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Historical	Origins	

•  The	impera;ve	and	func;onal	models	grew	out	of	work	
undertaken	Alan	Turing,	Alonzo	Church,	Stephen	
Kleene,	Emil	Post,	etc.	~1930s	
–  different	formaliza;ons	of	the	no;on	of	an	algorithm,	or	
effec$ve	procedure,	based	on	automata,	symbolic	
manipula;on,	recursive	func;on	defini;ons,	and	
combinatorics	

•  These	results	led	Church	to	conjecture	that	any	
intui;vely	appealing	model	of	compu;ng	would	be	
equally	powerful	as	well	
–  this	conjecture	is	known	as	Church’s	thesis	
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Historical	Origins	
•  Church’s	model	of	compu;ng	is	called	the	lambda	
calculus	
–  based	on	the	no;on	of	parameterized	expressions	(with	
each	parameter	introduced	by	an	occurrence	of	the	leVer	λ,	
hence	the	nota;on’s	name)	

–  allows	one	to	define	mathema;cal	func;ons	in	a	
construc;ve/effec;ve	way		

–  Lambda	calculus	was	the	inspira;on	for	func;onal	
programming		

–  computa;on	proceeds	by	subs;tu;ng	parameters	into	
expressions,	just	as	one	computes	in	a	high	level	func;onal	
program	by	passing	arguments	to	func;ons	
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Func;onal	Programming	Concepts	

•  Func;onal	languages	such	as	Lisp,	Scheme,	
FP,	ML,	Miranda,	and	Haskell	are	an	
aVempt	to	realize	Church’s	lambda	calculus	
in	prac;cal	form	as	a	programming	language	

•  The	key	idea:	do	everything	by	composing	
func;ons	
– no	mutable	state	
– no	side	effects	
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Func;onal	Programming	Concepts	
•  Necessary	features,	many	of	which	are	missing	in	
some	impera;ve	languages	
–  1st	class	and	high-order	func;ons	
–  recursion	

•  Takes	the	place	of	itera;on	
–  powerful	list	facili;es	

•  Recursive	func;on	exploit	recursive	defini;on	of	lists		
–  serious	polymorphism	

•  Relevance	of	Container/Collec;ons	
–  fully	general	aggregates	

•  Data	structures	cannot	be	modified,	have	to	be	re-created	
–  structured	func;on	returns	
–  garbage	collec;on	

•  Unlimited	extent	for	locally	allocated	data	structures	
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Other	Related	Concepts		
•  Lisp	also	has	some	features	that	are	not	
necessary	present	in	other	func;onal	languages:	
–  programs	are	data	
–  self-defini;on	
–  read-evaluate-print	interac;ve	loop	

•  Variants	of	LISP	
–  	(Original)	Lisp:	purely	func;onal,	dynamically	scoped	
as	early	variants		

–  Common	Lisp:	current	standard,	sta;cally	scoped,	
very	complex	

–  Scheme:	sta;cally	scoped,	very	elegant,	used	for	
teaching	



Other	func;onal	languages:	the	ML	family	

•  Robin	Milner	(Turing	award	in	1991,	CCS,	Pi-calculus,	…)	
•  Sta;cally	typed,	general-purpose	programming	language	

–  “Meta-Language”	of	the	LCF	theorem	proving	system	
•  Type	safe,	with	type	inference	and	formal	seman;cs	
•  Compiled	language,	but	intended	for	interac;ve	use		
•  Combina;on	of	Lisp	and	Algol-like	features	

–  Expression-oriented	
–  Higher-order	func;ons	
–  Garbage	collec;on	
–  Abstract	data	types	
–  Module	system	
–  Excep;ons	
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Other	func;onal	languages:	Haskell	
•  Designed	by	commiVee	in	80’s	and	90’s	to	unify	research	efforts	in	lazy	

languages	
–  Evolu;on	of	Miranda	
–  Haskell	1.0	in	1990,	Haskell	‘98,	Haskell’	ongoing		

•  Several	features	in	common	with	ML,	but	some	differ:	
•  Types	and	type	checking	

–  Type	inference	
–  Parametric	polymorphism	
–  Ad	hoc	polymorphism	(aka	overloading)	

•  Control	
–  Lazy	vs.	eager	evaluaKon	
–  Tail	recursion	and	con;nua;ons	

•  Purely	func;onal	
–  Precise	management	of	effects	
–  Rise	of	mul;-core,	parallel	programming	likely	to	make	minimizing	state	much	

more	important	
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The	Glasgow	Haskell	Compiler	[GHC]	
www.haskell.org/plalorm	
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Core	Haskell	

•  Basic	Types	
–  Unit	
–  Booleans	
–  Integers		
–  Strings	
–  Reals	
–  Tuples	
–  Lists	
–  Records	

•  PaVerns	
•  Declara;ons	
•  Func;ons	
•  Polymorphism	
•  Type	declara;ons	
•  Type	Classes	
•  Monads	
•  Excep;ons	
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Overview	of	Haskell	

•  Interac;ve	Interpreter	(ghci):	read-eval-print	
–  ghci	infers	type	before	compiling	or	execu;ng	
–  Type	system	does	not	allow	casts	or	similar	things!	

