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Pros	of	FuncConal	Programming	
•  FuncConal	programming	is	beauCful:	

–  Concise	and	powerful	abstracCons	
•  higher-order	funcCons,	algebraic	data	types,	parametric	
polymorphism,	principled	overloading,	...	

–  Close	correspondence	with	mathemaCcs	
•  SemanCcs	of	a	code	funcCon	is	the	mathemaCcal	funcCon	
•  EquaConal	reasoning:	if	x	=	y,	then	f	x	=	f	y	
•  Independence	of	order-of-evaluaCon	(Confluence,	aka	Church-Rosser)	

e1 * e2 

e1’ * e2 e1 * e2’ 

result 

The compiler can 
choose the best 

sequential or parallel 
evaluation order
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Problems…	

•  But	to	be	useful,	a	language	must	be	able	to	manage	
“impure	features”:	
–  Input/Output	
–  ImperaCve	update	
–  Error	recovery		(eg,	Cmeout,	divide	by	zero,	etc.)	
–  Foreign-language	interfaces		
–  Concurrency	control	

The whole point of a running a program is to 
interact with the external environment and 
affect it
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The	Direct	Approach	
•  Just	add	imperaCve	constructs	“the	usual	way”	
–  I/O	via	“funcCons”	with	side	effects:	

–  ImperaCve	operaCons	via	assignable	reference	cells:	

–  Error	recovery	via	excepCons	
–  Foreign	language	procedures	mapped	to	“funcCons”	
–  Concurrency	via	operaCng	system	threads	

•  Can	work	if	language	determines	evaluaCon	order	
–  Ocaml,	Standard	ML	are	good	examples	of	this	approach	

putchar ‘x’ + putchar ‘y’  

z = ref 0; z := !z + 1; 
f(z); 
w = !z    (* What is the value of w? *) 
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But	what	if	we	are	“lazy”?	

	

•  Example:	
– Output	depends	upon	the	evaluaCon	order	of	(+).	

•  Example:	
– Output	depends	on	how	list	is	used	
–  If	only	used	in	length ls,	nothing	will	be	
printed	because	length	does	not	evaluate	
elements	of	list	

In a lazy functional language, like Haskell, the order of 
evaluation is undefined.


res = putchar ‘x’ + putchar ‘y’  

ls = [putchar ‘x’, putchar ‘y’]  
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Fundamental	quesCon	

•  Is	it	possible	to	add	imperaCve	features	
without	changing	the	meaning	of	pure	Haskell	
expressions?	

•  Yes!	Using	the	concept	of	monad	
– Formally	defined	as	a	type	constructor	class		
– Each	monadic	type	constructor	defines	certain	
monadic	values	(someCmes	called	acBons)	and	
how	to	compose	them	sequenCally	
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The	Maybe	type	constructor	

•  A	value	of	type	Maybe	a	is	a	possibly	undefined	
value	of	type	a	

•  A	funcCon		f	::	a	->	Maybe	b	is	a	parCal	funcCon	from	
a	to	b	
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data Maybe a = Nothing | Just a 
 
-- example  
sqrt :: Int -> Maybe Real   
       



Composing	parCal	funcCon	
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father :: Person -> Maybe Person  -- partial function 
mother :: Person -> Maybe Person  -- (lookup in a DB) 
 
maternalGrandfather :: Person -> Maybe Person 
maternalGrandfather p = 
    case mother p of 
        Nothing -> Nothing 
        Just mom -> father mom    

bothGrandfathers :: Person -> Maybe (Person, Person) 
    bothGrandfathers p = 
        case father p of 
            Nothing -> Nothing 
            Just dad -> 
                case father dad of 
                    Nothing -> Nothing 
                    Just gf1 ->                         -- found first grandfather 
                        case mother p of 
                            Nothing -> Nothing 
                            Just mom -> 
                                case father mom of 
                                    Nothing -> Nothing 
                                    Just gf2 ->         -- found second grandfather 
                                        Just (gf1, gf2) 



