Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-16/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 22

Functional programming languages
Introduction to Hakell

Type Classes

(Type) Constructor Classes

Historical Origins

* The imperative and functional models grew out of work
undertaken Alan Turing, Alonzo Church, Stephen
Kleene, Emil Post, etc. ~1930s

— different formalizations of the notion of an algorithm, or
effective procedure, based on automata, symbolic

manipulation, recursive function definitions, and
combinatorics

* These results led Church to conjecture that any

intuitively appealing model of computing would be
equally powerful as well

— this conjecture is known as Church’s thesis

Historical Origins

* Church’s model of computing is called the lambda
calculus

— based on the notion of parameterized expressions (with
each parameter introduced by an occurrence of the letter A,
hence the notation’s name)

— allows one to define mathematical functions in a
constructive/effective way

— Lambda calculus was the inspiration for functional
programming

— computation proceeds by substituting parameters into
expressions, just as one computes in a high level functional
program by passing arguments to functions

Functional Programming Concepts

* Functional languages such as Lisp, Scheme,
FP, ML, Miranda, and Haskell are an
attempt to realize Church’s lambda calculus

in practical form as a programming language
* The key idea: do everything by composing
functions

— no mutable state

— no side effects

Functional Programming Concepts

* Necessary features, many of which are missing in
some imperative languages

— 1st class and high-order functions
— recursion
* Takes the place of iteration
— powerful list facilities
* Recursive function exploit recursive definition of lists
— serious polymorphism
* Relevance of Container/Collections

— fully general aggregates
» Data structures cannot be modified, have to be re-created

— structured function returns

— garbage collection
* Unlimited extent for locally allocated data structures

Other Related Concepts

* Lisp also has some features that are not
necessary present in other functional languages:
— programs are data
— self-definition
— read-evaluate-print interactive loop

e Variants of LISP
— (Original) Lisp: purely functional, dynamically scoped
as early variants

— Common Lisp: current standard, statically scoped,
very complex

— Scheme: statically scoped, very elegant, used for
teaching

Other functional languages: the ML family

Robin Milner (Turing award in 1991, CCS, Pi-calculus, ...)
Statically typed, general-purpose programming language
— “Meta-Language” of the LCF theorem proving system

Type safe, with type inference and formal semantics
Compiled language, but intended for interactive use

Combination of Lisp and Algol-like features
— Expression-oriented

— Higher-order functions

— Garbage collection

— Abstract data types

— Module system

— Exceptions

Other functional languages: Haskell

Designed by committee in 80’s and 90’s to unify research efforts in lazy
languages

— Evolution of Miranda

— Haskell 1.0 in 1990, Haskell ‘98, Haskell” ongoing

* Several features in common with ML, but some differ:

 Types and type checking

— Type inference

— Parametric polymorphism

— Ad hoc polymorphism (aka overloading)
e Control

— Lazy vs. eager evaluation

— Tail recursion and continuations
e Purely functional

— Precise management of effects

— Rise of multi-core, parallel programming likely to make minimizing state much
more important

The Glasgow Haskell Compiler [GHC]
www.haskell.org/platform

Current release: 2014.2.0.0

New GHC: 7.8.3
Major update:OpenGL and GLUT

The Haskell Platform Bl

roblems?
Do ntation
Library Doc

Download
N, r 2

Wlndows Mac Linux

Robust Cutting Edge
The Haskell Platform contains only The Haskell Platform ships with

. stable and widely-used tools and advanced features such as multicore
libraries, drawn from a pool of parallelism, thread sparks and

s thousands of Haskell packages, transactional memory, along with many
‘ensuring you get the best from what is other technologies, to help you get work
ffer. done.
. . &

Core Haskell

* Basic Types
— Unit
— Booleans
— Integers
— Strings
— Reals
— Tuples
— Lists

— Records

Patterns
Declarations
Functions
Polymorphism
Type declarations
Type Classes
Monads
Exceptions

Overview of Haskell

* Interactive Interpreter (ghci): read-eval-print
— ghci infers type before compiling or executing
— Type system does not allow casts or similar things!