•  Examples	

Prelude> (5+3)-2 
6 
it :: Integer 
Prelude> if 5>3 then “Harry” else “Hermione” 
“Harry” 
it :: [Char]      -- String is equivalent to [Char] 
Prelude> 5==4 
False 
it :: Bool 
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Overview	by	Type	
•  Booleans	

•  Integers	

•  Strings	
		

•  Floats	

True, False :: Bool 
if …  then … else …  --types must match  

0, 1, 2, … :: Integer 
+, * , …   :: Integer  -> Integer -> Integer 

"Ron Weasley"  

1.0, 2, 3.14159, …  --type classes to disambiguate 
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Simple	Compound	Types	

•  Tuples	

•  Lists	

•  Records	

(4, 5, "PLP") :: (Integer, Integer, String) 

[] :: [a]                  -- NIL, polymorphic type 
1 : [2, 3, 4] :: [Integer]   -- infix cons notation 
[1,2]++[3,4] :: [Integer]   -- concatenation 

data Person = Person {firstName :: String,       
                      lastName  :: String}  
hg = Person { firstName = “Hermione”,  
              lastName  = “Granger”} 
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More	on	list	constructors	
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ghci> [1..20]    -- ranges 
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]   
ghci> ['a'..'z']   
"abcdefghijklmnopqrstuvwxyz"   
ghci> [3,6..20]   -- ranges with step 
[3,6,9,12,15,18] 
ghci> [7,6..1] 
[7,6,5,4,3,2,1] 

ghci> take 10 [1..]    -- (prefix of) infinite lists 
[1,2,3,4,5,6,7,8,9,10]   
ghci> take 10 (cycle [1,2]) 
[1,2,1,2,1,2,1,2,1,2]   
ghci> take 10 (repeat 5) 
[5,5,5,5,5,5,5,5,5,5]  

How	does	it	work???	



Laziness	
•  Haskell	is	a	lazy	language	
•  Func;ons	and	data	constructors	don’t	
evaluate	their	arguments	un;l	they	need	
them	

•  Programmers	can	write	control-flow	operators	
that	have	to	be	built-in	in	eager	languages	

cond :: Bool -> a -> a -> a 
cond True  t e = t 
cond False t e = e 

(||) :: Bool -> Bool -> Bool 
True  || x = True 
False || x = x 

Short-
circuiting  

“or”
 15	



Applica;ve	and	Normal	Order	evalua;on	
•  Applica;ve	Order	evalua;on	

–  Arguments	are	evaluated	before	applying	the	func;on	–	
aka	Eager	evalua$on,	parameter	passing	by	value	

•  Normal	Order	evalua;on	
–  Func;on	evaluated	first,	arguments	if	and	when	needed	
–  Sort	of	parameter	passing	by	name	
–  Some	evalua;on	can	be	repeated	

•  Church-Rosser	
–  If	evalua;on	terminates,	the	result	(normal	form)	is	

unique	
–  If	some	evalua;on	terminates,	normal	order	evalua;on	

terminates	
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ApplicaKve	order	
(λx.(+	x	x))	(+	3	2)		
à (λx.(+	x	x))	5	
à 	(+	5	5)	
à 10	

Normal	order	
(λx.(+	x	x))	(+	3	2)		
à (+		(+	3	2)	(+	3	2))	
à (+	5		(+	3	2))	
à (+	5	5)	
à 10	

Define		Ω	=	(λx.x	x)	
Then	
ΩΩ		=	(λx.x	x)	(λx.x	x)		
à x	x	[(λx.x	x)/x]	
à (λx.x	x)	(λx.x	x)	=	ΩΩ	
à	…		non-termina$ng	
(λx.	0)	(ΩΩ)	
à  {	Applica$ve	order}	
…	non-termina$ng	
(λx.	0)	(ΩΩ)	
à  {	Normal	order}	
0	

β-conversion	
(λx.t)	t’	=	t	[t’/x]	



Rela;ng	evalua;on	order	to	
Parameter	Passing	Mechanisms	

•  Parameter	passing	modes	
–  In	
–  In/out	
–  Out	

•  Parameter	passing	mechanisms	
–  Call	by	value	(in)	
–  Call	by	reference	(in+out)	
–  Call	by	result	(out)	
–  Call	by	value/result	(in+out)	
–  Call	by	name	(in+out)	

•  Different	mechanisms	used	by	C,	Fortran,	Pascal,	C++,	Java,	
Ada	(and	Algol	60)	
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Call	by	name	&	Lazy	evalua;on	(call	by	need)	

•  In	call	by	name	parameter	passing	(default	in	Algol	60)	arguments	(like	
expressions)	are	passed	as	a	closure	(“thunk”)	to	the	subrou;ne	

•  The	argument	is	(re)evaluated	each	;me	it	is	used	in	the	body	
•  Haskell	realizes	lazy	evalua-on	by	using	call	by	need	parameter	passing,	

which	is	similar:	an	expression	passed	as	argument	is	evaluated	only	if	its	
value	is	needed.	

