
Principles	of	Programming	Languages	
h"p://www.di.unipi.it/~andrea/Dida2ca/PLP-16/	

Prof.	Andrea	Corradini	
Department	of	Computer	Science,	Pisa	

•  Type	systems	
•  Type	safety	
•  Type	checking	

–  Equivalence,	compaAbility	and	coercion	
•  PrimiAve	and	composite	types	

–  Discrete	and	scalar	types	
–  Tuples	and	records	
–  Arrays	

	

	

Lesson 21!
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What	is	a	Data	Type?	
•  A	(data)	type	is	a	homogeneous	collec?on	of	
values,	effecAvely	presented,	equipped	with	a	set	of	
opera?ons	which	manipulate	these	values		

•  Various	perspecAves:	
–  collecAon	of	values	from	a	“domain”	(the	denotaAonal	
approach)	

–  internal	structure	of	a	bunch	of	data,	described	down	to	
the	level	of	a	small	set	of	fundamental	types	(the	
structural	approach)	

–  collecAon	of	well-defined	operaAons	that	can	be	applied	
to	objects	of	that	type	(the	abstracAon	approach)	
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Advantages	of	Types		
•  Program	organizaAon	and	documentaAon	

–  Separate	types	for	separate	concepts	
•  Represent	concepts	from	problem	domain		

– Document	intended	use	of	declared	idenAfiers	
•  Types	can	be	checked,	unlike	program	comments	

•  IdenAfy	and	prevent	errors	
–  Compile-Ame	or	run-Ame	checking	can	prevent	
meaningless	computaAons	such	as		3	+	true	–	“Bill”	

•  Support	implementaAon	and	opAmizaAon	
–  Example:	short	integers	require	fewer	bits	
– Access	components	of	structures	by	known	offset	
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Type	system	
A	type	system	consists	of	
1.  The	set	of	predefined	types	of	the	language.		
2.  The	mechanisms	which	permit	the	defini?on	of	new	types.		
3.  The	mechanisms	for	the	control	(checking)	of	types,	which	include:	

1.   Equivalence	rules	which	specify	when	two	formally	different	
types	correspond	to	the	same	type.		

2.   Compa?bility	rules	specifying	when	a	value	of	a	one	type	can	
be	used	in	given	context.	

3.  Rules	and	techniques	for	type	inference	which	specify	how	the	
language	assigns	a	type	to	a	complex	expression	based	on	
informaAon	about	its	components	(and	someAmes	on	the	
context).		

4.  The	specificaAon	as	to	whether	(or	which)	constraints	are	sta?cally	
or	dynamically	checked.		
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Type	errors	

•  A	type	error	occurs	when	a	value	is	used	in	a	way	that	is	
inconsistent	with	its	definiAon		

•  Type	errors	are	type	system	(thus	language)	dependent	
•  ImplementaAons	can	react	in	various	ways	

–  Hardware	interrupt,	e.g.	apply	fp	addi1on	to	non-legal	bit	configura1on	
–  OS	excepAon,	e.g.	segmenta1on	fault	when	dereferencing	0	in	C	
–  ConAnue	execuAon	possibly	with	wrong	values	

•  Examples	
–  Array	out	of	bounds	access	

•  C/C++:	runAme	errors	
•  Java:	dynamic	type	error	

–  Null	pointer	dereference	
•  C/C++:	run-Ame	errors	
•  Java:	dynamic	type	error			
•  Haskell/ML:	pointers	are	hidden	inside	datatypes	

–  Null	pointer	dereferences	would	be	incorrect	use	of	these	datatypes,	therefore	
staAc	type	errors	
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Type	safety	

•  A	language	is	type	safe	(strongly	typed)	when	
no	program	can	violate	the	disAncAons	
between	types	defined	in	its	type	system	

•  In	other	words,	a	type	system	is	safe	when	no	
program,	during	its	execuAon,	can	generate	
an	unsignalled	type	error		

•  Also:	if	code	accesses	data,	it	is	handled	with	
the	type	associated	with	the	creaAon	and	
previous	manipulaAon	of	that	data	
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Safe	and	not	safe	languages	
•  Not	safe:	C	and	C++	

–  Casts,		pointer	arithmeAc	
•  Almost	safe	(aka	“weakly	typed”):	Algol	family,	Pascal,	
Ada.		
–  Dangling	pointers.		

