
Principles	of	Programming	Languages	
h"p://www.di.unipi.it/~andrea/Dida2ca/PLP-16/	

Prof.	Andrea	Corradini	
Department	of	Computer	Science,	Pisa	

•  Func;onal	programming	languages	
•  Introduc;on	to	Hakell	
•  Type	Classes		
•  (Type)	Constructor	Classes	

Lesson 22!

1	

2	

Historical	Origins	

•  The	impera;ve	and	func;onal	models	grew	out	of	work	
undertaken	Alan	Turing,	Alonzo	Church,	Stephen	
Kleene,	Emil	Post,	etc.	~1930s	
–  different	formaliza;ons	of	the	no;on	of	an	algorithm,	or	
effec$ve	procedure,	based	on	automata,	symbolic	
manipula;on,	recursive	func;on	defini;ons,	and	
combinatorics	

•  These	results	led	Church	to	conjecture	that	any	
intui;vely	appealing	model	of	compu;ng	would	be	
equally	powerful	as	well	
–  this	conjecture	is	known	as	Church’s	thesis	

3	

Historical	Origins	
•  Church’s	model	of	compu;ng	is	called	the	lambda	
calculus	
–  based	on	the	no;on	of	parameterized	expressions	(with	
each	parameter	introduced	by	an	occurrence	of	the	leVer	λ,	
hence	the	nota;on’s	name)	

–  allows	one	to	define	mathema;cal	func;ons	in	a	
construc;ve/effec;ve	way		

–  Lambda	calculus	was	the	inspira;on	for	func;onal	
programming		

–  computa;on	proceeds	by	subs;tu;ng	parameters	into	
expressions,	just	as	one	computes	in	a	high	level	func;onal	
program	by	passing	arguments	to	func;ons	

4	

Func;onal	Programming	Concepts	

•  Func;onal	languages	such	as	Lisp,	Scheme,	
FP,	ML,	Miranda,	and	Haskell	are	an	
aVempt	to	realize	Church’s	lambda	calculus	
in	prac;cal	form	as	a	programming	language	

•  The	key	idea:	do	everything	by	composing	
func;ons	
– no	mutable	state	
– no	side	effects	

5	

Func;onal	Programming	Concepts	
•  Necessary	features,	many	of	which	are	missing	in	
some	impera;ve	languages	
–  1st	class	and	high-order	func;ons	
–  recursion	

•  Takes	the	place	of	itera;on	
–  powerful	list	facili;es	

•  Recursive	func;on	exploit	recursive	defini;on	of	lists		
–  serious	polymorphism	

•  Relevance	of	Container/Collec;ons	
–  fully	general	aggregates	

•  Data	structures	cannot	be	modified,	have	to	be	re-created	
–  structured	func;on	returns	
–  garbage	collec;on	

•  Unlimited	extent	for	locally	allocated	data	structures	

6	

Other	Related	Concepts		
•  Lisp	also	has	some	features	that	are	not	
necessary	present	in	other	func;onal	languages:	
–  programs	are	data	
–  self-defini;on	
–  read-evaluate-print	interac;ve	loop	

•  Variants	of	LISP	
–  	(Original)	Lisp:	purely	func;onal,	dynamically	scoped	
as	early	variants		

–  Common	Lisp:	current	standard,	sta;cally	scoped,	
very	complex	

–  Scheme:	sta;cally	scoped,	very	elegant,	used	for	
teaching	

Other	func;onal	languages:	the	ML	family	

•  Robin	Milner	(Turing	award	in	1991,	CCS,	Pi-calculus,	…)	
•  Sta;cally	typed,	general-purpose	programming	language	

–  “Meta-Language”	of	the	LCF	theorem	proving	system	
•  Type	safe,	with	type	inference	and	formal	seman;cs	
•  Compiled	language,	but	intended	for	interac;ve	use		
•  Combina;on	of	Lisp	and	Algol-like	features	

–  Expression-oriented	
–  Higher-order	func;ons	
–  Garbage	collec;on	
–  Abstract	data	types	
–  Module	system	
–  Excep;ons	

7	

Other	func;onal	languages:	Haskell	
•  Designed	by	commiVee	in	80’s	and	90’s	to	unify	research	efforts	in	lazy	

languages	
–  Evolu;on	of	Miranda	
–  Haskell	1.0	in	1990,	Haskell	‘98,	Haskell’	ongoing		

•  Several	features	in	common	with	ML,	but	some	differ:	
•  Types	and	type	checking	

–  Type	inference	
–  Parametric	polymorphism	
–  Ad	hoc	polymorphism	(aka	overloading)	

•  Control	
–  Lazy	vs.	eager	evaluaKon	
–  Tail	recursion	and	con;nua;ons	

•  Purely	func;onal	
–  Precise	management	of	effects	
–  Rise	of	mul;-core,	parallel	programming	likely	to	make	minimizing	state	much	

more	important	

8	

The	Glasgow	Haskell	Compiler	[GHC]	
www.haskell.org/plalorm	

9	

Core	Haskell	

•  Basic	Types	
–  Unit	
–  Booleans	
–  Integers		
–  Strings	
–  Reals	
–  Tuples	
–  Lists	
–  Records	

•  PaVerns	
•  Declara;ons	
•  Func;ons	
•  Polymorphism	
•  Type	declara;ons	
•  Type	Classes	
•  Monads	
•  Excep;ons	

10	

Overview	of	Haskell	

•  Interac;ve	Interpreter	(ghci):	read-eval-print	
–  ghci	infers	type	before	compiling	or	execu;ng	
–  Type	system	does	not	allow	casts	or	similar	things!	