•  Unlike	call	by	name,	the	argument	is	evaluated	only	the	first	$me,	using	
memoiza-on:	the	result	is	saved	and	further	uses	of	the	argument	do	not	
need	to	re-evaluate	it	

•  Combined	with	lazy	data	constructors,	this	allows	to	construct	poten;ally	
infinite	data	structures	and	call	infinitely	recursive	func;ons	without	
necessarily	causing	non-termina;on	

•  Lazy	evalua;on	works	fine	with	purely	funcKonal	languages		
•  Side	effects	require	that	the	programmer	reason	about	the	order	that	

things	happen,	not	predictable	in	lazy	languages.	
18	



PaVerns	and	Declara;ons	

•  PaVerns	can	be	used	in	place	of	variables	
				<pat>	::=	<var>	|	<tuple>	|	<cons>	|	<record>	…	

•  Value	declara;ons	
– General	form:							<pat>	=	<exp>	
–  Examples	

		
		
		
		

–  Local	declara;ons	
		
		

myTuple = ("Foo", "Bar") 
(x,y)  = myTuple  --  x = "Foo”, y = "Bar" 
myList = [1, 2, 3, 4] 
z:zs  = myList  --  z = 1, zs = [2,3,4] 

let (x,y) = (2, "FooBar") in x * 4  
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Func;ons	and	PaVern	Matching	

•  Anonymous	func;on	

•  Func;on	declara;on	form	
		

		

•  Examples	
		

\x -> x+1     --like Lisp lambda, function (…) in JS 

<name> <pat1>  = <exp1>

<name> <pat2>  = <exp2> …

<name> <patn>  = <expn> …


f (x,y) = x+y    --argument must match pattern (x,y) 
 
length [] = 0    
length (x:s) = 1 + length(s) 
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More	Func;ons	on	Lists		

•  Apply	func;on	to	every	element	of	list	
		
		
	

•  Reverse	a	list	
		

map f [] = [] 
map f (x:xs) = f x : map f xs 

reverse [] = [] 
reverse (x:xs) = (reverse xs) ++ [x] 
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map (\x -> x+1) [1,2,3]               [2,3,4] 

reverse xs = 
    let rev ( [], accum ) = accum 
         rev ( y:ys, accum ) = rev ( ys, y:accum ) 
    in rev ( xs, [] ) 



List	Comprehensions	

•  Notation for constructing new lists from old:


•  Similar to “set comprehension”

     { x | x ∈ Odd  ∧  x > 6 }


myData = [1,2,3,4,5,6,7] 
 
twiceData = [2 * x | x <- myData] 
-- [2,4,6,8,10,12,14] 
  
twiceEvenData = [2 * x| x <- myData, x `mod` 2 == 0] 
-- [4,8,12] 
 

22	



More	on	List	Comprehensions	

ghci> [ x | x <- [10..20], x /= 13, x /= 15, x /= 19]   
[10,11,12,14,16,17,18,20] –- more predicates 
 
ghci> [ x*y | x <- [2,5,10], y <- [8,10,11]]   
[16,20,22,40,50,55,80,100,110]    –- more lists 
 
length xs = sum [1 | _ <- xs] –- anonymous (don’t care) var 
 
–- strings are lists… 
removeNonUppercase st = [ c | c <- st, c `elem` ['A'..'Z']] 
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Datatype	Declara;ons		

•  Examples	
–  		

elements	are	Red,	Yellow,	Blue	

elements	are	Atom	“A”,	Atom	“B”,	…,	Number	0,		...	

elements	are	Nil,	Cons(Atom	“A”,	Nil),	…	
						Cons(Number	2,	Cons(Atom(“Bill”),	Nil)),	...	

•  General	form	
		

–  Type	name	and	constructors	must	be	Capitalized.	

data Color = Red | Yellow | Blue 

data Atom = Atom String | Number Int 

data List    = Nil  |   Cons (Atom, List) 

data <name> = <clause> | … | <clause>

<clause> ::= <constructor> | <contructor> <type>
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Datatypes	and	PaVern	Matching	

•  Recursively	defined	data	structure	
		
	
		

•  Constructors	can	be	used		
in	PaVern	Matching																		

•  Recursive	func;on	

4	

5	

7	6	

3	

2	1	

data Tree = Leaf Int | Node (Int, Tree, Tree) 

Node(4, Node(3, Leaf 1, Leaf 2), 
        Node(5, Leaf 6, Leaf 7))          

sum (Leaf n) = n 
sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2) 
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Case	Expression	

¡ Datatype	
		

§  Case	expression	
		
	
		
	
Indenta;on	maVers	in	case	statements	in	Haskell.		

data Exp = Var Int | Const Int | Plus (Exp, Exp) 

case e of 
     Var n ->  …    
     Const n -> … 
     Plus(e1,e2) -> … 
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Func;on	Types	in	Haskell	
In	Haskell,			f :: A -> B				means	for	every	x	∈	A,	

	
					f(x)		=	

In	words,	“if	f(x)	terminates,	then	f(x)	∈	B.”	

In	ML,	func;ons	with	type	A	→	B	can	throw	an	excep;on	or	
have	other	effects,	but	not	in	Haskell	

some	element	y	=	f(x)	∈	B	
run	forever	
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ghci> :t not    -- type of some predefined functions 
not :: Bool -> Bool 
ghci> :t (+) 
(+) :: Num a => a -> a -> a 
ghci> :t not 
not :: Bool -> Bool 
ghci> :t (:) 
(:) :: a -> [a] -> [a] 
ghci> :t elem 
elem :: Eq a => a -> [a] -> Bool 

Note:	if	f	is	a	standard	
binary	funcKon,	`f`	is	its	
infix	version	
If		x		is	an	infix	(binary)	
operator,	(x)	is	its	prefix	
version.		