•  Allocate	a	pointer	p	to	an	integer,	deallocate	the	memory	
referenced	by	p,	then	later	use	the	value	pointed	to	by	p.		

•  No	language	with	explicit	deallocaAon	of	memory	is	fully	type-
safe.	

•  Safe	(aka	“strongly	typed”):	Lisp,	Smalltalk,	ML,	
Haskell,	Java,	JavaScript	
–  Dynamically	typed:	Lisp,	Smalltalk,	JavaScript	
–  StaAcally	typed:	ML,	Haskell,	Java	
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Type	checking	

•  To	prevent	type	errors,	before	any	operaAon	is	
performed,	its	operands	must	be	type-checked	to	
ensure	that	they	comply	with	the	compaAbility	
rules	of	the	type	system			
–  mod	operaAon:	check	that	both	operands	are	integers	
–  and	operaAon:	check	that	both	operands	are	booleans	
–  indexing	opera1on:	check	that	the	lee	operand	is	an	
array,	and	that	the	right	operand	is	a	value	of	the	
array’s	index	type.	

•  Sta?cally	typed	languages:	(most)	type	checking	is	
done	during	compilaAon	

•  Dynamically	typed	languages:	type	checking	is	
done	at	runAme	
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StaAc	vs	dynamic	typing	

•  In	a	sta?cally	typed	PL:	
–  all	variables	and	expressions	have	fixed	types	(either	stated	
by	the	programmer	or	inferred	by	the	compiler)	

–  most	operands	are	type-checked	at	compile-1me.	
•  Most	PLs	are	called	“staAcally	typed”,	including	Ada,	C,	

C++,	Java,	Haskell,	…	even	if	some	type-checking	is	done	
at	run-Ame	(e.g.	access	to	arrays)	

•  In	a	dynamically	typed	PL:	
–  values	have	fixed	types,	but	variables	and	expressions	do	
not	

–  operands	must	be	type-checked	when	they	are	computed	
at	run-1me.	

•  Some	PLs	and	many	scripAng	languages	are	dynamically	
typed,	including	Smalltalk,	Lisp,	Prolog,	Perl,	Python.	
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Example:	Ada	staAc	typing	

•  Ada	funcAon	definiAon:	
 function is_even (n: Integer) 
  return Boolean is 

begin 
 return (n mod 2 = 0); 

end; 

Knowing	that	n’s	type	is	
Integer,	the	compiler	
infers	that	the	type	of	
“n	mod	2	=	0”	will	be	
Boolean.	

Knowing	that	p’s	type	is	Integer,	
the	compiler	infers	that	the	type	
of	“p+1”	will	be	Integer.	

§  Call: 
	p:	Integer;	
…	
if	is_even(p+1)	…	

§  Even	without	knowing	the	values	of	variables	and	parameters,	the	Ada	
compiler	can	guarantee	that	no	type	errors	will	happen	at	run-Ame.		
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Example:	Python	dynamic	typing	

•  Python	funcAon	definiAon:	
 def even (n): 
 return (n % 2 == 0)  

The	type	of	n	is	unknown.	
So	the	“%”	(mod)	operaAon	
must	be	protected	by	a	run-
Ame	type	check.	

§  The	types	of	variables	and	parameters	are	not	declared,	and	cannot	
be	inferred	by	the	Python	compiler.	So	run-Ame	type	checks	are	
needed	to	detect	type	errors.		
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StaAc	vs	dynamic	type	checking	

•  StaAc	typing	is	more	efficient		
–  No	run-Ame	checks	
–  Values	do	not	need	to	be	tagged	at	run-Ame	

•  StaAc	typing	is	oeen	considered	more	secure		
–  The	compiler	guarantees	that	the	object	program	
contains	no	type	errors.	With	dynamic	typing	you	rely	
on	the	implementaAon.	