•  Examples	

Prelude> (5+3)-2
6
it :: Integer
Prelude> if 5>3 then “Harry” else “Hermione”
“Harry”
it :: [Char] -- String is equivalent to [Char]
Prelude> 5==4
False
it :: Bool

11	

Overview	by	Type	
•  Booleans	

•  Integers	

•  Strings	
		

•  Floats	

True, False :: Bool
if … then … else … --types must match

0, 1, 2, … :: Integer
+, * , … :: Integer -> Integer -> Integer

"Ron Weasley"

1.0, 2, 3.14159, … --type classes to disambiguate

12	

Simple	Compound	Types	

•  Tuples	

•  Lists	

•  Records	

(4, 5, "PLP") :: (Integer, Integer, String)

[] :: [a] -- NIL, polymorphic type
1 : [2, 3, 4] :: [Integer] -- infix cons notation
[1,2]++[3,4] :: [Integer] -- concatenation

data Person = Person {firstName :: String,
 lastName :: String}
hg = Person { firstName = “Hermione”,
 lastName = “Granger”}

13	

More	on	list	constructors	

14	

ghci> [1..20] -- ranges
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
ghci> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"
ghci> [3,6..20] -- ranges with step
[3,6,9,12,15,18]
ghci> [7,6..1]
[7,6,5,4,3,2,1]

ghci> take 10 [1..] -- (prefix of) infinite lists
[1,2,3,4,5,6,7,8,9,10]
ghci> take 10 (cycle [1,2])
[1,2,1,2,1,2,1,2,1,2]
ghci> take 10 (repeat 5)
[5,5,5,5,5,5,5,5,5,5]

How	does	it	work???	

Laziness	
•  Haskell	is	a	lazy	language	
•  Func;ons	and	data	constructors	don’t	
evaluate	their	arguments	un;l	they	need	
them	

•  Programmers	can	write	control-flow	operators	
that	have	to	be	built-in	in	eager	languages	

cond :: Bool -> a -> a -> a
cond True t e = t
cond False t e = e

(||) :: Bool -> Bool -> Bool
True || x = True
False || x = x

Short-
circuiting

“or”
 15	

Applica;ve	and	Normal	Order	evalua;on	
•  Applica;ve	Order	evalua;on	

–  Arguments	are	evaluated	before	applying	the	func;on	–	
aka	Eager	evalua$on,	parameter	passing	by	value	

•  Normal	Order	evalua;on	
–  Func;on	evaluated	first,	arguments	if	and	when	needed	
–  Sort	of	parameter	passing	by	name	
–  Some	evalua;on	can	be	repeated	

•  Church-Rosser	
–  If	evalua;on	terminates,	the	result	(normal	form)	is	

unique	
–  If	some	evalua;on	terminates,	normal	order	evalua;on	

terminates	

	

16	

ApplicaKve	order	
(λx.(+	x	x))	(+	3	2)		
à (λx.(+	x	x))	5	
à 	(+	5	5)	
à 10	

Normal	order	
(λx.(+	x	x))	(+	3	2)		
à (+		(+	3	2)	(+	3	2))	
à (+	5		(+	3	2))	
à (+	5	5)	
à 10	

Define		Ω	=	(λx.x	x)	
Then	
ΩΩ		=	(λx.x	x)	(λx.x	x)		
à x	x	[(λx.x	x)/x]	
à (λx.x	x)	(λx.x	x)	=	ΩΩ	
à	…		non-termina$ng	
(λx.	0)	(ΩΩ)	
à  {	Applica$ve	order}	
…	non-termina$ng	
(λx.	0)	(ΩΩ)	
à  {	Normal	order}	
0	

β-conversion	
(λx.t)	t’	=	t	[t’/x]	

Rela;ng	evalua;on	order	to	
Parameter	Passing	Mechanisms	

•  Parameter	passing	modes	
–  In	
–  In/out	
–  Out	

•  Parameter	passing	mechanisms	
–  Call	by	value	(in)	
–  Call	by	reference	(in+out)	
–  Call	by	result	(out)	
–  Call	by	value/result	(in+out)	
–  Call	by	name	(in+out)	

•  Different	mechanisms	used	by	C,	Fortran,	Pascal,	C++,	Java,	
Ada	(and	Algol	60)	

17	

Call	by	name	&	Lazy	evalua;on	(call	by	need)	

•  In	call	by	name	parameter	passing	(default	in	Algol	60)	arguments	(like	
expressions)	are	passed	as	a	closure	(“thunk”)	to	the	subrou;ne	

•  The	argument	is	(re)evaluated	each	;me	it	is	used	in	the	body	
•  Haskell	realizes	lazy	evalua-on	by	using	call	by	need	parameter	passing,	

which	is	similar:	an	expression	passed	as	argument	is	evaluated	only	if	its	
value	is	needed.	