Higher-Order	Func;ons	
•  Func;ons	that	take	other	func;ons	as	arguments	or	return	

as	a	result	are	higher-order	func;ons.	
•  Common	Examples:	

–  Map:	applies	argument	func;on	to	each	element	in	a	collec;on.	
–  Reduce:	takes	a	collec;on,	an	ini;al	value,	and	a	func;on,	and	
combines	the	elements	in	the	collec;on	according	to	the	
func;on.	

ghci> :t map 
map :: (a -> b) -> [a] -> [b] 
ghci> let list = [1,2,3] 
ghci> map (\x -> x+1) list  
[2,3,4] 
ghci> :t foldl 
foldl :: (b -> a -> b) -> b -> [a] -> b 
ghci> foldl (\accum i -> i + accum) 0 list 
6  28	
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 static int indexOf(char[] source, int sourceOffset, int sourceCount, 
                       char[] target, int targetOffset, int targetCount, 
                       int fromIndex) { 
        ... 

  
        char first  = target[targetOffset]; 
        int max = sourceOffset + (sourceCount - targetCount); 

  
        for (int i = sourceOffset + fromIndex; i <= max; i++) { 
            /* Look for first character. */ 
            if (source[i] != first) { 
                while (++i <= max && source[i] != first); 
            } 
 
            /* Found first character, now look at the rest of v2 */ 
            if (i <= max) { 
                int j = i + 1; 
                int end = j + targetCount - 1; 
                for (int k = targetOffset + 1; j < end && source[j] == 
                         target[k]; j++, k++); 
 
                if (j == end) { 
                    /* Found whole string. */ 
                    return i - sourceOffset; 
        }   }   } 
        return -1; 
    } 

Searching	a	substring:	Java	code	



Searching	a	Substring:		
Exploi;ng	Laziness	

isSubString :: String -> String -> Bool 
x `isSubString` s = or [ x `isPrefixOf` t 
                       | t <- suffixes s ]  

suffixes:: String -> [String] 
-- All suffixes of s 
suffixes[]     = [[]] 
suffixes(x:xs) = (x:xs) : suffixes xs 

or :: [Bool] -> Bool 
-- (or bs) returns True if any of the bs is True 
or []     = False 
or (b:bs) = b || or bs 
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isPrefixOf :: Eq a => [a] -> [a] -> Bool 
-- returns True if first list is prefix of the second 
isPrefixOf [] x = True 
isPrefixOf (y:ys) [] = False 
isPrefixOf (y:ys)(x:xs) =  
 if (x == y) then isPrefixOf ys xs else False 



Polymorphism	
•  The	ability	of	associa;ng	a	single	interface	with	
en;;es	of	different	types	

•  We	focus	on		polymorphic	func$ons,	applicable	to	
arguments	of	different	types	

Polymorphism 

Universal 

Ad hoc 

Parametric 

Inclusion 

Overloading 

Inheritance		

Explicit:	java	Generics,		
	C++	Templates	

Implicit:	Type	Inference	



Generic	Polymorphism	in	Haskell	
•  Type	declara;ons	not	necessary:	Type	Inference	algorithm	

computes	the	most	general	type	of	a	declared	func;on	
•  Based	on	the	original	algorithm	invented	by	Haskell	Curry	

and	Robert	Feys	for	the	simply	typed	lambda	calculus	in	
1958	

•  Revised	and	extended	by	Hindley	(1969)	and	Milner	(1978)	
•  Currently	used	in	many	languages:	ML,	Ada,	Haskell,	C#	3.0,	

F#,	Visual	Basic	.Net	9.0.	Have	been	plans	for	Fortress,	Perl	
6,	C++0x,…	

•  Guaranteed	to	produce	the	most	general	type.	
•  Example	of	a	flow-insensi;ve	sta;c	analysis	algorithm	
•  You	will	study	it	in	next	semester…	
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Polymorphism	vs	Overloading	
•  (Parametric)	polymorphism	
–  Single	algorithm	may	be	given	many	types	
–  Type	variable	(implicit	or	explicit)	may	be	replaced	by	any		
type	(almost…	->	bounded	polymorphism)	

–  if	f::t→t then	f::Int→Int,	f::Bool→Bool,	...				
•  Overloading	
–  A	single	symbol	may	refer	to	more	than	one	algorithm.	
–  Each	algorithm	may	have	different	type.	
–  Choice	of	algorithm	determined	by	type	context.	
–  +					has	types				Int → Int → Int and		
Float → Float → Float,		
but	not	t→t→t for	arbitrary	t.	

33	



Core	Haskell	

•  Basic	Types	
–  Unit	
–  Booleans	
–  Integers		
–  Strings	
–  Reals	
–  Tuples	
–  Lists	
–  Records	

•  PaVerns	
•  Declara;ons	
•  Func;ons	
•  Polymorphism	
•  Type	declara;ons	
•  Type	Classes	
•  Monads	
•  Excep;ons	

34	



Why	Overloading?	

•  Many	useful	func;ons	are	not	parametric	
•  Can	list	membership	work	for	any	type?	