•  Dynamic	typing	is	more	flexible	
–  Needed	by	some	applicaAons	where	the	types	of	the	
data	are	not	known	in	advance.	

•  JavaScript	array:	elements	can	have	different	types	
•  Haskell	list:	all	elements	must	have	same	type		

•  Note:	type	safety	is	independent	of	dynamic/staAc	
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StaAc	typing	is	conservaAve	

•  In	JavaScript,	we	can	write	a	funcAon	like	
	
Some	uses	will	produce	type	error,	some	will	not.	

•  StaAc	typing	must	be	conserva1ve		

Cannot	decide	at	compile	Ame	if	run-Ame	error	will	occur!	

function f(x) { return x < 10 ? x : x(); } 

if  (possibly-non-terminating-boolean-expression) 
 then  f(5); 

  else  f(15); 
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Type	Checking:	how	does	it	work	
•  Checks	that	each	operator	is	applied	to	
arguments	of	the	right	type.	It	needs:	
–  Type	inference,	to	infer	the	type	of	an	expression	
given	the	types	of	the	basic	consAtuents	

–  Type	compa.bility,	to	check	if	a	value	of	type	A	
can	be	used	in	a	context	that	expects	type	B	

•  Coercion	rules,	to	transform	silently	a	type	into	a	
compaAble	one,	if	needed		

–  Type	equivalence,	to	know	if	two	types	are	
considered	the	same	
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Towards	Type	Equivalence:	
Type	Expressions	

•  Type	expressions	are	used	in	declaraAons	and	type	
casts	to	define	or	refer	to	a	type	

Type	::=	 	int	|	bool	|	…	|	X	|	Tname	|pointer-to(Type)	|		
	 	array(num,	Type)	|	record(Fields)	|	class(…)	|	

	 	 	Type	à	Type	|	Type	x	Type	
		
–  Primi1ve	types,	such	as	int	and	bool	
–  Type	constructors,	such	as	pointer-to,	array-of,	records	
and	classes,	and	funcAons	

–  Type	names,	such	as	typedefs	in	C	and	named	types	in	
Pascal,	refer	to	type	expressions	

	



Graph	RepresentaAons	for		
Type	Expressions	

•  Internal	compiler	representaAon,	built	during	
parsing	

•  Example:	

16	

int *f(char*,char*) 

fun 
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char 

int pointer 

char 
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char 
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DAGs	



17	

Cyclic	Graph	RepresentaAons	

struct Node 
{ int val; 
  struct Node *next; 
}; 

Internal	compiler	representaAon	
of	the	Node	type:	cyclic	graph	

struct 

val 

pointer int 

next 

Source	program	
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Equivalence	of	Type	Expressions	

•  Two	different	noAons:	name	equivalence	
and	structural	equivalence		
– Two	types	are	structurally	equivalent	if	

1.  They	are	the	same	basic	types,	or	
2.  They	have	the	form	TC(T1,…,	Tn)	and	TC(S1,	…,	

Sn),	where	TC	is	a	type	constructor	and	Ti	is	
structurally	equivalent	to	Si	for	all	1	<=	i	<=	n,	or	

3.  One	is	a	type	name	that	denotes	the	other.	
– Two	types	are	name	equivalent	if	they	saAsfy	
1.	and	2.	
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On	Structural	Equivalence	

•  Structural	equivalence:	unravel	all	type	
constructors	obtaining	type	expressions	
containing	only	primiAve	types,	then	check	if	
they	are	equivalent	

•  Used	in	C/C++,	C#	
-- pseudo Pascal 
type Student = record  

 name, address : string  
 age : integer 

 
type School = record  

 name, address : string 
 age : integer 

 
x : Student; 
y : School; 
 
x:= y;    
--ok with structural equivalence 
--error with name equivalence 
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Structural	Equivalence	of		
Recursive	Type	Expressions	