•  Unlike	call	by	name,	the	argument	is	evaluated	only	the	first	$me,	using	
memoiza-on:	the	result	is	saved	and	further	uses	of	the	argument	do	not	
need	to	re-evaluate	it	

•  Combined	with	lazy	data	constructors,	this	allows	to	construct	poten;ally	
infinite	data	structures	and	call	infinitely	recursive	func;ons	without	
necessarily	causing	non-termina;on	

•  Lazy	evalua;on	works	fine	with	purely	funcKonal	languages		
•  Side	effects	require	that	the	programmer	reason	about	the	order	that	

things	happen,	not	predictable	in	lazy	languages.	
18	

PaVerns	and	Declara;ons	

•  PaVerns	can	be	used	in	place	of	variables	
				<pat>	::=	<var>	|	<tuple>	|	<cons>	|	<record>	…	

•  Value	declara;ons	
– General	form:							<pat>	=	<exp>	
–  Examples	

		
		
		
		

–  Local	declara;ons	
		
		

myTuple = ("Foo", "Bar")
(x,y) = myTuple -- x = "Foo”, y = "Bar"
myList = [1, 2, 3, 4]
z:zs = myList -- z = 1, zs = [2,3,4]

let (x,y) = (2, "FooBar") in x * 4

19	

Func;ons	and	PaVern	Matching	

•  Anonymous	func;on	

•  Func;on	declara;on	form	
		

		

•  Examples	
		

\x -> x+1 --like Lisp lambda, function (…) in JS

<name> <pat1> = <exp1>

<name> <pat2> = <exp2> …

<name> <patn> = <expn> …

f (x,y) = x+y --argument must match pattern (x,y)

length [] = 0
length (x:s) = 1 + length(s)

20	

More	Func;ons	on	Lists		

•  Apply	func;on	to	every	element	of	list	
		
		
	

•  Reverse	a	list	
		

map f [] = []
map f (x:xs) = f x : map f xs

reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]

21	

map (\x -> x+1) [1,2,3] [2,3,4]

reverse xs =
 let rev ([], accum) = accum
 rev (y:ys, accum) = rev (ys, y:accum)
 in rev (xs, [])

List	Comprehensions	

•  Notation for constructing new lists from old:

•  Similar to “set comprehension”

 { x | x ∈ Odd ∧ x > 6 }

myData = [1,2,3,4,5,6,7]

twiceData = [2 * x | x <- myData]
-- [2,4,6,8,10,12,14]

twiceEvenData = [2 * x| x <- myData, x `mod` 2 == 0]
-- [4,8,12]

22	

More	on	List	Comprehensions	

ghci> [x | x <- [10..20], x /= 13, x /= 15, x /= 19]
[10,11,12,14,16,17,18,20] –- more predicates

ghci> [x*y | x <- [2,5,10], y <- [8,10,11]]
[16,20,22,40,50,55,80,100,110] –- more lists

length xs = sum [1 | _ <- xs] –- anonymous (don’t care) var

–- strings are lists…
removeNonUppercase st = [c | c <- st, c `elem` ['A'..'Z']]

23	

Datatype	Declara;ons		

•  Examples	
–  		

elements	are	Red,	Yellow,	Blue	

elements	are	Atom	“A”,	Atom	“B”,	…,	Number	0,		...	

elements	are	Nil,	Cons(Atom	“A”,	Nil),	…	
						Cons(Number	2,	Cons(Atom(“Bill”),	Nil)),	...	

•  General	form	
		

–  Type	name	and	constructors	must	be	Capitalized.	

data Color = Red | Yellow | Blue

data Atom = Atom String | Number Int

data List = Nil | Cons (Atom, List)

data <name> = <clause> | … | <clause>

<clause> ::= <constructor> | <contructor> <type>

24	

Datatypes	and	PaVern	Matching	

•  Recursively	defined	data	structure	
		
	
		

•  Constructors	can	be	used		
in	PaVern	Matching																		

•  Recursive	func;on	

4	

5	

7	6	

3	

2	1	

data Tree = Leaf Int | Node (Int, Tree, Tree)

Node(4, Node(3, Leaf 1, Leaf 2),
 Node(5, Leaf 6, Leaf 7))

sum (Leaf n) = n
sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2)

25	

Case	Expression	

¡ Datatype	
		

§  Case	expression	
		
	
		
	
Indenta;on	maVers	in	case	statements	in	Haskell.		

data Exp = Var Int | Const Int | Plus (Exp, Exp)

case e of
 Var n -> …
 Const n -> …
 Plus(e1,e2) -> …

26	

Func;on	Types	in	Haskell	
In	Haskell,			f :: A -> B				means	for	every	x	∈	A,	

	
					f(x)		=	

In	words,	“if	f(x)	terminates,	then	f(x)	∈	B.”	