– No!		Only	for	types	w	for	that	support	equality.	
•  Can	list	sor;ng	work	for	any	type?	

– No!		Only	for	types	w	that	support	ordering.	

member :: [w] -> w -> Bool 

sort :: [w] -> [w] 
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Overloading	Arithme;c,	Take	1	
•  Allow	func;ons	containing	overloaded	symbols	to	define	

mul;ple	func;ons:	

•  But	consider:	

•  Approach	not	widely	used	because	of	exponen;al	growth	in	
number	of	versions.	

square x = x * x        -- legal 
-- Defines two versions:  
-- Int -> Int and Float -> Float 

squares (x,y,z) = 
   (square x, square y, square z) 
-- There are 8 possible versions! 
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Overloading	Arithme;c,	Take	2	

•  Basic	opera;ons	such	as	+	and	*	can	be	overloaded,	
but	not	func;ons	defined	from	them	

•  Standard	ML	uses	this	approach.	
•  Not	sa;sfactory:	Programmer	cannot	define	
func;ons	that	implementa;on	might	support	

3 * 3             -- legal 
3.14 * 3.14       -- legal 
square x = x * x  -- Int -> Int 
square 3          -- legal 
square 3.14       -- illegal  

37	



Overloading	Equality,	Take	1	
•  Equality	defined	only	for	types	that	admit	equality:							

types	not	containing	funcKon	or	abstract	types.	

•  Overload	equality	like	arithme;c	ops	+	and	*	in	SML.	
•  But	then	we	can’t	define	func;ons	using	‘==‘:	

•  Approach	adopted	in	first	version	of	SML.	

3 * 3 == 9            -- legal 
'a' == 'b'            -- legal 
\x->x == \y->y+1      -- illegal 

member [] y     = False 
member (x:xs) y = (x==y) || member xs y 
 
member [1,2,3] 3        -- ok if default is Int 
member "Haskell" 'k'    -- illegal  
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Overloading	Equality,	Take	2	

•  Make	type	of	equality	fully	polymorphic	

•  Type	of	list	membership	func;on	

•  Miranda	used	this	approach.	
–  Equality	applied	to	a	funcKon	yields	a	run;me	error	
–  Equality	applied	to	an	abstract	type	compares	the	
underlying	representa;on,	which	violates	abstrac;on	
principles	

(==) :: a -> a -> Bool 

member :: [a] -> a -> Bool 
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Overloading	Equality,	Take	3	

•  Make	equality	polymorphic	in	a	limited	way:		

where	a(==)	is	type	variable	restricted	to	types	with	equality	
•  Now	we	can	type	the	member	func;on:	

•  Approach	used	in	SML	today,	where	the	type	a(==)	is	
called	an	“eqtype	variable”	and	is	wriVen	''a.		

(==) :: a(==) -> a(==) -> Bool 

member :: a(==) -> [a(==)] -> Bool 
member  4         [2,3] :: Bool       
member ‘c’        [‘a’, ‘b’, ‘c’] :: Bool 
member (\y->y *2) [\x->x, \x->x + 2]  -- type error 
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Type	Classes	

•  Type	classes	solve	these	problems	
– Provide	concise	types	to	describe	overloaded	
func;ons,	so	no	exponen;al	blow-up	

– Allow	users	to	define	func;ons	using	overloaded	
opera;ons,	eg,	square,	squares,	and	member	

– Allow	users	to	declare	new	collec;ons	of	
overloaded	func;ons:	equality	and	arithme;c	
operators	are	not	privileged	built-ins	

– Generalize	ML’s	eqtypes	to	arbitrary	types	
– Fit	within	type	inference	framework	
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Intui;on	

•  A	func;on	to	sort	lists	can	be	passed	a	
comparison	operator	as	an	argument:	

– This	allows	the	func;on	to	be	parametric	

•  We	can	built	on	this	idea	…	

qsort:: (a -> a -> Bool) -> [a] -> [a] 
qsort cmp [] = [] 
qsort cmp (x:xs) = qsort cmp (filter (cmp x) xs)  

          ++ [x] ++  
                   qsort cmp (filter (not.cmp x) xs) 
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Intui;on		(con;nued)	

•  Consider	the	“overloaded”	parabola	func;on		

•  We	can	rewrite	the	func;on	to	take	the	
operators	it	contains	as	an	argument	

– The	extra	parameter	is	a	“dic;onary”	that	
provides	implementa;ons	for	the	overloaded	ops.		

– We	have	to	rewrite	all	calls	to	pass	appropriate	
implementa;ons	for	plus	and	;mes:	

parabola x = (x * x) + x  

parabola’ (plus, times) x = plus (times x x) x 

y = parabola’(intPlus,intTimes) 10 
z = parabola’(floatPlus, floatTimes) 3.14 
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Systematic programming style

-- Dictionary type 
data MathDict a = MkMathDict (a->a->a) (a->a->a) 
 
-- Accessor functions 
get_plus :: MathDict a -> (a->a->a) 
get_plus (MkMathDict p t) = p 
 
get_times :: MathDict a -> (a->a->a) 
get_times (MkMathDict p t) = t 
 
-- “Dictionary-passing style” 
parabola :: MathDict a -> a -> a 
parabola dict x = let plus  = get_plus  dict 
                      times = get_times dict 
                  in plus (times x x) x 