•  Two	structurally	equivalent	type	expressions	have	the	
same	pointer	address	when	construcAng	graphs	by	
(maximally)	sharing	nodes	

struct Node 
{ int val; 
  struct Node *next; 
}; 
struct Node s, *p; 

struct 

val 

int 

pointer s 

p 

next 

&s 

*p 

=>	struct 

val next 

int 

pointer 

pointer 

struct 

val 

int 

pointer 

next 

p = &s; // OK 
*p = s; // OK 
p = s;  // ERROR 
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On	Name	Equivalence	

•  Each	type	name	is	a	disAnct	type,	even	when	the	type	
expressions	that	the	names	refer	to	are	the	same	

•  Types	are	idenAcal	only	if	names	match	
•  Used	for	Abstract	Data	Types	and	by	OO	languages		
•  Used	by	Pascal	(inconsistently)	

type link = ^node; 
var next : link; 
    last : link; 
       p : ^node; 
    q, r : ^node; 

With	name	equivalence	in	Pascal:�
p := next   FAIL 
last := p   FAIL 
q := r    OK 
next := last  OK 
p := q    FAIL !!! 



On	Name	Equivalence	

•  Name	equivalence:	someAmes	“aliases”	needed	

TYPE stack_element = INTEGER; 
MODULE stack; 
IMPORT stack_element; 
EXPORT push, pop; 
(* alias *) 
       ... 
   PROCEDURE push(elem : stack_element); 
       ... 
   PROCEDURE pop() : stack_element; 
... 
 
var st:stack; 
st.push(42);     // this should be OK 
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Type	compaAbility	and	Coercion	
•  Type	compa?bility	rules	vary	a	lot	

–  Integers	as	reals 	 	 	OK	
– Subtypes	as	supertypes 	 	OK	
– Reals	as	integers	 	 	???		
– Doubles	as	floats	 	 	???	

•  When	an	expression	of	type	A	is	used	in	a	
context	where	a	compaAble	type	B	is	
expected,	an	automaAc	implicit	
conversion	is	performed,	called	coercion	
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Type	checking	with	axributed	grammars	
A	simple	language	example	

E	→	true	
						⎟	false		
						⎟	literal		
						⎟	num		
						⎟	id	
						⎟	E	and	E	
						⎟	E	+	E	
						⎟	E	[	E	]	
						⎟	E	^	

Pascal-like	pointer	
dereference	operator	

P	→	D	;	S	
D	→	D	;	D	
							⎟	id	:	T	
T	→		boolean	
							⎟	char	
							⎟	integer	
							⎟	array	[	num	]	of	T	
							⎟	^	T	
S	→		id	:=	E	
							⎟	if	E	then	S	
							⎟	while	E	do	S	
							⎟	S	;	S	

Pointer	to	T	

Synthesized	a"ributes	
T.type	:	type	expression	
E.type	:	type	of	expression		

	 	 	or	type_error	
S.type	:	void	if	statement	is		

	well-typed,	type_error		
	otherwise	
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DeclaraAons	

D	→	id	:	T 	 	 	 	{	addtype(id.entry,	T.type)	}	
T	→	boolean 	 	 	{	T.type	:=	boolean	}	
T	→	char 	 	 	 	{	T.type	:=	char	}	
T	→	integer 	 	 	{	T.type	:=	integer	}	
T	→	array	[	num	]	of	T1 	{	T.type	:=	array(1..num.val,	T1.type)	}	
T	→	^	T1 	 	 	 	{	T.type	:=	pointer(T1)	}	

Parametric types:�
type constructor	
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Checking	Statements	
S	→	id	:=	E	{	S.type	:=	(if	id.type	=	E.type	then	void	else	type_error)	}	

•  Note:	the	type	of	id	is	determined	by	scope’s	environment:	
id.type	=	lookup(id.entry)	

S	→	if	E	then	S1 	{	S.type	:=	(if	E.type	=	boolean	then	S1.type	
	 	 	 								else	type_error)	}		