In	ML,	func;ons	with	type	A	→	B	can	throw	an	excep;on	or	
have	other	effects,	but	not	in	Haskell	

some	element	y	=	f(x)	∈	B	
run	forever	

27	

ghci> :t not -- type of some predefined functions
not :: Bool -> Bool
ghci> :t (+)
(+) :: Num a => a -> a -> a
ghci> :t not
not :: Bool -> Bool
ghci> :t (:)
(:) :: a -> [a] -> [a]
ghci> :t elem
elem :: Eq a => a -> [a] -> Bool

Note:	if	f	is	a	standard	
binary	funcKon,	`f`	is	its	
infix	version	
If		x		is	an	infix	(binary)	
operator,	(x)	is	its	prefix	
version.		

Higher-Order	Func;ons	
•  Func;ons	that	take	other	func;ons	as	arguments	or	return	

as	a	result	are	higher-order	func;ons.	
•  Common	Examples:	

–  Map:	applies	argument	func;on	to	each	element	in	a	collec;on.	
–  Reduce:	takes	a	collec;on,	an	ini;al	value,	and	a	func;on,	and	
combines	the	elements	in	the	collec;on	according	to	the	
func;on.	

ghci> :t map
map :: (a -> b) -> [a] -> [b]
ghci> let list = [1,2,3]
ghci> map (\x -> x+1) list
[2,3,4]
ghci> :t foldl
foldl :: (b -> a -> b) -> b -> [a] -> b
ghci> foldl (\accum i -> i + accum) 0 list
6 28	

29	

 static int indexOf(char[] source, int sourceOffset, int sourceCount,
 char[] target, int targetOffset, int targetCount,
 int fromIndex) {
 ...

 char first = target[targetOffset];
 int max = sourceOffset + (sourceCount - targetCount);

 for (int i = sourceOffset + fromIndex; i <= max; i++) {
 /* Look for first character. */
 if (source[i] != first) {
 while (++i <= max && source[i] != first);
 }

 /* Found first character, now look at the rest of v2 */
 if (i <= max) {
 int j = i + 1;
 int end = j + targetCount - 1;
 for (int k = targetOffset + 1; j < end && source[j] ==
 target[k]; j++, k++);

 if (j == end) {
 /* Found whole string. */
 return i - sourceOffset;
 } } }
 return -1;
 }

Searching	a	substring:	Java	code	

Searching	a	Substring:		
Exploi;ng	Laziness	

isSubString :: String -> String -> Bool
x `isSubString` s = or [x `isPrefixOf` t
 | t <- suffixes s]

suffixes:: String -> [String]
-- All suffixes of s
suffixes[] = [[]]
suffixes(x:xs) = (x:xs) : suffixes xs

or :: [Bool] -> Bool
-- (or bs) returns True if any of the bs is True
or [] = False
or (b:bs) = b || or bs

30	

isPrefixOf :: Eq a => [a] -> [a] -> Bool
-- returns True if first list is prefix of the second
isPrefixOf [] x = True
isPrefixOf (y:ys) [] = False
isPrefixOf (y:ys)(x:xs) =
 if (x == y) then isPrefixOf ys xs else False

Polymorphism	
•  The	ability	of	associa;ng	a	single	interface	with	
en;;es	of	different	types	

•  We	focus	on		polymorphic	func$ons,	applicable	to	
arguments	of	different	types	

Polymorphism

Universal

Ad hoc

Parametric

Inclusion

Overloading

Inheritance		

Explicit:	java	Generics,		
	C++	Templates	

Implicit:	Type	Inference	

Generic	Polymorphism	in	Haskell	
•  Type	declara;ons	not	necessary:	Type	Inference	algorithm	

computes	the	most	general	type	of	a	declared	func;on	
•  Based	on	the	original	algorithm	invented	by	Haskell	Curry	

and	Robert	Feys	for	the	simply	typed	lambda	calculus	in	
1958	

•  Revised	and	extended	by	Hindley	(1969)	and	Milner	(1978)	
•  Currently	used	in	many	languages:	ML,	Ada,	Haskell,	C#	3.0,	

F#,	Visual	Basic	.Net	9.0.	Have	been	plans	for	Fortress,	Perl	
6,	C++0x,…	

•  Guaranteed	to	produce	the	most	general	type.	
•  Example	of	a	flow-insensi;ve	sta;c	analysis	algorithm	
•  You	will	study	it	in	next	semester…	

32	

Polymorphism	vs	Overloading	
•  (Parametric)	polymorphism	
–  Single	algorithm	may	be	given	many	types	
–  Type	variable	(implicit	or	explicit)	may	be	replaced	by	any		
type	(almost…	->	bounded	polymorphism)	

–  if	f::t→t then	f::Int→Int,	f::Bool→Bool,	...				
•  Overloading	
–  A	single	symbol	may	refer	to	more	than	one	algorithm.	
–  Each	algorithm	may	have	different	type.	
–  Choice	of	algorithm	determined	by	type	context.	
–  +					has	types				Int → Int → Int and		
Float → Float → Float,		
but	not	t→t→t for	arbitrary	t.	