 Examples

Prelude> (5+43)-2

6

it :: Integer

Prelude> if 5>3 then “Harry” else “Hermione”
“Harry”

it :: [Char] -— String is equivalent to [Char]
Prelude> 5==4

False

it :: Bool

Overview by Type

Booleans

True, False :: Bool

if .. then .. else .. --types must match
ntegers

0, 1, 2, .. :: Integer

ST - :: Integer -> Integer -> Integer
Strings

"Ron Weasley"

Floats

1.0, 2, 3.14159, .

--type classes to disambiguate

12

Simple Compound Types

* Tuples
(4, 5, "PLP") :: (Integer, Integer, String)

* Lists
[1 :: [a] -- NIL, polymorphic type
1 : [2, 3, 4] :: [Integer] —--— infix cons notation
[1,2]++[3,4] :: [Integer] —-— concatenation

* Records
data Person = Person {firstName :: String,

lastName :: String}
hg = Person { firstName = “Hermione”,
lastName = “Granger”}

More on list constructors

ghci> [1..20] -- ranges
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
ghci> ['a'..'z']

"abcdefghijklmnopqgrstuvwxyz"

ghci> [3,6..20] -- ranges with step
[3,6,9,12,15,18]

ghci> [7,6..1]

[7,6,5,4,3,2,1]

ghci> take 10 [1..] -—- (prefix of) infinite lists
[11213141516171819110]

ghci> take 10 (cycle [1,2])

[1,2,1,2,1,2,1,2,1,2]

ghci> take 10 (repeat 5)

[5,5,5,5,5,5,5,5,5,5]

How does it work???

Laziness
* Haskell is a lazy language

* Functions and data constructors don’t
evaluate their arguments until they need
them

cond :: Bool -> a -> a -> a
cond True ¢t e t
cond False t e e

* Programmers can write control-flow operators
that have to be built-in in eager languages

Short- (1) :: Bool -> Bool -> Bool
circuiting True || x True

or” False || x = x .

Applicative and Normal Order evaluation

Applicative Order evaluation
— Arguments are evaluated before applying the function —

aka Eager evaluation, parameter passing by value

Normal Order evaluation

— Function evaluated first, arguments if and when needed

— Sort of parameter passing by name

— Some evaluation can be repeated

Church-Rosser

— If evaluation terminates, the result (normal form) is

unique

— |f some evaluation terminates, normal order evaluation

terminates

Define Q = (Ax.x x)

Then

QO = (Ax.x x) (AX.x x)
=2 x X [(Ax.x x)/X]

=2 (Ax.x X) (Ax.x xX) = QQ
- ... hon-terminating

(Ax. 0) (QQ)
- { Applicative order}
... hon-terminating

(Ax. 0) (QQ)
- { Normal order}
0

B-conversion
(Ax.t) t' =t [t'/X]

Applicative order
(Ax.(+ x x)) (+ 3 2)
-2 (Ax.(+ xx)) 5

> (+55)

- 10

Normal order
(Ax.(+ x X)) (+ 3 2)
2>+ (+32)(+32))
2> (+5 (+32))

- (+505)

- 10

Relating evaluation order to
Parameter Passing Mechanisms

Parameter passing modes
— In

— In/out

— Out

Parameter passing mechanisms
— Call by value (in)

— Call by reference (in+out)

— Call by result (out)

— Call by value/result (in+out)

— Call by name (in+out)

Different mechanisms used by C, Fortran, Pascal, C++, Java,
Ada (and Algol 60)

Call by name & Lazy evaluation (call by need)

In call by name parameter passing (default in Algol 60) arguments (like
expressions) are passed as a closure (“thunk”) to the subroutine

The argument is (re)evaluated each time it is used in the body
Haskell realizes lazy evaluation by using call by need parameter passing,

which is similar: an expression passed as argument is evaluated only if its
value is needed.

Unlike call by name, the argument is evaluated only the first time, using
memoization: the result is saved and further uses of the argument do not
need to re-evaluate it

Combined with lazy data constructors, this allows to construct potentially
infinite data structures and call infinitely recursive functions without
necessarily causing non-termination

Lazy evaluation works fine with purely functional languages

Side effects require that the programmer reason about the order that
things happen, not predictable in lazy languages.