The	Monad	type	class	and	the	Maybe	monad	

•  m	is	a	type	constructor	
•  m	a	is	the	type	of	monadic	values	
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class Monad m where 
        return :: a -> m a 
        (>>=)  :: m a -> (a -> m b) -> m b –- "bind" 
    ... -- + something more 

instance Monad Maybe where 
    return :: a -> Maybe a 
    return x = Just x 
    (>>=)  :: Maybe a -> (a -> Maybe b) -> Maybe b 

     y >>= g  = case  y of  
                     Nothing -> Nothing         
                     Just x -> g x 

•  bind	(>>=)	shows	how	to	“propagate”	undefinedness	



Use	of	bind	of	the	Maybe	monad	to	
compose	parCal	funcCons	
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maternalGrandfather p = mother p >>= father 
 
bothGrandfathers p = 
       father p >>= 
           (\dad -> father dad >>= 
               (\gf1 -> mother p >>= 
                   (\mom -> father mom >>= 
                       (\gf2 -> return (gf1,gf2) )))) 

father :: Person -> Maybe Person  -- partial function 
mother :: Person -> Maybe Person  -- (lookup in a DB) 
 
maternalGrandfather :: Person -> Maybe Person 
maternalGrandfather p = 
    case mother p of 
        Nothing -> Nothing 
        Just mom -> father mom    



AlternaCve,	imperaCve-style	syntax:	do	

•  do	syntax	is	just	syntacCc	sugar	for		>>=	
11	

 bothGrandfathers p = 
       father p >>= 
           (\dad -> father dad >>= 
               (\gf1 -> mother p >>= 
                   (\mom -> father mom >>= 
                       (\gf2 -> return (gf1,gf2) )))) 

 bothGrandfathers p = do { 
        dad <- father p; 
        gf1 <- father dad; 
        mom <- mother p; 
        gf2 <- father mom; 
        return (gf1, gf2); 
      } 

 bothGrandfathers p = do  
        dad <- father p 
        gf1 <- father dad 
        mom <- mother p 
        gf2 <- father mom 
        return (gf1, gf2) 



Some	Haskell	Monads	
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Monad	 ImperaBve	semanBcs	
Maybe	 ExcepCon	(Anonymous)	
Error	 ExcepCon	(with	error	

descripCon)	
State	 Global	state	
IO	 Input/output	

[]	(lists)	 Non-determinism	
Reader	 Environment	
Writer	 Logger	



Understanding	Monads	as	containers	

•  The	monadic	constructor	can	be	seen	as	a	container:	let’s	see	
this	for	lists	

•  Gemng	bind	from	more	basic	operaCons	

class Monad m where  -- definition of Monad type class 
        return :: a -> m a 
        (>>=)  :: m a -> (a -> m b) -> m b –- "bind” 
    ... -- + something more + a few axioms 

map :: (a -> b) -> [a] -> [b] -- seen. “fmap” for Functors 
 
return  :: a -> [a] -- container with single element 
return x = [x] 
 
concat :: [[a]] -> [a] -- flattens two-level containers 

  Example: concat [[1,2],[],[4]] = [1,2,4] 
 
(>>=) :: [a] -> (a -> [b]) -> [b] 
xs >>= f  =  concat(map f xs) 
 
Exercise: define map and concat using bind and return  13	



Understanding	Monads	as	computaCons	

•  A	value	of	type			m a			is	a	computaCon	returning	a	value	of	type	a	
•  For	any	value,	there	is	a	computaCon	which	“does	nothing”	and	

produces	that	result.	This	is	given	by	funcCon	return 
•  Given	two	computaCons	x	and	y,	one	can	form	the	computaCon		

x >> y	which	intuiCvely	“runs”	x,	throws	away	its	result,	then	
runs	y	returning	its	result	

•  Given	computaCon	x,	we	can	use	its	result	to	decide	what	to	do	
next.	Given		f: a -> m b,		computaCon	x >>= f		runs	x,	then	
applies	f	to	its	result,	and	runs	the	resulCng	computaCon.	

class Monad m where  -- definition of Monad type class 
        return :: a -> m a 
        (>>=)  :: m a -> (a -> m b) -> m b –- "bind" 
      (>>)   :: m a -> m b -> m b        –- "then" 
    ... -- + something more + a few axioms 

14	

Note that we can define then using bind: 
x >> y = x >>= (\_ -> y) 



Understanding	Monads	as	computaCons	(2)	