33	

Core	Haskell	

•  Basic	Types	
–  Unit	
–  Booleans	
–  Integers		
–  Strings	
–  Reals	
–  Tuples	
–  Lists	
–  Records	

•  PaVerns	
•  Declara;ons	
•  Func;ons	
•  Polymorphism	
•  Type	declara;ons	
•  Type	Classes	
•  Monads	
•  Excep;ons	

34	

Why	Overloading?	

•  Many	useful	func;ons	are	not	parametric	
•  Can	list	membership	work	for	any	type?	

– No!		Only	for	types	w	for	that	support	equality.	
•  Can	list	sor;ng	work	for	any	type?	

– No!		Only	for	types	w	that	support	ordering.	

member :: [w] -> w -> Bool

sort :: [w] -> [w]

35	

Overloading	Arithme;c,	Take	1	
•  Allow	func;ons	containing	overloaded	symbols	to	define	

mul;ple	func;ons:	

•  But	consider:	

•  Approach	not	widely	used	because	of	exponen;al	growth	in	
number	of	versions.	

square x = x * x -- legal
-- Defines two versions:
-- Int -> Int and Float -> Float

squares (x,y,z) =
 (square x, square y, square z)
-- There are 8 possible versions!

36	

Overloading	Arithme;c,	Take	2	

•  Basic	opera;ons	such	as	+	and	*	can	be	overloaded,	
but	not	func;ons	defined	from	them	

•  Standard	ML	uses	this	approach.	
•  Not	sa;sfactory:	Programmer	cannot	define	
func;ons	that	implementa;on	might	support	

3 * 3 -- legal
3.14 * 3.14 -- legal
square x = x * x -- Int -> Int
square 3 -- legal
square 3.14 -- illegal

37	

Overloading	Equality,	Take	1	
•  Equality	defined	only	for	types	that	admit	equality:							

types	not	containing	funcKon	or	abstract	types.	

•  Overload	equality	like	arithme;c	ops	+	and	*	in	SML.	
•  But	then	we	can’t	define	func;ons	using	‘==‘:	

•  Approach	adopted	in	first	version	of	SML.	

3 * 3 == 9 -- legal
'a' == 'b' -- legal
\x->x == \y->y+1 -- illegal

member [] y = False
member (x:xs) y = (x==y) || member xs y

member [1,2,3] 3 -- ok if default is Int
member "Haskell" 'k' -- illegal

38	

Overloading	Equality,	Take	2	

•  Make	type	of	equality	fully	polymorphic	

•  Type	of	list	membership	func;on	

•  Miranda	used	this	approach.	
–  Equality	applied	to	a	funcKon	yields	a	run;me	error	
–  Equality	applied	to	an	abstract	type	compares	the	
underlying	representa;on,	which	violates	abstrac;on	
principles	

(==) :: a -> a -> Bool

member :: [a] -> a -> Bool

39	

Overloading	Equality,	Take	3	

•  Make	equality	polymorphic	in	a	limited	way:		

where	a(==)	is	type	variable	restricted	to	types	with	equality	
•  Now	we	can	type	the	member	func;on:	

•  Approach	used	in	SML	today,	where	the	type	a(==)	is	
called	an	“eqtype	variable”	and	is	wriVen	''a.		

(==) :: a(==) -> a(==) -> Bool

member :: a(==) -> [a(==)] -> Bool
member 4 [2,3] :: Bool
member ‘c’ [‘a’, ‘b’, ‘c’] :: Bool
member (\y->y *2) [\x->x, \x->x + 2] -- type error

40	

Type	Classes	

•  Type	classes	solve	these	problems	
– Provide	concise	types	to	describe	overloaded	
func;ons,	so	no	exponen;al	blow-up	

– Allow	users	to	define	func;ons	using	overloaded	
opera;ons,	eg,	square,	squares,	and	member	

– Allow	users	to	declare	new	collec;ons	of	
overloaded	func;ons:	equality	and	arithme;c	
operators	are	not	privileged	built-ins	

– Generalize	ML’s	eqtypes	to	arbitrary	types	
– Fit	within	type	inference	framework	

41	

Intui;on	

•  A	func;on	to	sort	lists	can	be	passed	a	
comparison	operator	as	an	argument:	

– This	allows	the	func;on	to	be	parametric	

•  We	can	built	on	this	idea	…	

qsort:: (a -> a -> Bool) -> [a] -> [a]
qsort cmp [] = []
qsort cmp (x:xs) = qsort cmp (filter (cmp x) xs)

 ++ [x] ++
 qsort cmp (filter (not.cmp x) xs)

42	

Intui;on		(con;nued)	

•  Consider	the	“overloaded”	parabola	func;on		

•  We	can	rewrite	the	func;on	to	take	the	
operators	it	contains	as	an	argument	

– The	extra	parameter	is	a	“dic;onary”	that	
provides	implementa;ons	for	the	overloaded	ops.		