Patterns and Declarations

e Patterns can be used in place of variables
<pat>::=<var> | <tuple> | <cons> | <record> ...

 Value declarations
— General form: <pat> = <exp>

— Examples
myTuple = ("Foo", "Bar")
(x,y) = myTuple -- x = "Foo”, y = "Bar"
myList = [1, 2, 3, 4]
z:zs = myList -- z =1, zs = [2,3,4]

— Local declarations

let (x,y) = (2, "FooBar") in x * 4

Functions and Pattern Matching

* Anonymous function

\x -> x+1 --like Lisp lambda, function (..) in JS

* Function declaration form
<name> <pat;> = <exp;>
<name> <pat,> = <exp,> ..

<name> <pat . > = <exp,> ..
e Examples

f (x,y) = x+y -—argument must match pattern (x,y)

length [] = 0
length (x:s) = 1 + length(s)

More Functions on Lists

* Apply function to every element of list

map £ [] = []
map f (x:xs) = £ x : map f xs

map (\x -> x+1) [1,2,3] [2,3,4]

e Reverse a list

reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]

reverse Xs =
let rev ([], accum) = accum
rev (y:ys, accum) = rev (ys, y:accum)
in rev (xs, [])

List Comprehensions

* Notation for constructing new lists from old:
myData = [1,2,3,4,5,6,7]

twiceData = [2 * x | x <- myData]
-- [2,4,6,8,10,12,14]

twiceEvenData = [2 * x| x <- myData, x mod 2 == 0]
-- [4,8,12]

* Similar to “set comprehension”
{x|xeEe0dd A x> 6}

More on List Comprehensions

ghci> [x | x <- [10..20], x /= 13, x /= 15, x /= 19]
[10,11,12,14,16,17,18,20] —- more predicates

ghci> [x*y | x <- [2,5,10], y <- [8,10,11]]
[16,20,22,40,50,55,80,100,110] —- more lists

length xs = sum [1 | _ <- xs] -- anonymous (don’t care) var

—- strings are lists..
removeNonUppercase st = [¢ | ¢ <- st, ¢ 'elem ['A'..'Z']]

Datatype Declarations

 Examples

data Color = Red | Yellow | Blue
elements are Red, Yellow, Blue
data Atom = Atom String | Number Int

elements are Atom “A”, Atom “B”, ..., Number O, ...
data List Nil | Cons (Atom, List)

elements are Nil, Cons(Atom “A”, Nil), ...
Cons(Number 2, Cons(Atom(“Bill”), Nil)), ...

e General form

data <name> = <clause> | ... | <clause>
<clause> ::= <constructor> | <contructor> <type>

— Type name and constructors must be Capitalized.

Datatypes and Pattern Matching

* Recursively defined data structure
data Tree = Leaf Int | Node (Int, Tree, Tree)

Node (4, Node (3, Leaf 1, Leaf 2), °
Node (5, Leaf 6, Leaf 7))

e Constructors can be used 9 °
in Pattern Matching e e @ @

 Recursive function

sum (Leaf n) = n
sum (Node(n,tl,t2)) = n + sum(tl) + sum(t2)

Case Expression

B Datatype

data Exp = Var Int | Const Int | Plus (Exp, Exp)

B Case expression

case e of
var n ->
Const n -> ..
Plus (el,e2) -> ..

Indentation matters in case statements in Haskell.

Function Types in Haskell
In Haskell, £ :: A -> B means for every x €A,

f(x) = some elementy =f(x) €B
run forever

In words, “if f(x) terminates, then f(x) &€ B.”

In ML, functions with type A — B can throw an exception or
have other effects, but not in Haskell

ghci> :t not -- type of some predefined functions

not :: Bool -> Bool

ghci> :t (+4)

(+) :: Num a => a -> a -> a Note: if fis a standard
ghci> :t not binary function, f is its
not :: Bool -> Bool infix version

ghci> :t (:) If x is an infix (binary)
(:) :: a -> [a] -> [a] operator, (x) is its prefix
ghci> :t elem version.

elem :: Eq a => a -> [a] -> Bool

Higher-Order Functions

* Functions that take other functions as arguments or return
as a result are higher-order functions.

e Common Examples:
— Map: applies argument function to each element in a collection.