Type class declarations 
will generate Dictionary 
type and selector 
functions 
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Systematic programming style


-- Dictionary type 
data MathDict a = MkMathDict (a->a->a) (a->a->a) 
 
-- Dictionary construction 
intDict   = MkMathDict intPlus   intTimes 
floatDict = MkMathDict floatPlus floatTimes 
 
-- Passing dictionaries 
y = parabola intDict   10 
z = parabola floatDict 3.14 

Type class instance declarations 
produce instances of the Dictionary


Compiler will add a dictionary 
parameter and rewrite the body as 
necessary


45	



Type	Class	Design	Overview	

•  Type	class	declara;ons		
– Define	a	set	of	opera;ons,		give	the	set	a	name	
–  Example:	Eq a type	class	

•  opera;ons	==	and	\=	with	type a -> a -> Bool 
•  Type	class	instance	declara;ons	
–  Specify	the	implementa;ons	for	a	par;cular	type	
–  For	Int instance,	==	is	defined	to	be	integer	equality	

•  Qualified	types	(or	Type	Constraints)	
–  Concisely	express	the	opera;ons	required	on	
otherwise	polymorphic	type	

member:: Eq w => w -> [w] -> Bool 
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If	a	func;on	works	for	every	type	with	par;cular	
proper;es,	the	type	of	the	func;on	says	just	that:	

	
	
	
	
Otherwise,	it	must	work	for	any	type	

Qualified	Types	

Member :: Eq w => w -> [w] -> Bool 

sort      :: Ord a  => [a] -> [a] 
serialise :: Show a => a -> String 
square    :: Num n  => n -> n 
squares   ::(Num t, Num t1, Num t2) =>  
                 (t, t1, t2) -> (t, t1, t2) 

“for all types w that 
support the Eq 

operations”


reverse :: [a] -> [a] 
filter  :: (a -> Bool) -> [a] -> [a] 
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Type	Classes	
square :: Num n => n -> n 
square x = x*x 

class Num a where 
  (+)    :: a -> a -> a 
  (*)    :: a -> a -> a 
  negate :: a -> a 
  ...etc... 

The class declaration 
says what the Num 
operations are


Works for any type 
‘n’ that supports 
the Num operations


instance Num Int where 
  a + b    = intPlus  a b 
  a * b    = intTimes a b 
  negate a = intNeg a 
  ...etc... 

An instance 
declaration for a 
type T says how the 
Num operations are 
implemented on T’s


intPlus  :: Int -> Int -> Int 
intTimes :: Int -> Int -> Int  
etc, defined as primitives 48	



Compiling	Overloaded	Func;ons	

square :: Num n => n -> n 
square x = x*x 

square :: Num n -> n -> n 
square d x = (*) d x x 

The “Num n =>” turns into an extra value argument to 
the function.  It is a value of data type Num n and it 
represents a dictionary of  the required operations.


When	you	write	this...	 ...the	compiler	generates	this	

A value of type (Num n) is a dictionary 
of the Num operations for type n
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Compiling	Type	Classes	

class Num n where 
  (+)    :: n -> n -> n 
  (*)    :: n -> n -> n 
  negate :: n -> n 
  ...etc... 

The class decl translates 
to:

A data type decl for Num

A selector function for 
each class operation


data Num n  
  = MkNum (n -> n -> n) 

     (n -> n -> n) 
     (n -> n) 
     ...etc... 

... 
(*) :: Num n -> n -> n -> n 
(*) (MkNum _ m _ ...) = m 

When	you	write	this...	 ...the	compiler	generates	this	

A value of type (Num n) is a dictionary 
of the Num operations for type n
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square :: Num n => n -> n 
square x = x*x 

square :: Num n -> n -> n 
square d x = (*) d x x 



dNumInt :: Num Int 
dNumInt = MkNum intPlus 
                intTimes 
                intNeg 
                ... 

Compiling	Instance	Declara;ons	

square :: Num n => n -> n 
square x = x*x 

square :: Num n -> n -> n 
square d x = (*) d x x 

instance Num Int where 
  a + b    = intPlus  a b 
  a * b    = intTimes a b 
  negate a = intNeg a 
  ...etc... 

When	you	write	this...	 ...the	compiler	generates	this	

A value of type (Num n) is a dictionary 
of the Num operations for type n


An instance decl for type T 
translates to a value 
declaration for the Num 
dictionary for T
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Implementa;on	Summary	
•  The	compiler	translates	each	func;on	that	uses	an	

overloaded	symbol	into	a	func;on	with	an	extra	
parameter:	the	dicKonary.	

•  References	to	overloaded	symbols	are	rewriVen	by	the	
compiler	to	lookup	the	symbol	in	the	dic;onary.	

•  The	compiler	converts	each	type	class	declara;on	into	a	
dic;onary	type	declara;on	and	a	set	of	selector	func;ons.	

•  The	compiler	converts	each	instance	declara;on	into	a	
dic;onary	of	the	appropriate	type.	

•  The	compiler	rewrites	calls	to	overloaded	func;ons	to	pass	
a	dic;onary.		It	uses	the	sta;c,	qualified	type	of	the	
func;on	to	select	the	dic;onary.	
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Functions with Multiple Dictionaries


squares :: (Num a, Num b, Num c) => (a, b, c) -> (a, b, c) 
squares(x,y,z) = (square x, square y, square z) 

squares :: (Num a, Num b, Num c) -> (a, b, c) -> (a, b, c) 
squares (da,db,dc) (x, y, z) =  
                 (square da x, square db y, square dc z) 

Pass appropriate 
dictionary on to each 
square function. 