– We	have	to	rewrite	all	calls	to	pass	appropriate	
implementa;ons	for	plus	and	;mes:	

parabola x = (x * x) + x

parabola’ (plus, times) x = plus (times x x) x

y = parabola’(intPlus,intTimes) 10
z = parabola’(floatPlus, floatTimes) 3.14

43	

Systematic programming style

-- Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)

-- Accessor functions
get_plus :: MathDict a -> (a->a->a)
get_plus (MkMathDict p t) = p

get_times :: MathDict a -> (a->a->a)
get_times (MkMathDict p t) = t

-- “Dictionary-passing style”
parabola :: MathDict a -> a -> a
parabola dict x = let plus = get_plus dict
 times = get_times dict
 in plus (times x x) x

Type class declarations
will generate Dictionary
type and selector
functions

44	

Systematic programming style

-- Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)

-- Dictionary construction
intDict = MkMathDict intPlus intTimes
floatDict = MkMathDict floatPlus floatTimes

-- Passing dictionaries
y = parabola intDict 10
z = parabola floatDict 3.14

Type class instance declarations
produce instances of the Dictionary

Compiler will add a dictionary
parameter and rewrite the body as
necessary

45	

Type	Class	Design	Overview	

•  Type	class	declara;ons		
– Define	a	set	of	opera;ons,		give	the	set	a	name	
–  Example:	Eq a type	class	

•  opera;ons	==	and	\=	with	type a -> a -> Bool
•  Type	class	instance	declara;ons	
–  Specify	the	implementa;ons	for	a	par;cular	type	
–  For	Int instance,	==	is	defined	to	be	integer	equality	

•  Qualified	types	(or	Type	Constraints)	
–  Concisely	express	the	opera;ons	required	on	
otherwise	polymorphic	type	

member:: Eq w => w -> [w] -> Bool
46	

If	a	func;on	works	for	every	type	with	par;cular	
proper;es,	the	type	of	the	func;on	says	just	that:	

	
	
	
	
Otherwise,	it	must	work	for	any	type	

Qualified	Types	

Member :: Eq w => w -> [w] -> Bool

sort :: Ord a => [a] -> [a]
serialise :: Show a => a -> String
square :: Num n => n -> n
squares ::(Num t, Num t1, Num t2) =>
 (t, t1, t2) -> (t, t1, t2)

“for all types w that
support the Eq

operations”

reverse :: [a] -> [a]
filter :: (a -> Bool) -> [a] -> [a]

47	

Type	Classes	
square :: Num n => n -> n
square x = x*x

class Num a where
 (+) :: a -> a -> a
 (*) :: a -> a -> a
 negate :: a -> a
 ...etc...

The class declaration
says what the Num
operations are

Works for any type
‘n’ that supports
the Num operations

instance Num Int where
 a + b = intPlus a b
 a * b = intTimes a b
 negate a = intNeg a
 ...etc...

An instance
declaration for a
type T says how the
Num operations are
implemented on T’s

intPlus :: Int -> Int -> Int
intTimes :: Int -> Int -> Int
etc, defined as primitives 48	

Compiling	Overloaded	Func;ons	

square :: Num n => n -> n
square x = x*x

square :: Num n -> n -> n
square d x = (*) d x x

The “Num n =>” turns into an extra value argument to
the function. It is a value of data type Num n and it
represents a dictionary of the required operations.

When	you	write	this...	 ...the	compiler	generates	this	

A value of type (Num n) is a dictionary
of the Num operations for type n

49	

Compiling	Type	Classes	

class Num n where
 (+) :: n -> n -> n
 (*) :: n -> n -> n
 negate :: n -> n
 ...etc...

The class decl translates
to:

A data type decl for Num

A selector function for
each class operation

data Num n
 = MkNum (n -> n -> n)

 (n -> n -> n)
 (n -> n)
 ...etc...

...
(*) :: Num n -> n -> n -> n
(*) (MkNum _ m _ ...) = m

When	you	write	this...	 ...the	compiler	generates	this	

A value of type (Num n) is a dictionary
of the Num operations for type n

50	

square :: Num n => n -> n
square x = x*x

square :: Num n -> n -> n
square d x = (*) d x x

dNumInt :: Num Int
dNumInt = MkNum intPlus
 intTimes
 intNeg
 ...

Compiling	Instance	Declara;ons	

square :: Num n => n -> n
square x = x*x

square :: Num n -> n -> n
square d x = (*) d x x

instance Num Int where
 a + b = intPlus a b
 a * b = intTimes a b
 negate a = intNeg a
 ...etc...

When	you	write	this...	 ...the	compiler	generates	this	

A value of type (Num n) is a dictionary
of the Num operations for type n

An instance decl for type T
translates to a value
declaration for the Num
dictionary for T

51	

Implementa;on	Summary	
•  The	compiler	translates	each	func;on	that	uses	an	

overloaded	symbol	into	a	func;on	with	an	extra	
parameter:	the	dicKonary.	

•  References	to	overloaded	symbols	are	rewriVen	by	the	
compiler	to	lookup	the	symbol	in	the	dic;onary.	

•  The	compiler	converts	each	type	class	declara;on	into	a	
dic;onary	type	declara;on	and	a	set	of	selector	func;ons.	

•  The	compiler	converts	each	instance	declara;on	into	a	
dic;onary	of	the	appropriate	type.	

