <pat>  = <exp> 
<pat>  ::=  Id  | (<pat>, <pat>) | <pat> : <pat> | [] 
<exp>  ::= Int | Bool | [] | Id | (<exp>) 
          | <exp> <op> <exp> 
          | <exp> <exp>  | (<exp>, <exp>) 
          | if <exp> then <exp> else <exp>               
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Type	Inference:	Basic	Idea	

•  Example	

•  What	is	the	type	of	f?	
	+		has	type:	Int		→	Int		→	Int	

	(with	overloading	would	be	Num	a	=>	a	→	a	→	a)	
	2	has	type:	Int	
	Since	we	are	applying	+	to	x	we	need	x	::	Int	
Therefore	f	x	=	2	+	x	has	type	Int	→	Int	

f x = 2 + x 
> f :: Int -> Int 
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Step	1:	Parse	Program	

•  Parse	program	text	to	construct	parse	tree.	

f x = 2 + x 

•  Binary @-nodes to represent 
application


•  Ternary Fun-node for function 
definitions 


•  Infix operators are converted to 
Curried function application during 
parsing: 2 + x   è   (+) 2 x	 7	



Step	2:	Assign	type	variables	to	nodes		

Variables are given same type 
as binding occurrence.	

f x = 2 + x 
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Constraints	from	ApplicaFon	Nodes	

•  FuncFon	applicaFon	(apply	f	to	x)		
–  Type	of	f		(t_0	in	figure)	must	be	domain	→	range.	
– Domain	of	f	must	be	type	of	argument	x		(t_1	in	fig)		
–  Range	of	f	must	be	result	of	applicaFon				(t_2	in	fig)	
–  Constraint:		t_0	=	t_1	->	t_2	

f x  

t_0 = t_1 -> t_2 
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Constraints	from	AbstracFons	

•  FuncFon	declaraFon:	
– Type	of	f	(t_0	in	figure)	must	domain	→	range	
– Domain	is	type	of	abstracted	variable	x	(t_1	in	fig)	
– Range	is	type	of	funcFon	body	e													(t_2	in	fig)	
– Constraint:	t_0	=	t_1	->	t_2	

f x = e 

t_0 = t_1 -> t_2 
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Step	3:	Add	Constraints	

t_0 = t_1 -> t_6 
t_4 = t_1 -> t_6 
t_2 = t_3 -> t_4 
t_2 = Int -> Int -> Int 
t_3 = Int 

f x = 2 + x 
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Step	4:	Solve	Constraints	
t_0 = t_1 -> t_6 
t_4 = t_1 -> t_6 
t_2 = t_3 -> t_4 
t_2 = Int -> Int -> Int 
t_3 = Int 

t_3 -> t_4 = Int -> (Int -> Int) 

t_3 = Int 
t_4 = Int -> Int t_0 = t_1 -> t_6 

t_4 = t_1 -> t_6 
t_4 = Int -> Int 
t_2 = Int -> Int -> Int 
t_3 = Int 

t_1 -> t_6 = Int -> Int 

t_1 = Int 
t_6 = Int 

t_0 = Int -> Int 
t_1 = Int 
t_6 = Int 
t_4 = Int -> Int 
t_2 = Int -> Int -> Int 
t_3 = Int 
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Step	5:	
Determine	type	of	declaraFon	

f x = 2 + x 
> f :: Int -> Int 

t_0 = Int -> Int 
t_1 = Int 
t_6 = Int 
t_4 = Int -> Int 
t_2 = Int -> Int -> Int 
t_3 = Int 
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Type	Inference	Algorithm	

•  Parse	program	to	build	parse	tree	
•  Assign	type	variables	to	nodes	in	tree	
•  Generate	constraints:	
– From	environment:	constants	(2),	built-in	
operators	(+),	known	funcFons	(tail).	

– From	form	of	parse	tree:	e.g.,	applicaFon	and	
abstracFon	nodes.	