— Reduce: takes a collection, an initial value, and a function, and
combines the elements in the collection according to the
function.

ghci> :t map

map :: (a -> b) -> [a] -> [Db]
ghci> let list = [1,2,3]
ghci> map (\x -> x+1) list

[2,3,4]
ghci> :t foldl
foldl :: (b -> a ->b) ->b -> [a] -> b

ghci> foldl (\accum i -> i + accum) 0 list
6

Searching a substring: Java code

static int indexOf (char[] source, int sourceOffset, int sourceCount,
char[] target, int targetOffset, int targetCount,
int fromIndex) {

char first = target[targetOffset];
int max = sourceOffset + (sourceCount - targetCount);

for (int i = sourceOffset + fromIndex; i <= max; i++) {
/* Look for first character. */
if (source[i] != first) {
while (++i <= max && source[i] '= first);

}

/* Found first character, now look at the rest of v2 */
if (i <= max) {
int j =1 + 1;
int end = j + targetCount - 1;
for (int k = targetOffset + 1; j < end && source[j] ==
target[k]; j++, k++);

if (j == end) {
/* Found whole string. */
return i - sourceOffset;

o} }

return -1;

Searching a Substring:
Exploiting Laziness

isPrefixOf :: Eq a => [a] -> [a] -> Bool
-- returns True if first list is prefix of the second
isPrefixOf [] x = True
isPrefixOf (y:ys) [] = False
isPrefixOf (y:ys) (x:xs) =
if (x == y) then isPrefixOf ys xs else False

suffixes:: String -> [String]
-—- All suffixes of s

suffixes|] = [[]1]
suffixes(x:xs) = (x:xs) : suffixes xs
or :: [Bool] -> Bool

-- (or bs) returns True if any of the bs is True
or [] = False
or (b:bs)

I
o
o)
H
o
(7

isSubString :: String -> String -> Bool
X isSubString s = or [x isPrefixOf t
| t <- suffixes s]

Polymorphism

* The ability of associating a single interface with
entities of different types

 We focus on polymorphic functions, applicable to
arguments of different types

Parametric Explicit: java Generics,
Universal C++ Templates
Implicit: Type Inference
Polymorphism Inclusion Inheritance

N\

Ad hoc —— Overloading

Generic Polymorphism in Haskell

Type declarations not necessary: Type Inference algorithm
computes the most general type of a declared function

Based on the original algorithm invented by Haskell Curry
and Robert Feys for the simply typed lambda calculus in
1958

Revised and extended by Hindley (1969) and Milner (1978)

Currently used in many languages: ML, Ada, Haskell, C# 3.0,
F#, Visual Basic .Net 9.0. Have been plans for Fortress, Perl
6, C++0x,...

Guaranteed to produce the most general type.
Example of a flow-insensitive static analysis algorithm
You will study it in next semester...

Polymorphism vs Overloading

* (Parametric) polymorphism
— Single algorithm may be given many types

— Type variable (implicit or explicit) may be replaced by any
type (almost... -> bounded polymorphism)

— if £: :t—t then £::Int—Int, £: :Bool—Bool, ...
* Overloading
— A single symbol may refer to more than one algorithm.
— Each algorithm may have different type.
— Choice of algorithm determined by type context.

— 4+ hastypes 1iInt — Int — Int and
Float — Float — Float,

but not t—=t—t for arbitrary t.

Core Haskell

* Basic Types
— Unit
— Booleans
— Integers
— Strings
— Reals
— Tuples
— Lists

— Records

Patterns
Declarations
Functions
Polymorphism
Type declarations

Type Classes

Monads
Exceptions

Why Overloading?

 Many useful functions are not parametric
e Can list membership work for any type?

member :: [w] -> w -> Bool

— No! Only for types w for that support equality.
e Can list sorting work for any type?

sort :: [w] -> [w]

— No! Only for types w that support ordering.

Overloading Arithmetic, Take 1

* Allow functions containing overloaded symbols to define
multiple functions:

square x = x * x -- legal
——- Defines two versions:
--— Int -> Int and Float -> Float

e But consider:

squares (x,y,z) =
(square x, square y, square z)
-- There are 8 possible versions!