•  The	compiler	rewrites	calls	to	overloaded	func;ons	to	pass	
a	dic;onary.		It	uses	the	sta;c,	qualified	type	of	the	
func;on	to	select	the	dic;onary.	

52	

Functions with Multiple Dictionaries

squares :: (Num a, Num b, Num c) => (a, b, c) -> (a, b, c)
squares(x,y,z) = (square x, square y, square z)

squares :: (Num a, Num b, Num c) -> (a, b, c) -> (a, b, c)
squares (da,db,dc) (x, y, z) =
 (square da x, square db y, square dc z)

Pass appropriate
dictionary on to each
square function.

Note the concise type for
the squares function!

53	

Compositionality

sumSq :: Num n => n -> n -> n
sumSq x y = square x + square y

sumSq :: Num n -> n -> n -> n
sumSq d x y = (+) d (square d x)
 (square d y)

Pass on d to square
Extract addition
operation from d

Overloaded	func;ons	can	be	defined	from	other	
overloaded	func;ons:	

54	

Compositionality

class Eq a where
 (==) :: a -> a -> Bool

instance Eq Int where
 (==) = intEq -- intEq primitive equality

instance (Eq a, Eq b) => Eq(a,b)
 (u,v) == (x,y) = (u == x) && (v == y)

instance Eq a => Eq [a] where
 (==) [] [] = True
 (==) (x:xs) (y:ys) = x==y && xs == ys
 (==) _ _ = False

Build	compound	instances	from	simpler	ones:	

55	

Compound Translation

class Eq a where
 (==) :: a -> a -> Bool
instance Eq a => Eq [a] where
 (==) [] [] = True
 (==) (x:xs) (y:ys) = x==y && xs == ys
 (==) _ _ = False

data Eq = MkEq (a->a->Bool) -- Dictionary type
(==) (MkEq eq) = eq -- Selector
dEqList :: Eq a -> Eq [a] -- List Dictionary
dEqList d = MkEq eql
 where
 eql [] [] = True
 eql (x:xs) (y:ys) = (==) d x y && eql xs ys
 eql _ _ = False

Build	compound	instances	from	simpler	ones.		

56	

Many	Type	Classes	
•  Eq:	equality	
•  Ord:	comparison	
•  Num:	numerical	opera;ons	
•  Show:	convert	to	string	
•  Read:	convert	from	string	
•  Testable,	Arbitrary:	tes;ng.	
•  Enum:	ops	on	sequen;ally	ordered	types	
•  Bounded:	upper	and	lower	values	of	a	type	
•  Generic	programming,	reflec;on,	monads,	…	
•  And	many	more.	
	 57	

Subclasses	
•  We	could	treat	the	Eq	and	Num	type	classes	separately	

	
–  But	we	expect	any	type	suppor;ng	Num	to	also	support	Eq	

•  A	subclass	declara;on	expresses	this	rela;onship:	

	
	
•  With	that	declara;on,	we	can	simplify	the	type	of	the	func;on	

memsq :: (Eq a, Num a) => a -> [a] -> Bool
memsq x xs = member (square x) xs

class Eq a => Num a where
 (+) :: a -> a -> a
 (*) :: a -> a -> a

memsq :: Num a => a -> [a] -> Bool
memsq x xs = member (square x) xs

58	

59	

Default	Methods	

•  Type	classes	can	define	“default	methods”	

•  Instance	declara;ons	can	override	default	by	
providing	a	more	specific	defini;on.	

-- Minimal complete definition:
-- (==) or (/=)
class Eq a where
 (==) :: a -> a -> Bool
 x == y = not (x /= y)
 (/=) :: a -> a -> Bool
 x /= y = not (x == y)

60	

Deriving	
•  For	Read,	Show,	Bounded,	Enum,	Eq,	and	Ord,	the	compiler	

can	generate	instance	declara;ons	automa;cally	

–  Ad	hoc	:	deriva;ons	apply	only	to	types	where	deriva;on	code	works	

data Color = Red | Green | Blue
 deriving (Show, Read, Eq, Ord)

Main> show Red
“Red”
Main> Red < Green
True
Main>let c :: Color = read “Red”
Main> c
Red

61	

Numeric Literals

class Num a where
 (+) :: a -> a -> a
 (-) :: a -> a -> a
 fromInteger :: Integer -> a
 ...

inc :: Num a => a -> a
inc x = x + 1

Even literals are
overloaded.

1 :: (Num a) => a

“1” means

“fromInteger 1”

Advantages:

-  Numeric literals can be interpreted as values

of any appropriate numeric type

-  Example: 1 can be an Integer or a Float or a

user-defined numeric type.