•  Solve	constraints	using	unifica,on	
•  Determine	types	of	top-level	declaraFons	
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Inferring	Polymorphic	Types	
f g = g 2 
> f :: (Int -> t_4) -> t_4 •  Example:	

•  Step	1:																																																															
Build	Parse	Tree	
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Inferring	Polymorphic	Types	
f g = g 2 
> f :: (Int -> t_4) -> t_4 •  Example:	

•  Step	2:																																																												
Assign	type	variables	
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Inferring	Polymorphic	Types	

•  Example:	
•  Step	3:																																																							
Generate	constraints	

t_0 = t_1 -> t_4 
t_1 = t_3 -> t_4 
t_3 = Int 

f g = g 2 
> f :: (Int -> t_4) -> t_4 
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Inferring	Polymorphic	Types	

•  Example:	
•  Step	4:																																																														
Solve	constraints	

t_0 = t_1 -> t_4 
t_1 = t_3 -> t_4 
t_3 = Int 

t_0 = (Int -> t_4) -> t_4 
t_1 =  Int -> t_4 
t_3 =  Int 

f g = g 2 
> f :: (Int -> t_4) -> t_4 
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Inferring	Polymorphic	Types	

•  Example:	
•  Step	5:																																																					
Determine	type	of	top-level	declaraFon	

t_0 = (Int -> t_4) -> t_4 
t_1 =  Int -> t_4 
t_3 =  Int 

Unconstrained type 
variables become 
polymorphic types.


f g = g 2 
> f :: (Int -> t_4) -> t_4 
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Using	Polymorphic	FuncFons	

•  FuncFon:	

•  Possible	applicaFons:	
add x = 2 + x 
> add :: Int -> Int 
 
f add 
> 4 :: Int 

isEven x = mod (x, 2) == 0 
> isEven:: Int -> Bool 
 
f isEven 
> True :: Int 

f g = g 2 
> f :: (Int -> t_4) -> t_4 
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Recognizing	Type	Errors	

•  FuncFon:	

•  Incorrect	use	

•  Type	error:																																																										
cannot	unify	Bool	→	Bool	and		Int	→	t	

not x = if x then True else False  
> not :: Bool -> Bool 
f not 
> Error: operator and operand don’t agree 
  operator domain: Int -> a 
  operand:         Bool -> Bool 

f g = g 2 
> f :: (Int -> t_4) -> t_4 
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Another	Example	

•  Example:	
•  Step	1:																																																																
Build	Parse	Tree	

f (g,x) = g (g x) 
> f :: (t_8 -> t_8, t_8) -> t_8 
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Another	Example	

•  Example:	
•  Step	2:																																																												
Assign	type	variables	

f (g,x) = g (g x) 
> f :: (t_8 -> t_8, t_8) -> t_8 
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Another	Example	

•  Example:	
•  Step	3:																																																								
Generate	constraints	

f (g,x) = g (g x) 
> f :: (t_8 -> t_8, t_8) -> t_8 

t_0 = t_3 -> t_8 
t_3 = (t_1, t_2) 
t_1 = t_7 -> t_8 
t_1 = t_2 -> t_7 
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Another	Example	

•  Example:	
•  Step	4:																																																															
Solve	constraints	

f (g,x) = g (g x) 
> f :: (t_8 -> t_8, t_8) -> t_8 

t_0 = t_3 -> t_8 
t_3 = (t_1, t_2) 
t_1 = t_7 -> t_8 
t_1 = t_2 -> t_7 

t_0 = (t_8 -> t_8, t_8) -> t_8 25	



Another	Example	

•  Example:	
•  Step	5:																																																					
Determine	type	of	f	

f (g,x) = g (g x) 
> f :: (t_8 -> t_8, t_8) -> t_8 

t_0 = t_3 -> t_8 
t_3 = (t_1, t_2) 
t_1 = t_7 -> t_8 
t_1 = t_2 -> t_7 

t_0 = (t_8 -> t_8, t_8) -> t_8 26	



Polymorphic	Datatypes	

•  FuncFons	may	have	mulFple	clauses	

•  Type	inference		
–  Infer	separate	type	for	each	clause	
– Combine	by	adding	constraint	that	all	clauses	
must	have	the	same	type	

– Recursive	calls:	funcFon	has	same	type	as	its	
definiFon	

length [] = 0 
length (x:rest) = 1 + (length rest) 
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Type	Inference	with	Datatypes	

•  Example:	
•  Step	1:	Build	Parse	Tree	

length (x:rest) = 1 + (length rest) 
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Type	Inference	with	Datatypes	

•  Example:	
•  Step	2:	Assign	type	variables	

length (x:rest) = 1 + (length rest) 
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Type	Inference	with	Datatypes	