* Approach not widely used because of exponential growth in
number of versions.

36

Overloading Arithmetic, Take 2

e Basic operations such as + and * can be overloaded,
but not functions defined from them

3 * 3 -- legal

3.14 * 3.14 -- legal
square x = x * x -- Int -> Int
square 3 -- legal
square 3.14 -- illegal

e Standard ML uses this approach.

* Not satisfactory: Programmer cannot define
functions that implementation might support

Overloading Equality, Take 1

Equality defined only for types that admit equality:
types not containing function or abstract types.

3 * 3 == -- legal
'a' == 'b' -- legal
\x->x == \y->y+1 -- illegal

Overload equality like arithmetic ops + and * in SML.

But then we can’t define functions using ‘==

member [] y = False

member (x:xs) y = (x==y) || member xs y

member [1,2,3] 3 -- ok if default is Int
member "Haskell" 'k' -- illegal

Approach adopted in first version of SML.

38

Overloading Equality, Take 2

 Make type of equality fully polymorphic
(==) :: a -> a -> Bool

* Type of list membership function

member :: [a] -> a -> Bool

 Miranda used this approach.
— Equality applied to a function yields a runtime error

— Equality applied to an abstract type compares the
underlying representation, which violates abstraction
principles

Overloading Equality, Take 3

 Make equality polymorphic in a limited way:
(==) :: a(==) -> a(==) -> Bool

where a(==) is type variable restricted to types with equality
* Now we can type the member function:

member :: a(==) -> [a(==)] -> Bool

member 4 [2,3] :: Bool

member ‘c’ [‘a’, ‘b, ‘¢’] :: Bool

member (\y->y *2) [\x->x, \x->x + 2] -- type error

 Approach used in SML today, where the type a(==) is
called an “eqgtype variable” and is written "a.

Type Classes

* Type classes solve these problems

— Provide concise types to describe overloaded
functions, so no exponential blow-up

— Allow users to define functions using overloaded
operations, eg, square, squares, and member

— Allow users to declare new collections of
overloaded functions: equality and arithmetic
operators are not privileged built-ins

— Generalize ML's eqtypes to arbitrary types
— Fit within type inference framework

Intuition

e A function to sort lists can be passed a
comparison operator as an argument:

gsort:: (a -> a -> Bool) -> [a] -> [a]
gsort cmp [] = []
gsort cmp (x:xs) = gsort cmp (filter (cmp x) xs)
++ [x] ++
gsort cmp (filter (not.cmp x) xs)

— This allows the function to be parametric

e We can built on this idea ...

Intuition (continued)

* Consider the “overloaded” parabola function

parabola x = (x * x) + x

e We can rewrite the function to take the
operators it contains as an argument

parabola’ (plus, times) x = plus (times x x) x

— The extra parameter is a “dictionary” that
provides implementations for the overloaded ops.

— We have to rewrite all calls to pass appropriate
implementations for plus and times:

y = parabola’ (intPlus,intTimes) 10
z = parabola’ (floatPlus, floatTimes) 3.14

Systematic programming style

-— Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)

- Accessor funCt’:'onS Type class declarations

get plus :: MathDict a -> (a->a->a) will generate Dictionary

get plus (MkMathDict p t) =p type and selector
functions

get times :: MathDict a -> (a->a->a)

get times (MkMathDict p t) =t

-—- “Dictionary-passing style”
parabola :: MathDict a -> a -> a
parabola dict x = let plus = get plus dict
times = get times dict
in plus (times x x) x

44

Systematic programming style

Type class instance declarations

produce instances of the Dictionary
-- Dictionary type

data MathDict a = MkMathDict (a->a->a) (a->a->a)

—— Dictionary construction
intDict = MkMathDict intPlus intTimes
floatDict = MkMathDict floatPlus floatTimes

-—- Passing dictionaries
y = parabola intDict 10
z = parabola floatDict 3.14

Compiler will add a dictionary
parameter and rewrite the body as
necessary

45

Type Class Design Overview

* Type class declarations
— Define a set of operations, give the set a name
— Example: Eq a type class
e operations == and \= with type a -> a -> Bool
* Type class instance declarations
— Specify the implementations for a particular type
— For Int instance, == is defined to be integer equality