62	

Type	Inference	
•  Type	inference	infers	a	qualified	type	Q	=>	T	

–  T	is	a	Hindley	Milner	type,	inferred	as	usual	
–  Q	is	set	of	type	class	predicates,	called	a	constraint	

•  Consider	the	example	func;on:	

–  Type	T	is				a	->	[a]	->	Bool	
–  Constraint	Q	is		{	Ord	a,	Eq	a,	Eq	[a]}	

example z xs =
 case xs of
 [] -> False
 (y:ys) -> y > z || (y==z && ys == [z])

Ord a because y>z

Eq a because y==z

Eq [a] because ys == [z]

63	

Type	Inference	
•  Constraint	sets	Q	can	be	simplified:	
–  Eliminate	duplicates	

•  {Eq	a,	Eq	a}	simplifies	to	{Eq	a}	
– Use	an	instance	declaraKon	

•  If	we	have	instance	Eq	a	=>	Eq	[a],																																	
•  then	{Eq	a,	Eq	[a]}	simplifies	to	{Eq	a}	

– Use	a	subclass	declaraKon	
•  If	we	have	class	Eq	a	=>	Ord	a	where	...,																										
•  then	{Ord	a,	Eq	a}	simplifies	to	{Ord	a}	

•  Applying	these	rules,		
–  {Ord	a,	Eq	a,	Eq[a]}	simplifies	to	{Ord	a}	

64	

Type	Inference	

•  Pu�ng	it	all	together:	

– T	=	a	->	[a]	->	Bool	
– Q	=	{Ord	a,	Eq	a,	Eq	[a]}	
– Q		simplifies	to	{Ord	a}	
–  example :: {Ord a} => a -> [a] -> Bool

example z xs =
 case xs of
 [] -> False
 (y:ys) -> y > z || (y==z && ys ==[z])

65	

Detec;ng	Errors	

•  Errors	are	detected	when	predicates	are	
known	not	to	hold:	

Prelude> ‘a’ + 1
 No instance for (Num Char)
 arising from a use of `+' at <interactive>:1:0-6
 Possible fix: add an instance declaration for (Num Char)
 In the expression: 'a' + 1
 In the definition of `it': it = 'a' + 1

Prelude> (\x -> x)
 No instance for (Show (t -> t))
 arising from a use of `print' at <interactive>:1:0-4
 Possible fix: add an instance declaration for (Show (t -> t))
 In the expression: print it
 In a stmt of a 'do' expression: print it

66	

More	Type	Classes:	Constructors	

•  Type	Classes	are	predicates	over	types	
•  [Type]	Constructor	Classes	are	predicates	
over	type	constructors	

•  Example:	Map	func;on	useful	on	many	
Haskell	types	

•  Lists:	

	

	

map:: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

result = map (\x->x+1) [1,2,4]

67	

Constructor	Classes	
•  More	examples	of	map	func;on	

data Tree a = Leaf a | Node(Tree a, Tree a)
 deriving Show

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f (Leaf x) = Leaf (f x)
mapTree f (Node(l,r)) = Node (mapTree f l, mapTree f r)

t1 = Node(Node(Leaf 3, Leaf 4), Leaf 5)
result = mapTree (\x->x+1) t1

68	

data Opt a = Some a | None
 deriving Show

mapOpt :: (a -> b) -> Opt a -> Opt b
mapOpt f None = None
mapOpt f (Some x) = Some (f x)

o1 = Some 10
result = mapOpt (\x->x+1) o1

Constructor	Classes	

•  All	map	func;ons	share	the	same	structure	

•  They	can	all	be	wriVen	as:	

– where	g	is:	
				[-]	for	lists,	Tree	for	trees,	and	Opt	for	op;ons	

•  Note	that	g	is	a	func;on	from	types	to	types,	i.e.	
a	type	constructor	

map :: (a -> b) -> [a] -> [b]
mapTree :: (a -> b) -> Tree a -> Tree b
mapOpt :: (a -> b) -> Opt a -> Opt b

fmap:: (a -> b) -> g a -> g b

69	

Constructor	Classes	

•  Capture	this	paVern	in	a	constructor	class,		
					
	
					A	type	class	where	the	predicate	is	over		
					type	constructors	

class Functor g where
 fmap :: (a -> b) -> g a -> g b

70	

Constructor	Classes	
class Functor f where
 fmap :: (a -> b) -> f a -> f b

instance Functor [] where
 fmap f [] = []
 fmap f (x:xs) = f x : fmap f xs

instance Functor Tree where
 fmap f (Leaf x) = Leaf (f x)
 fmap f (Node(t1,t2)) = Node(fmap f t1, fmap f t2)

instance Functor Opt where
 fmap f (Some s) = Some (f s)
 fmap f None = None

71	

Constructor	Classes	
•  Or	by	reusing	the	defini;ons	map,	mapTree,	and	mapOpt:	

class Functor f where
 fmap :: (a -> b) -> f a -> f b

instance Functor [] where
 fmap = map

instance Functor Tree where
 fmap = mapTree

instance Functor Opt where
 fmap = mapOpt

72	

Constructor	Classes	
•  We	can	then	use	the	overloaded	symbol	fmap	to	map	over	

all	three	kinds	of	data	structures:	

•  The	Functor constructor	class	is	part	of	the	standard	
Prelude	for	Haskell	

*Main> fmap (\x->x+1) [1,2,3]
[2,3,4]
it :: [Integer]

*Main> fmap (\x->x+1) (Node(Leaf 1, Leaf 2))
Node (Leaf 2,Leaf 3)
it :: Tree Integer

*Main> fmap (\x->x+1) (Some 1)
Some 2
it :: Opt Integer

73	