•  Example:	
•  Step	3:	Generate	constraints	

length (x:rest) = 1 + (length rest) 

t_0 = t_3 -> t_10 
t_3 = t_2 
t_3 = [t_1] 
t_6 = t_9 -> t_10 
t_4 = t_5 -> t_6 
t_4 = Int -> Int -> Int 
t_5 = Int 
t_0 = t_2 -> t_9 
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Type	Inference	with	Datatypes	

•  Example:	
•  Step	3:	Solve	Constraints	

length (x:rest) = 1 + (length rest) 

t_0 = t_3 -> t_10 
t_3 = t_2 
t_3 = [t_1] 
t_6 = t_9 -> t_10 
t_4 = t_5 -> t_6 
t_4 = Int -> Int -> Int 
t_5 = Int 
t_0 = t_2 -> t_9 

t_0 = [t_1] -> Int 31	



MulFple	Clauses	

•  FuncFon	with	mulFple	clauses	

•  Infer	type	of	each	clause	
–  First	clause:					 	 	 	 		

–  Second	clause:	 	 	 	 		

•  Combine	by	equaFng	types	of	two	clauses																		

append ([],r) = r 
append (x:xs, r) = x : append (xs, r) 

> append :: ([t_1], t_2) -> t_2 

> append :: ([t_3], t_4) -> [t_3] 

> append :: ([t_1], [t_1]) -> [t_1] 
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Most	General	Type	

•  Type	inference	produces	the	most	general	type	

•  FuncFons	may	have	many	less	general	types	

•  Less	general	types	are	all	instances	of	most	general	
type,	also	called	the	principal	type	

map (f, []  ) = [] 
map (f, x:xs) = f x : map (f, xs) 
> map :: (t_1 -> t_2, [t_1]) -> [t_2] 

> map :: (t_1  -> Int, [t_1])  -> [Int] 
> map :: (Bool -> t_2, [Bool]) -> [t_2] 
> map :: (Char -> Int, [Char]) -> [Int] 
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Type	Inference	with	overloading	
•  In	presence	of	overloading	(Type	Classes),	type	inference	

infers	a	qualified	type	Q	=>	T	
–  T	is	a	Hindley	Milner	type,	inferred	as	usual	
–  Q	is	set	of	type	class	predicates,	called	a	constraint	

•  Consider	the	example	funcFon:	

–  Type	T	is				a	->	[a]	->	Bool	
–  Constraint	Q	is		{	Ord	a,	Eq	a,	Eq	[a]}	

example z xs =  
   case xs of 
     []     -> False 
     (y:ys) -> y > z || (y==z && ys == [z]) 

Ord a  because    y>z

Eq a    because   y==z

Eq [a]  because   ys == [z]
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Simplifying	Type	Constraints	
•  Constraint	sets	Q	can	be	simplified:	
–  Eliminate	duplicates	

•  {Eq	a,	Eq	a}	simplifies	to	{Eq	a}	
– Use	an	instance	declara<on	

•  If	we	have	instance	Eq	a	=>	Eq	[a],																																	
•  then	{Eq	a,	Eq	[a]}	simplifies	to	{Eq	a}	

– Use	a	class	declara<on	
•  If	we	have	class	Eq	a	=>	Ord	a	where	...,																										
•  then	{Ord	a,	Eq	a}	simplifies	to	{Ord	a}	

•  Applying	these	rules,		
–  {Ord	a,	Eq	a,	Eq[a]}	simplifies	to	{Ord	a}	
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Type	Inference	with	overloading	

•  Puong	it	all	together:	

– T	=	a	->	[a]	->	Bool	
– Q	=	{Ord	a,	Eq	a,	Eq	[a]}	
– Q		simplifies	to	{Ord	a}	
–  example :: {Ord a} => a -> [a] -> Bool 

example z xs =  
   case xs of 
     []     -> False 
     (y:ys) -> y > z || (y==z && ys ==[z]) 
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Complexity	of	Type	Inference	Algorithm	

•  When	Hindley/Milner	type	inference	
algorithm	was	developed,	its	complexity	was	
unknown	

•  In	1989,	Kanellakis,	Mairson,	and	Mitchell	
proved	that	the	problem	was	exponenFal-
Fme	complete	

•  Usually	linear	in	pracFce	though…	
– Running	Fme	is	exponenFal	in	the	depth	of	
polymorphic	declaraFons	
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