* Qualified types (or Type Constraints)

— Concisely express the operations required on
otherwise polymorphic type

member:: Eq w => w -> [w] -> Bool

“for all types w that

support the Eq Quahﬁed Types

operations”

Member :: Eq w => w -> [w] -> Bool

If a function works for every type with particular
properties, the type of the function says just that:

sort :: Ord a => [a] -> [a]
serialise :: Show a => a -> String
square :: Numn => n ->n

squares ::(Num £, Num tl1l, Num t2) =>

(t, t1, t2) -> (t, t1, t2)

Otherwise, it must work for any type

reverse :: [a] -> [a]
filter :: (a -> Bool) -> [a] -> [a]
47

Works for any type

'n’ that supports Type Classes

the Num operations

square :: Num n => n -> n

square x = x*x _
The class declaration

says what the Num

class Num a where operations are
(+) . a -> a -> a
(*) . a -> a -> a
negate :: a -> a
.etc. .. An instance

declaration for a
type T says how the

instance Num Int where Num opera’rions are
a+b = intPlus a b implemented on T's
a *b = i1intTimes a b
negate a = intNeg a
.etc L. intPlus :: Int -> Int -> Int

intTimes :: Int -> Int -> Int
etc, defined as primitivesg

Compiling Overloaded Functions

When you write this... ...the compiler generates this
square :: Num n => n -> n square :: Num n -> n -> n
square x = x*x square d x = (*) d x x

The "Num n =>" turns into an extra value argument to
the function. It is a value of data type Num n and it
represents a dictionary of the required operations.

A value of type (Num n) is a dictionary

of the Num operations for type n

Compiling Type Classes

When you write this... ...the compiler generates this
square :: Num n => n -> n square :: Num n -> n -> n
square x = x*x square d x = (*) d x x
class Num n where data Num n

(+) ::n ->n ->n = MkNum (n -> n -> n)

(*) ::n->n->n (n -=> n -> n)

negate :: n -> n (n -> n)

..etc.etc...
(*) :: Num n -> n -> n ->n

(*) (MkNum m ...) =m

The class decl translates
to:

A data type decl for Num
A selector function for
each class operation

A value of type (Num n) is a dictionary

of the Num operations for type n

Compiling Instance Declarations

When you write this... ...the compiler generates this
square :: Num n => n -> n square :: Num n -> n -> n
square x = x*x square d x = (*) d x x
instance Num Int where dNumInt :: Num Int

a+b = intPlus a b dNumInt = MkNum intPlus

a *b = intTimes a b intTimes

negate a = intNeg a intNeg

.etc. ..

An instance decl for type T
translates to a value

jiecc’rliil;'\a:;;n ngrTfhe I of the Num operations for type n

A value of type (Num n) is a dictionary

Implementation Summary

The compiler translates each function that uses an
overloaded symbol into a function with an extra
parameter: the dictionary.

References to overloaded symbols are rewritten by the
compiler to lookup the symbol in the dictionary.

The compiler converts each type class declaration into a
dictionary type declaration and a set of selector functions.

The compiler converts each instance declaration into a
dictionary of the appropriate type.

The compiler rewrites calls to overloaded functions to pass
a dictionary. It uses the static, qualified type of the
function to select the dictionary.

Functions with Multiple Dictionaries

squares :: (Num a, Num b, Num c) => (a, b, ¢) -> (a, b, c)
squares (x,y,2) = (square x, square y, square z)

Note the concise type for
the squares function!

squares :: (Num a, Num b, Num ¢c) -> (¢, b, ¢) -> (a, b, c)
squares (da,db,dc) (x, y, z) =
(square da x, so .e db y, square dc z)

Pass appropriate
dictionary on to each
square function. 53

Compositionality

Overloaded functions can be defined from other
overloaded functions:

sumSq :: Num n => n -> n -> n
sumSq X y = square X + square y

sumSq :: Num n -> n -> n -> n
sumSqg d x y = (+) d (square d x)
l.quare d y)