•  return,	bind	and	then	define	basic	ways	to	compose	computaCons	
•  They	are	used	in	Haskell	libraries	to	define	more	complex	composiCon	

operators	and	control	structures	(sequence,	for-each	loops,	…)	
•  If	a	type	constructor	defining	a	library	of	computaCons	is	monadic,	one	

gets	automaCcally	benefit	of	such	libraries	
Example:	MAYBE	
•  f:a -> Maybe b			is	a	par*al	funcCon	
•  bind	applies	a	parCal	funcCon	to	a	possibly	undefined	value,	propagaCng	

undefinedness	
Example:	LISTS	
•  f:a -> [b]  	is	a	non-determinis*c	funcCon	
•  bind	applies	a	non-determinisCc	funcCon	to	a	list	of	values,	collecCng	all	

possible	results	
Example:	Parsing,	handling	errors,	IO,	backtracking….		

	
	

class Monad m where  -- definition of Monad type class 
        return :: a -> m a 
        (>>=)  :: m a -> (a -> m b) -> m b –- "bind" 
       (>>)   :: m a -> m b -> m b        –- "then" 
    ... -- + something more + a few axioms 
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Problem	

A functional program 
defines a pure function, 
with no side effects


The whole point of 
running a program is to 
have some side effect


The	term	“side	effect”	itself	is	misleading	

Monadic Input and Output

The IO Monad
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Before	Monads	

•  Streams	
– Program	sends	stream	of	requests	to	OS,	
receives	stream	of	responses	

•  ConCnuaCons	
– User	supplies	conCnuaCons	to	I/O	rouCnes	
to	specify	how	to	process	results	

•  Haskell	1.0	Report	adopted	Stream	model	
– Stream	and	ConCnuaCon	models	were	
discovered	to	be	inter-definable	
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Stream	Model:	Basic	Idea	

•  Move	“side	effects”	outside	of	funcConal	program	
•  Haskell		main :: String -> String 

	

•  But	what	if	you	need	to	read	more	than	one	file?	
Or	delete	files?	Or	communicate	over	a	
socket?	...	

Haskell main 
program


standard 
input 

location 
(file or 
stdin)


standard 
output 
location 
(file or 
stdin)


Wrapper Program, written in some other language
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Stream	Model	
•  Enrich	argument	and	return	type	of	main	to	
include	all	input	and	output	events.		

•  Wrapper	program	interprets	requests	and	adds	
responses	to	input.		

•  Move	side	effects	outside	of	funcConal	program	

main :: [Response] -> [Request] 
data Request  =  ReadFile Filename 

  |  WriteFile FileName String 
  | … 

data Response =  RequestFailed 
  |  ReadOK String 
  |  WriteOk 
  |  Success  | … 

19	



Stream	Model:	main::[Response] -> [Request] 
		

•  Problem:	Laziness	allows	program	to	generate	requests	prior	
to	processing	any	responses.		

•  Hard	to	extend	
–  New	I/O	operaCons	require	adding	new	constructors	to	Request	
and	Response	types,	modifying	wrapper	

•  Does	not	associate	Request	with	Response	
–  easy	to	get	“out-of-step,”	which	can	lead	to	deadlock	

•  Not	composable	
–  no	easy	way	to	combine	two	“main”	programs	

•  ...	and	other	problems!!!	

Haskell

program


[Response]	 [Request]	
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Monadic	I/O:	The	Key	Ideas	
•  IO	is	a	type	constructor,	instance	of	Monad	
•  A	value	of	type	(IO t)	is	a	computaCon	or	

“acCon”	that,	when	performed,	may	do	some	
input/output	before	delivering	a	result	of	type	t		

•  return	returns	the	value	without	making	I/O	
•  then	(>>)	[and	also	bind	(>>=)]	composes	two	

acCons	sequenCally	into	a	larger	acCon	
•  The	only	way	to	perform	an	acCon	is	to	call	it	at	

some	point,	directly	or	indirectly,	from	
Main.main	

21	



A	Helpful	Picture	

type IO t = World -> (t, World) 



IO t 



result :: t 

A value of type (IO t) is an “action.”  When performed, it may 
do some input/output before delivering a result of type t.
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•  An	acCon	is	a	first-class	value	
•  EvaluaBng	an	acCon	has	no	effect;			performing	the	
acCon	has	the	effect	



Simple	I/O	acCons	

getChar 

Char 

putChar 

() Char 

getChar :: IO Char 
putChar :: Char -> IO () 
 
main :: IO () 
main = putChar ‘x’ 

Main program is an 
action of type IO ()
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The	Bind	Combinator	(>>=)		

•  We	have	connected	two	acCons	to	make	a	new,	
bigger	acCon.	

putChar 

() 

Char 

getChar 

(>>=) :: IO a -> (a -> IO b) -> IO b 

echo :: IO () 
echo = getChar >>= putChar 

24	

getChar :: IO Char 
putChar :: Char -> IO () 

echo !



