Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-16/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 24

* Type inference in ML / Haskell

Type Checking vs Type Inference

e Standard type checking:

int £(int x) { return x+1; };
int g(int y) { return f(y+1l)*2; };

— Examine body of each function
— Use declared types to check agreement

* Type inference:

t?ﬁf f(ibﬁ:x) { return x+1; };
ggt g(iggy) { return f(y+1)*2; };

— Examine code without type information. Infer the
most general types that could have been declared.

ML and Haskell are designed to make type inference feasible.

Why study type inference?

* Types and type checking

— Improved steadily since Algol 60
* Eliminated sources of unsoundness.
* Become substantially more expressive.

— Important for modularity, reliability and compilation

 Type inference
— Reduces syntactic overhead of expressive types.
— Guaranteed to produce most general type.
— Widely regarded as important language innovation.

— lllustrative example of a flow-insensitive static
analysis algorithm.

History

Original type inference algorithm

— Invented by Haskell Curry and Robert Feys for the simply typed
lambda calculus in 1958

In 1969, Hindley

— extended the algorithm to a richer language and proved it
always produced the most general type

In 1978, Milner

— independently developed equivalent algorithm, called algorithm
W, during his work designing ML.

In 1982, Damas proved the algorithm was complete.

— Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#,
Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6, C+
+0Xx, ...

uHaskell

* Subset of Haskell to explain type inference.
— Haskell and ML both have overloading
— Will do not consider overloading now

<decl> ::= <name> <pat> = <exp>
<pat> ::= Id | (<pat>, <pat>) | <pat> : <pat> | []
<exp> ::=Int | Bool | [] | Id | (<exp>)

| <exp> <op> <exp>
| <exp> <exp> | (<exp>, <exp>)
| 1f <exp> then <exp> else <exp>

Type Inference: Basic Idea

* What is the type of £7?
+ has type: Int — Int — Int
(with overloading would be Num a=>a —a — a)
2 has type: Int
Since we are applying + to x we need x :: Int
Therefore f x = 2 + x has type Int — Int

Step 1: Parse Program

* Parse program text to construct parse tree.

* Binary @-nodes to represent
application

* Ternary Fun-node for function
definitions

* Infix operators are converted fo
Curried function application during
parsing: 2 + x =2 (+) 2 x

Step 2: Assign type variables to nodes

Variables are given same type
as binding occurrence.

Constraints from Application Nodes
o> o
Cered G ens

m) |t 0=t 1->¢t2

* Function application (apply f to x)
— Type of £ (t_0in figure) must be domain — range.
— Domain of £ must be type of argument x (t_1 in fig)
— Range of £ must be result of application (t_2 in fig)
— Constraint: t 0=t 1>t 2

Constraints from Abstractions

t0=¢t1->t2

* Function declaration:
— Type of £ (t_0 in figure) must domain — range
— Domain is type of abstracted variable x (t_1 in fig)
— Range is type of function body e (t 2infig)
— Constraint:t 0=t 1>t 2

10

Step 3: Add Constraints

O NN M

RN

11

Step 4: Solve Constraints

W NN MO
| | I | I |

o o o o o
A

6
6

1
Y
o o o

1
1
3 ->t4 @ —
t nt -> Int -—?*t 3 -> t 4 = Int -> (Int -> Int)

|
v
-

Int J

O

N

SR
w

Int
Int -> Int

tl ->t 6
Int -> Int \::::::

Int -> Int -> Int :zh‘ t1l >t 6 = Int -> Int

Int l

N & oy R O

ot o o o ot
N N N N AR

w

Int -> Int . |t 1=1Int
Int
Int -> Int

Int -> Int -> Int

Int
12

Step 5:

Determine type of declaration

SRR
WN &EOOYE O

Int -> Int
Int
Int
Int -> Int
Int -> Int
Int

f x=2 + x
> f£f :: Int -> Int

-> Int

13

Type Inference Algorithm

Parse program to build parse tree
Assign type variables to nodes in tree

Generate constraints:

— From environment: constants (2), built-in
operators (+), known functions (tail).

— From form of parse tree: e.g., application and
abstraction nodes.

Solve constraints using unification
Determine types of top-level declarations

Inferring Polymorphic Types

* Example:

* Step 1:
Build Parse Tree

15

Inferring Polymorphic Types

g=9g 2
f

 Example: .: (Int -> t 4) -> t 4

* Step 2:
Assign type variables

/ g
e 4
' N 7
'\‘- f t_ O /,‘ '\

Inferring Polymorphic Types

* Example:

* Step 3:
Generate constraints

£E0=¢t1->t4
t1=t3->t4
t 3 = Int /

Inferring Polymorphic Types

* Example:

* Step 4.
Solve constraints

t 0= (Int -> t 4) -> t 4
t 1= Int ->t 4
t 3 = Int

Inferring Polymorphic Types

. fg=g2
 Example: S £ (Int -> t 4) -> t 4
* Step 5:

Determine type of top-level declaration
Unconstrained type

variables become
polymorphic types.