Extract addition

operation from d Pass on d to square

54

Compositionality

Build compound instances from simpler ones:

class Eq a where
(==) :: a -> a -> Bool

instance Eq Int where
(==) = intEq -—- intEq primitive equality

instance (Eq a, Eq b) => Eqgq(a,b)
(u,v) == (x,y) = (u == x) && (v ==y)

instance Eq a => Eq [a] where
(==) I[1 [] True
(==) (x:xs) (y:ys) X==y && Xs == ys
(== False

55

Compound Translation
Build compound instances from simpler ones.

class Eq a where

(==) :: a -> a -> Bool
instance Eq a => Eq [a] where
(==) I[I [] = True
(==) (x:xs) (y:ys) = x==y && xXs == ys
(==) _ . = False
data Eq = MkEq (a->a->Bool) -- Dictionary type
(==) (MkEq eq) = eq -— Selector
dEqlist :: Eq a -> Eq [a] -- List Dictionary
dEqList d = MkKEq eql
where
eql [] [] = True
eql (x:xs) (y:ys) = (==) d x y && eql xs ys
eql = False

56

Many Type Classes

Eq: equality

Ord: comparison

Num: numerical operations

Show: convert to string

Read: convert from string

Testable, Arbitrary: testing.

Enum: ops on sequentially ordered types
Bounded: upper and lower values of a type
Generic programming, reflection, monads, ...
And many more.

Subclasses

* We could treat the Eg and Num type classes separately

memsq :: (Eq a, Num a) => a -> [a] -> Bool
memsq X XS = member (square x) xs

— But we expect any type supporting Num to also support Eq

* A subclass declaration expresses this relationship:

class Eq a => Num a where
(+) :: a -> a -> a
(*) :: a ->a -> a

* With that declaration, we can simplify the type of the function

memsq :: Num a => a -> [a] -> Bool
memsq X XS = member (square x) xs

58

Eq
All except
10, (->)

Ord
All except 10,

IOError, (->)

Enum
(), Bool, Char, Ordering,

Int, Integer, Float,
Double

Integral
Int, Integer

Monad
10, [1, Maybe

MonadPlus
10, [1, Maybe

All except
10, (->)

Int, Integer,
Float, Double

Int, Integer,
Float, Double

RealFrac
Float, Double

Read
All except
10, (->)

Bounded
Int, Char, Bool, ()

Ordering,tuples

Fractional
Float, Double

Floating
Float, Double

RealFloat
Float, Double

Functor
10, [1, Maybe

59

Default Methods

* Type classes can define “default methods”

-- Minimal complete definition:
-= (==) or (/=)
class Eq a where

(==) :: a -> a -> Bool

X ==Y = not (x /=vy)
(/=) :: a -> a -> Bool
x /=y = not (x == vy)

* |[nstance declarations can override default by
providing a more specific definition.

Deriving

* For Read, Show, Bounded, Enum, Eq, and Ord, the compiler
can generate instance declarations automatically

data Color = Red | Green | Blue
deriving (Show, Read, Eq, Ord)

Main> show Red

\\ Redll

Main> Red < Green
True

Main>let ¢ :: Color = read “Red”
Main> c
Red

— Ad hoc : derivations apply only to types where derivation code works
61

Numeric Literals

class Num a where

(+) :: a -> a -> a
(-) :: a ->a -> a
fromInteger :: Integer -> a
inc :: Num a => a -> a
inc x =x +1
Advantages:

Even literals are
overloaded.
1:: (Numa) =>a

"1” means
“fromInteger 1”

- Numeric literals can be interpreted as values

of any appropriate numeric type

- Example: 1 can be an Integer or a Float or a

user-defined numeric type.