The	(>>=)	Combinator	

•  Operator	is	called	bind	because	it	binds	the	result	
of	the	les-hand	acCon	in	the	acCon	on	the	right	

•  Performing	compound	acCon		a >>= \x->b	:		
–  performs	acCon	a,	to	yield	value	r		
–  applies	funcCon	\x->b	to	r 
–  performs	the	resulCng	acCon		b{x <- r} 
–  returns	the	resulCng	value		v 

b 

v 

a 
x r 

(>>=) :: IO a -> (a -> IO b) -> IO b 
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The	(>>)	Combinator	

•  The	“then”	combinator	(>>)	does	sequencing	
when	there	is	no	value	to	pass:	

(>>) :: IO a -> IO b -> IO b 
-- defined from bind 
(>>=) :: IO a -> (a -> IO b) -> IO b 
m >> n  =  m >>= (\_ -> n) 

echoDup :: IO () 
echoDup = getChar  >>= \c  -> 
          putChar c  >> 
          putChar c   

echoTwice :: IO () 
echoTwice = echo >> echo 26	



The	return	Combinator	

•  The	acCon	(return	v)	does	no	IO	and	
immediately	returns	v:	

return :: a -> IO a 

return 

getTwoChars :: IO (Char,Char) 
getTwoChars = getChar  >>= \c1 -> 
              getChar  >>= \c2 -> 
              return (c1,c2) 
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The	“do”	NotaCon	
•  The	“do”	notaCon	adds	syntacCc	sugar	to	make	
monadic	code	easier	to	read.	

•  do	syntax	designed	to	look	imperaCve.	

-- Do Notation 
getTwoCharsDo :: IO(Char,Char) 
getTwoCharsDo = do { c1 <- getChar ; 
                     c2 <- getChar ; 
                     return (c1,c2) } 

-- Plain Syntax 
getTwoChars :: IO (Char,Char) 
getTwoChars = getChar  >>= \c1 -> 
              getChar  >>= \c2 -> 
              return (c1,c2) 
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Desugaring	“do”	NotaCon	
•  The	“do”	notaCon	only	adds	syntacCc	sugar:	

do { x }       =  x 
do { x; stmts }  =  x >> do { stmts } 
do { v<-x; stmts }  =  x >>=  \v -> do { stmts } 
do {let ds; stmts }   =     let ds in do { stmts }  

The scope of variables bound in a generator is the rest of 
the “do” expression.
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do { x1 <- p1; ...; xn <- pn; q } 
do x1 <- p1 
   ... 
   xn <- pn 
   q do   x1 <- p1; ...; xn <- pn; q 

•  The	following	are	equivalent:	



Bigger	Example	

•  The	getLine	funcCon	reads	a	line	of	input:	
getLine :: IO [Char] 
getLine = do { c <- getChar ; 
               if c == '\n' then  
                    return [] 
               else  
                    do { cs <- getLine; 
                         return (c:cs) }} 

Note the “regular” code mixed with the monadic operations 
and the nested “do” expression.
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Control	Structures	on	Monads	
•  ExploiCng	the	monadic	combinators,	we	can	define	
control	structures	that	work	for	any	monad	

repeatN 0 x = return () 
repeatN n x = x >> repeatN (n-1) x 
repeatN :: (Num a, Monad m, Eq a) => a -> m a1 -> m () 

 Main> repeatN 5 (putChar 'h') 
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for []     fa = return () 
for (x:xs) fa = fa x  >>  for xs fa 
for :: Monad m => [t] -> (t -> m a) -> m () 

Main> for [1..10] (\x -> putStr (show x)) 



Sequencing	

	
	

	
	

•  Example	use:	

sequence :: [IO a] -> IO [a] 
sequence [] = return [] 
sequence (a:as) = do { r  <- a; 
                       rs <- sequence as; 
                       return (r:rs) } 
sequence :: Monad m => [m a] -> m [a] 

Main> sequence [getChar, getChar, getChar] 

A list of IO 
actions.