(Int -> t_4) -> t_4
Int -> t_4
Int

SR
(VN A e
nn

Using Polymorphic Functions

* Function: (Int -> t_4) > t 4

* Possible applications:

add x = 2 + x isEven x = mod (x, 2) ==
> add :: Int -> Int > isEven:: Int -> Bool
f add f isEven

> 4 :: Int > True :: Int

Recognizing Type Errors

° 1 .
Function: (Int -> t 4) -> t 4

* |ncorrect use

not x = 1if x then True else False

> not :: Bool -> Bool

f not

> Error: operator and operand don’t agree
operator domain: Int -> a
operand: Bool -> Bool

* Type error:
cannot unify Bool — Bool and Int =t

21

* Example:
* Step 1:

Build Parse Tree

Another Example

f (g,x) = g (g x)
>f :: (£t 8->t 8, t8) ->t8

Another Example

f (g,x) = g (g x)

* Example: U L s S is 8 > e

* Step 2:
Assign type variables

Another Example

: f (g,x) = g (g x)
* Example: >f :: (£ 8->t 8, t8) ->t8
* Step 3:
. t 0=t 3 ->t 8
Generate constraints £ 3= (t1, t2)
t1=¢t7->t8
t1l=¢t2->¢t7

Another Example

 Example:

* Step 4:
Solve constraints

f (g,x) =g (g
> f :: (t 8 ->

t 0= (t8->t8, t8) ->t38

8, t 8) ->t 8
t0=t3->t8
t 3= (t1, t2)
tl=¢t7->t8
t1=¢t2->t7

Another Example

f (g,x) = g (g x)

° Example: > f :: (£ 8->t 8, t8) ->t 8
* Step 5:
. t0=t3 ->t 8
Determine tvpe of f £3=(t1, t2)
@ t 1=1¢t7->t_8
t1=1t2->t7

t 0= (t8->t8, t 8 ->t 8

..
L.

Polymorphic Datatypes

* Functions may have multiple clauses

length [] = 0
length (x:rest) =1 + (length rest)
* Type inference
— Infer separate type for each clause

— Combine by adding constraint that all clauses
must have the same type

— Recursive calls: function has same type as its
definition

Type Inference with Datatypes

o Example: length (x:rest) =1 + (length rest)

e Step 1: Build Parse Tree

Type Inference with Datatypes

o Example: length (x:rest) =1 + (length rest)

e Step 2: Assign type variables

Type Inference with Datatypes

o Example: length (x:rest) =1 + (length rest)
* Step 3: Generate constraints{t_0 = t 3 -> t_10
t 3=+t 2
t 3 = [t 1]
t 6=t 9 ->t 10
t4=1t5->t6
t 4 = In
t 5=
t 0 =

9
5
t -> Int -> Int
t
2

c H

-> t 9

Type Inference with Datatypes

o Example: length (x:rest) =1 + (length rest)

e Step 3: Solve Constraints

o Ul koYW WO
1 I { [Y 1 A |

o o o o of ot ot o
IS N A I D O

t 0 = [t 1] -> Int

Multiple Clauses

* Function with multiple clauses

append ([],r) = r
append (x:xs, r) = x : append (xs,
* Infer type of each clause
— First clause:
> append :: ([t 1], t 2) -> t 2
— Second clause:
> append :: ([t 3], t 4) -> [t 3]

 Combine by equating types of two clauses
> append :: ([t 1], [t 1]) -> [t 1]

r)

32

Most General Type

* Type inference produces the most general type

map (£, []) []
map (f, x:xs) f x : map (£, xs)
>map :: (t 1 ->t 2, [t 1]) -> [t 2]

* Functions may have many less general types

>map :: (t 1 ->1Int, [t 1]) -> [Int]
> map :: (Bool -> t 2, [Bool]) -> [t 2]
> map :: (Char -> Int, [Char]) -> [Int]

* Less general types are all instances of most general
type, also called the principal type

33

Type Inference with overloading

* In presence of overloading (Type Classes), type inference
infers a qualified type Q =>T
— Tis a Hindley Milner type, inferred as usual
— Qs set of type class predicates, called a constraint

* Consider the example function:

example z xs =
case xs of
[1] -> False
(y:ys) ->y >z || (y==z && ys == [z])

— TypeTis a->[a]->Bool

— Constraint Qis {Ord a, Eq a, Eq [a]} Ord a because y>z
Eqa because y==z

Eq [a] because ys == [Z]

34

Simplifying Type Constraints

e Constraint sets Q can be simplified:
— Eliminate duplicates
* {Eq a, Eq a} simplifies to {Eq a}
— Use an instance declaration
* If we have instance Eq a => Eq [a],
* then {Eq a, Eq [a]} simplifies to {Eq a}
— Use a class declaration

 If we have class Eq a => Ord a where ...,
* then {Ord a, Eq a} simplifies to {Ord a}

* Applying these rules,
— {Ord a, Eq a, Eq[a]} simplifies to {Ord a}

Type Inference with overloading

e Putting it all together:

example z xs =
case xs of
[] -> False

(y:ys) ->y >z || (y==z && ys ==[z])

—T=a->[a] ->Bool
—Q={0rd a, Eq a, Eq [a]}
— Q simplifies to {Ord a}

— example :: {Ord a} => a -> [a] -> Bool

Complexity of Type Inference Algorithm

 When Hindley/Milner type inference

algorithm was developed, its complexity was
unknown

* |n 1989, Kanellakis, Mairson, and Mitchell
proved that the problem was exponential-
time complete

* Usually linear in practice though...

— Running time is exponential in the depth of
polymorphic declarations