62

Type Inference

 Type inference infers a qualified type Q=>T
— Tis a Hindley Milner type, inferred as usual
— Qs set of type class predicates, called a constraint

* Consider the example function:

example z xs =
case xs of
[] -> False
(y:ys) ->y >z || (y==z && ys == [z])

— TypeTis a->[a]->Bool

— Constraint Qis {Ord a, Eq a, Eq [a]} Ord a because y>z
Eqa Dbecause y==z
Eq [a] because ys == [Z]

63

Type Inference

e Constraint sets Q can be simplified:
— Eliminate duplicates
* {Eq a, Eq a} simplifies to {Eq a}
— Use an instance declaration
* If we have instance Eq a => Eq [a],
* then {Eq a, Eq [a]} simplifies to {Eq a}
— Use a subclass declaration

 If we have class Eq a => Ord a where ...,
* then {Ord a, Eq a} simplifies to {Ord a}

* Applying these rules,
— {Ord a, Eq a, Eq[a]} simplifies to {Ord a}

Type Inference

e Putting it all together:

example z xs =
case xs of
[] -> False

(y:ys) ->y >z || (y==z && ys ==[z])

—T=a->[a] ->Bool
—Q={0rd a, Eq a, Eq [a]}
— Q simplifies to {Ord a}

— example :: {Ord a} => a -> [a] -> Bool

65

Detecting Errors

* Errors are detected when predicates are
known not to hold:

Prelude> ‘a’ + 1
No instance for (Num Char)
arising from a use of +' at <interactive>:1:0-6
Possible fix: add an instance declaration for (Num Char)
In the expression: 'a' + 1
In the definition of 'it': it = 'a' + 1

Prelude> (\x -> x)
No instance for (Show (t -> t))
arising from a use of "print' at <interactive>:1:0-4
Possible fix: add an instance declaration for (Show (t -> t))
In the expression: print it
In a stmt of a 'do' expression: print it
66

More Type Classes: Constructors

Type Classes are predicates over types

[Type] Constructor Classes are predicates
over type constructors

Example: Map function useful on many
Haskell types

Lists:

map:: (a -> b) -> [a] -> [Db]
map £ [] = []
map £ (x:xs) = f x : map f xs

result = map (\x->x+1) [1,2,4]

Constructor Classes
e More examples of map function

data Tree a = Leaf a | Node(Tree a, Tree a)
deriving Show

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f (Leaf x) = Leaf (f x)
mapTree £ (Node(l,r)) = Node (mapTree f 1, mapTree f r)

tl = Node (Node (Leaf 3, Leaf 4), Leaf 5)
result = mapTree (\x->x+1) tl

data Opt a = Some a | None
deriving Show

mapOpt :: (a -> b) -> Opt a -> Opt b
mapOpt £ None = None
mapOpt £ (Some x) = Some (f x)

ol = Some 10
result = mapOpt (\x->x+1) ol

68

Constructor Classes

* All map functions share the same structure

map :: (a -> b) -> [a] -> [Db]
mapTree :: (a -> b) -> Tree a -> Tree b
mapOpt :: (a -> b) -> Opt a -> Opt b

* They can all be written as:
fmap:: (a -> b) ->ga ->gb
— where g is:
[-] for lists, Tree for trees, and Opt for options

* Note that g is a function from types to types, i.e.
a type constructor

Constructor Classes

* Capture this pattern in a constructor class,

class Functor g where
fmap :: (a -> b) ->ga ->gb

A type class where the predicate is over
type constructors

Constructor Classes

class Functor f where
fmap :: (a ->b) ->f a ->fb

instance Functor [] where
fmap £ [] = []
fmap £ (x:xs)

f x : fmap f xs

instance Functor Tree where
fmap f (Leaf x) = Leaf (f x)
fmap £ (Node(tl,t2)) = Node(fmap £ tl, fmap f t2)

instance Functor Opt where
fmap £ (Some s) = Some (f s)
fmap f None = None

71

Constructor Classes

* Or by reusing the definitions map, mapTree, and mapOpt:

class Functor f where
fmap :: (a ->b) ->f a ->fb

instance Functor [] where
fmap = map

instance Functor Tree where
fmap = mapTree

instance Functor Opt where
fmap = mapOpt

Constructor Classes

 We can then use the overloaded symbol fmap to map over
all three kinds of data structures:

*Main> fmap (\x->x+1) [1,2,3]
[2,3,4]
it :: [Integer]

*Main> fmap (\x->x+1) (Node(Leaf 1, Leaf 2))
Node (Leaf 2,Leaf 3)
it :: Tree Integer

*Main> fmap (\x->x+1) (Some 1)

Some 2
it :: Opt Integer

* The Functor constructor class is part of the standard
Prelude for Haskell

73