Note the concise type for 
the squares function!
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Compositionality


sumSq :: Num n => n -> n -> n 
sumSq x y = square x + square y 

sumSq :: Num n -> n -> n -> n 
sumSq d x y = (+) d (square d x) 
      (square d y) 

Pass on d to square
Extract addition 
operation from d


Overloaded	func;ons	can	be	defined	from	other	
overloaded	func;ons:	
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Compositionality


class Eq a where 
  (==) :: a -> a -> Bool 
 
instance Eq Int where 
  (==) = intEq     -- intEq primitive equality 
 
instance (Eq a, Eq b) => Eq(a,b) 
  (u,v) == (x,y)     = (u == x) && (v == y) 
 
instance Eq a => Eq [a] where 
  (==) []     []     = True 
  (==) (x:xs) (y:ys) = x==y && xs == ys 
  (==) _      _      = False 

Build	compound	instances	from	simpler	ones:	
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Compound Translation


class Eq a where 
  (==) :: a -> a -> Bool 
instance Eq a => Eq [a] where 
  (==) []     []     = True 
  (==) (x:xs) (y:ys) = x==y && xs == ys 
  (==) _      _      = False 

data Eq = MkEq (a->a->Bool)    -- Dictionary type 
(==) (MkEq eq) = eq            -- Selector 
dEqList :: Eq a -> Eq [a]      -- List Dictionary 
dEqList d = MkEq eql 
  where 
    eql []     []     = True 
    eql (x:xs) (y:ys) = (==) d x y && eql xs ys 
    eql _      _      = False   

Build	compound	instances	from	simpler	ones.		
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Many	Type	Classes	
•  Eq:	equality	
•  Ord:	comparison	
•  Num:	numerical	opera;ons	
•  Show:	convert	to	string	
•  Read:	convert	from	string	
•  Testable,	Arbitrary:	tes;ng.	
•  Enum:	ops	on	sequen;ally	ordered	types	
•  Bounded:	upper	and	lower	values	of	a	type	
•  Generic	programming,	reflec;on,	monads,	…	
•  And	many	more.	
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Subclasses	
•  We	could	treat	the	Eq	and	Num	type	classes	separately	

	
–  But	we	expect	any	type	suppor;ng	Num	to	also	support	Eq	

•  A	subclass	declara;on	expresses	this	rela;onship:	

	
	
•  With	that	declara;on,	we	can	simplify	the	type	of	the	func;on	

memsq :: (Eq a, Num a) => a -> [a] -> Bool 
memsq x xs = member (square x) xs 

class Eq a => Num a where 
  (+) :: a -> a -> a 
  (*) :: a -> a -> a 

memsq :: Num a => a -> [a] -> Bool 
memsq x xs = member (square x) xs 
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Default	Methods	

•  Type	classes	can	define	“default	methods”	

•  Instance	declara;ons	can	override	default	by	
providing	a	more	specific	defini;on.	

-- Minimal complete definition: 
--     (==) or (/=) 
class Eq a where 
    (==) :: a -> a -> Bool 
    x == y    =  not (x /= y) 
    (/=) :: a -> a -> Bool 
    x /= y    =  not (x == y) 
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Deriving	
•  For	Read,	Show,	Bounded,	Enum,	Eq,	and	Ord,	the	compiler	

can	generate	instance	declara;ons	automa;cally	

–  Ad	hoc	:	deriva;ons	apply	only	to	types	where	deriva;on	code	works	

data Color = Red | Green | Blue 
     deriving (Show, Read, Eq, Ord) 

Main> show Red 
“Red” 
Main> Red < Green 
True 
Main>let c :: Color = read “Red” 
Main> c 
Red 
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Numeric Literals

class Num a where 
  (+) :: a -> a -> a 
  (-) :: a -> a -> a  
  fromInteger :: Integer -> a 
  ... 
 
inc :: Num a => a -> a 
inc x = x + 1 

Even literals are 
overloaded.

1 :: (Num a) => a


“1” means 

“fromInteger 1”


Advantages:

-  Numeric literals can be interpreted as values 

of any appropriate numeric type  

-  Example: 1 can be an Integer or a Float or a 

user-defined numeric type.
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Type	Inference	
•  Type	inference	infers	a	qualified	type	Q	=>	T	

–  T	is	a	Hindley	Milner	type,	inferred	as	usual	
–  Q	is	set	of	type	class	predicates,	called	a	constraint	

•  Consider	the	example	func;on:	

–  Type	T	is				a	->	[a]	->	Bool	
–  Constraint	Q	is		{	Ord	a,	Eq	a,	Eq	[a]}	

example z xs =  
   case xs of 
     []     -> False 
     (y:ys) -> y > z || (y==z && ys == [z]) 

Ord a  because    y>z

Eq a    because   y==z

Eq [a]  because   ys == [z]
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Type	Inference	
•  Constraint	sets	Q	can	be	simplified:	
–  Eliminate	duplicates	