An IO action 
returning a list.
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IO	Provides	Access	to	Files	
•  The	IO	Monad	provides	a	large	collecCon	of	
operaCons	for	interacCng	with	the	“World.”	

•  For	example,	it	provides	a	direct	analogy	to	the	
Standard	C	library	funcCons	for	files:	

openFile :: FilePath -> IOMode -> IO Handle  
hPutStr  :: Handle -> String -> IO () 
hGetLine :: Handle -> IO String 
hClose   :: Handle -> IO ()  
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References	
•  The	IO	operaCons	let	us	write	programs	that	do	I/O	in	
a	strictly	sequenCal,	imperaCve	fashion.			

•  Idea:	We	can	leverage	the	sequenCal	nature	of	the	IO	
monad	to	do	other	imperaCve	things	

•  A	value	of	type	IORef	a	is	a	reference	to	a	mutable	cell	
holding	a	value	of	type	a.	

data IORef a   -- Abstract type 
newIORef   :: a -> IO (IORef a) 
readIORef  :: IORef a -> IO a 
writeIORef :: IORef a -> a -> IO () 
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Example	Using	References	

This is terrible:  Contrast with: sum [1..n].  


import Data.IORef  -- import reference functions 
-- Compute the sum of the first n integers 
count :: Int -> IO Int 
count n = do  
   { r <- newIORef 0; 
     addToN r 1 } 
  where  
    addToN :: IORef Int -> Int -> IO Int 
    addToN r i | i > n     = readIORef r 
               | otherwise = do  
                  { v <- readIORef r 
                  ; writeIORef r (v + i) 
                  ; addToN r (i+1)} 
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The	IO	Monad	as	ADT	

•  All	operatons	return	an	IO	acCon,	but	only	bind	(>>=)	
takes	one	as	an	argument.		

•  Bind	is	the	only	operaCon	that	combines	IO	acCons,	
which	forces	sequenCality.		

•  In	pure	Haskell,	there	is	no	way	to	transform	a	value	of	
type			IO a		into	a	value	of	type	a 

return :: a -> IO a 
(>>=) :: IO a -> (a -> IO b) -> IO b 
 
getChar :: IO Char 
putChar :: Char -> IO () 
... more operations on characters ... 
openFile :: [Char] -> IOMode -> IO Handle 
... more operations on files ... 
newIORef :: a -> IO (IORef a) 
... more operations on references … 
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Unreasonable	RestricCon?	
•  Suppose	you	wanted	to	read	a	configuraCon	file	at	the	
beginning	of	your	program:	

•  The	problem	is	that	readFile	returns	an	IO	String,								
not	a	String.	

•  OpBon	1:	Write	enCre	program	in	IO	monad.															
But	then	we	lose	the	simplicity	of	pure	code.	

•  OpBon	2:	Escape	from	the	IO	Monad	using	a	funcCon	
from	IO	String	->	String.																																																				
But	this	is	disallowed!	

configFileContents :: [String]  
configFileContents = lines (readFile "config") -- WRONG!  
useOptimisation :: Bool                 
useOptimisation = "optimise" ‘elem‘ configFileContents  



Type-Unsafe	Haskell	Programming	

•  Reading	a	file	is	an	I/O	acCon,	so	in	general	it	maters	
when	we	read	the	file.		

•  But	we	know	the	configuraCon	file	will	not	change	
during	the	program,	so	it	doesn’t	mater	when	we	
read	it.			

•  This	situaCon	arises	sufficiently	osen	that	Haskell	
implementaCons	offer	one	last	unsafe	I/O	primiCve:	
unsafePerformIO.		

unsafePerformIO :: IO a -> a 
configFileContents :: [String]  
configFileContents = lines(unsafePerformIO(readFile "config")) 



unsafePerformIO	

•  The	operator	has	a	deliberately	long	name	to	
discourage	its	use.	