•  {Eq	a,	Eq	a}	simplifies	to	{Eq	a}	
– Use	an	instance	declaraKon	

•  If	we	have	instance	Eq	a	=>	Eq	[a],																																	
•  then	{Eq	a,	Eq	[a]}	simplifies	to	{Eq	a}	

– Use	a	subclass	declaraKon	
•  If	we	have	class	Eq	a	=>	Ord	a	where	...,																										
•  then	{Ord	a,	Eq	a}	simplifies	to	{Ord	a}	

•  Applying	these	rules,		
–  {Ord	a,	Eq	a,	Eq[a]}	simplifies	to	{Ord	a}	
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Type	Inference	

•  Pu�ng	it	all	together:	

– T	=	a	->	[a]	->	Bool	
– Q	=	{Ord	a,	Eq	a,	Eq	[a]}	
– Q		simplifies	to	{Ord	a}	
–  example :: {Ord a} => a -> [a] -> Bool 

example z xs =  
   case xs of 
     []     -> False 
     (y:ys) -> y > z || (y==z && ys ==[z]) 
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Detec;ng	Errors	

•  Errors	are	detected	when	predicates	are	
known	not	to	hold:	

Prelude> ‘a’ + 1 
 No instance for (Num Char) 
      arising from a use of `+' at <interactive>:1:0-6 
    Possible fix: add an instance declaration for (Num Char) 
    In the expression: 'a' + 1 
    In the definition of `it': it = 'a' + 1 

Prelude> (\x -> x) 
 No instance for (Show (t -> t)) 
      arising from a use of `print' at <interactive>:1:0-4 
    Possible fix: add an instance declaration for (Show (t -> t)) 
    In the expression: print it 
    In a stmt of a 'do' expression: print it 
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More	Type	Classes:	Constructors	

•  Type	Classes	are	predicates	over	types	
•  [Type]	Constructor	Classes	are	predicates	
over	type	constructors	

•  Example:	Map	func;on	useful	on	many	
Haskell	types	

•  Lists:	

	

	

map:: (a -> b) -> [a] -> [b] 
map f  [] = [] 
map f (x:xs) = f x : map f xs 
 
result = map (\x->x+1) [1,2,4] 
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Constructor	Classes	
•  More	examples	of	map	func;on	

data Tree a = Leaf a | Node(Tree a, Tree a) 
    deriving Show 
 
mapTree :: (a -> b) -> Tree a -> Tree b 
mapTree f (Leaf x) = Leaf (f x) 
mapTree f (Node(l,r)) = Node (mapTree f l, mapTree f r) 
 
t1 = Node(Node(Leaf 3, Leaf 4), Leaf 5) 
result = mapTree (\x->x+1) t1 
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data Opt a = Some a | None 
 deriving Show 
 
mapOpt :: (a -> b) -> Opt a -> Opt b 
mapOpt f None = None 
mapOpt f (Some x) = Some (f x) 
 
o1 = Some 10 
result = mapOpt (\x->x+1) o1 



Constructor	Classes	

•  All	map	func;ons	share	the	same	structure	

•  They	can	all	be	wriVen	as:	

– where	g	is:	
				[-]	for	lists,	Tree	for	trees,	and	Opt	for	op;ons	

•  Note	that	g	is	a	func;on	from	types	to	types,	i.e.	
a	type	constructor	

map     :: (a -> b) -> [a] -> [b] 
mapTree :: (a -> b) -> Tree a -> Tree b 
mapOpt  :: (a -> b) -> Opt a -> Opt b 

fmap:: (a -> b) -> g a -> g b 
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Constructor	Classes	

•  Capture	this	paVern	in	a	constructor	class,		
					
	
					A	type	class	where	the	predicate	is	over		
					type	constructors	

class Functor g where 
  fmap :: (a -> b) -> g a -> g b 
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Constructor	Classes	
class Functor f where 
  fmap :: (a -> b) -> f a -> f b 
 
instance Functor [] where 
  fmap f [] = [] 
  fmap f (x:xs) = f x : fmap f xs 
 
instance Functor Tree where 
  fmap f (Leaf x) = Leaf (f x) 
  fmap f (Node(t1,t2)) = Node(fmap f t1, fmap f t2) 
 
instance Functor Opt where 
  fmap f (Some s) = Some (f s) 
  fmap f None = None 
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Constructor	Classes	
•  Or	by	reusing	the	defini;ons	map,	mapTree,	and	mapOpt:	

class Functor f where 
  fmap :: (a -> b) -> f a -> f b 
 
instance Functor [] where 
  fmap = map 
 
instance Functor Tree where 
  fmap = mapTree 
 
instance Functor Opt where 
  fmap = mapOpt 
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Constructor	Classes	
•  We	can	then	use	the	overloaded	symbol	fmap	to	map	over	

all	three	kinds	of	data	structures:	

•  The	Functor constructor	class	is	part	of	the	standard	
Prelude	for	Haskell	

*Main> fmap (\x->x+1) [1,2,3] 
[2,3,4] 
it :: [Integer] 
 
*Main> fmap (\x->x+1) (Node(Leaf 1, Leaf 2)) 
Node (Leaf 2,Leaf 3) 
it :: Tree Integer 
 
*Main> fmap (\x->x+1) (Some 1) 
Some 2 
it :: Opt Integer 
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