•  Its	use	comes	with	a	proof	obligaCon:	a	promise	
to	the	compiler	that	the	Cming	of	this	operaCon	
relaCve	to	all	other	operaCons	doesn’t	mater.	

unsafePerformIO :: IO a -> a 

 Result 

act Invent 
World 

 Discard 
World 



unsafePerformIO	
•  As	its	name	suggests,	unsafePerformIO	breaks	the	

soundness	of	the	type	system.	

•  So	claims	that	Haskell	is	type	safe	only	apply	to	programs	
that	don’t	use	unsafePerformIO.	

•  Similar	examples	are	what	caused	difficulCes	in	integraCng	
references	with	Hindley/Milner	type	inference	in	ML.	

r :: forall a. IORef a   -- This is bad!  
r =  unsafePerformIO (newIORef (error "urk"))   
 
cast :: b -> c 
cast x = unsafePerformIO (do {writeIORef r x; 
                              readIORef r     }) 



ImplementaCon	
•  GHC	uses	“world-passing	semanCcs”	for	the	IO	monad						

•  It	represents	the	“world”	by	an	un-forgeable	token	of	
type	World,	and	implements	bind and	return	as:	

•  Using	this	form,	the	compiler	can	do	its	normal	
opCmizaCons.		The	dependence	on	the	world	ensures	
the	resulCng	code	will	sCll	be	single-threaded.	

•  The	code	generator	then	converts	the	code	to	modify	
the	world	“in-place.”	

type IO t = World -> (t, World) 

return :: a -> IO a  
return a = \w -> (a,w)  
(>>=) :: IO a -> (a -> IO b) -> IO b  
(>>=) m k = \w -> case m w of (r,w’) -> k r w’  
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Summary	
•  A	complete	Haskell	program	is	a	single	IO	acCon	called	
main.		Inside	IO,	code	is	single-threaded.	

•  Big	IO	acCons	are	built	by	gluing	together	smaller	ones	with	
bind	(>>=)	and	by	converCng	pure	code	into	acCons	with	
return.	

•  IO	acCons	are	first-class.			
–  They	can	be	passed	to	funcCons,	returned	from	funcCons,	and	
stored	in	data	structures.	

–  So	it	is	easy	to	define	new	“glue”	combinators.	
•  The	IO	Monad	allows	Haskell	to	be	pure	while	efficiently	

supporCng	side	effects.	
•  The	type	system	separates	the	pure	from	the	effecvul	

code.		
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Comparison	

•  In	languages	like	ML	or	Java,	the	fact	that	the	
language	is	in	the	IO	monad	is	baked	in	to	the	
language.		There	is	no	need	to	mark	anything	in	the	
type	system	because	it	is	everywhere.			

•  In	Haskell,	the	programmer	can	choose	when	to	live	
in	the	IO	monad	and	when	to	live	in	the	realm	of	
pure	funcConal	programming.	

•  So	it	is	not	Haskell	that	lacks	imperaCve	features,	but	
rather	the	other	languages	that	lack	the	ability	to	
have	a	staCcally	disCnguishable	pure	subset.	
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Appendix:	Monad	Laws	
1)   return x  >>=  f  =  f x 
2)   m  >>=  return    =  m 
3)   (x >>= f) >>= g = x >>= (\v -> f v >>= g) 

3) do { x <- m1; 
        y <- m2; 
        m3 } 

do { y <- do { x <- m1; 
               m2 } 
     m3} 

= 

x not in free vars of m3 44	

1) do { w <- return v; f w } 
   = do { f v } 
  
2) do { v <- x; return v } 
   = do { x } 

•  In	do-notaCon:	



Derived	Laws	for	(>>)	and	done	

done >>  m         = m 
m  >>  done        = m 
m1 >> (m2 >> m3)  = (m1 >> m2) >> m3 

(>>) :: IO a -> IO b -> IO b 
m >> n  =  m >>= (\_ -> n) 
 
done :: IO () 
done = return () 
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Eugenio		
Moggi	

Eugenio	Moggi	first	
described	the	general	
use	of	monads	to	
structure	programs	in	
1991	

Wadler,	Philip	(August	
2001).	"Monads	for	
funcConal	
programming"	(PDF).	
University	of	Glasgow.	
—	Describes	monads	in	
Haskell	(before	they	
were	implemented)	