	
S	→	while	E	do	S1	{	S.type	:=	(if	E.type	=	boolean	then	S1.type	

	 	 	 								else	type_error)	}	
	
S	→	S1	;	S2	{	S.type	:=	(if	S1.type	=	void	and	S2.type	=	void	

	 	 								then	void	else	type_error)	}		
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Checking	Expressions	
E	→	true 	 	{	E.type	=	boolean	}	
E	→	false	 	 	{	E.type	=	boolean	}	
E	→	literal	 	{	E.type	=	char	}	
E	→	num 	 	{	E.type	=	integer	}		
E	→	id	 	 	{	E.type	=	lookup(id.entry)	}	
E	→	E1	+	E2 	{	E.type	:=	(if	E1.type	=	integer	and	E2.type	=	integer		

	 	 									then	integer	else	type_error)	}		
E	→	E1	and	E2	{	E.type	:=	(if	E1.type	=	boolean	and	E2.type	=	boolean		

	 	 										then	boolean	else	type_error)	}		
E	→	E1	[	E2	]	 	{	E.type	:=	(if	E1.type	=	array(s,	t)	and	E2.type	=	integer		

	 	 									then	t	else	type_error)	}	
•  	Parameter	t	is	set	with	the	unificaAon	of		E1.type	=	array(s,	t)		
E	→	E1	^ 	{	E.type	:=	(if	E1.type	=	pointer(t)	then	t	

	 	 									else	type_error)	}	
•  Parameter	t	is	set	with	the	unificaAon	of		E1.type	=	pointer(t)	
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Type	Conversion	and	Coercion	

•  Type	conversion	is	explicit,	for	example	using	
type	casts	

•  Type	coercion	is	implicitly	performed	by	the	
compiler	to	generate	code	that	converts	types	
of	values	at	runAme	(typically	to	narrow	or	
widen	a	type)	

•  Both	require	a	type	system	to	check	and	infer	
types	from	(sub)expressions	



On	Coercion	
•  Coercion	may	change	the	representaAon	of	the	value	

or	not	
–  Integer	à	Real		 		binary	representa1on	is	changed	
  {int x = 5; double y = x; …}  

–  A		à	B				subclasses		binary	representa1on	not	changed	
  class A extends B{ … } 
  {B myBobject = new A(…); … }	

•  Coercion	may	cause	loss	of	informaAon,	in	general	
–  Not	in	Java,	with	the	excepAon	of	long	as	float	

•  In	staAcally	typed	languages	coercion	instrucAons	are	
inserted	during	semanAc	analysis	(type	checking)	

•  Popular	in	Fortran/C/C++,	tends	to	be	replaced	by	
overloading	and	polymorphism	

•  Popular	again	in	modern	scripAng	languages	
29	



•  Coercion	(implicit,	widening)	
–  No	loss	of	informaAon	(almost…)	

•  Cast	(explicit,	narrowing)		
–  Some	informaAon	can	be	lost	

•  Explicit	cast	is	always	allowed	
when	coercion	is	

30	

Example:	Type	Coercion	and	Cast	in	Java		
among	numerical	types	

64	

32	

64	

32	

16	
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Handling	coercion	during	translaAon	

TranslaAon	of	sum	without	type	coercion:	
E	→	E1	+	E2 	 	{ 		E.place	:=	newtemp();	

	 				 	 	 	gen(E.place	‘:=’ E1.place	‘+’ E2.place)	}	
	
With	type	coercion:	
E	→	E1	+	E2 	 	{	 	E.	type	=	max(E1.type,E2.type);	

	 	 	 	 	a1	=	widen(E1.addr,	E1.type,	E.type)	;		
	 	 	 	 	a2	=	widen(E2.addr,	E2.type,	E.type);	
	 	 	 	 	E.addr	=	new	Temp();		
	 	 	 	 	gen(E.addr	'='	a1	'+'	a2);	}		

where:	
•  max(T1,T2)	returns	the	least	upper	bound	of	T1	and	T2	in	the	widening	

hierarchy	
•  widen(addr,	T1,	T2)	generate	the	statement	that	copies	the	value	of	type	

T1	in	addr	to	a	new	temporary,	casAng	it	to	T2		
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Pseudocode	for	widen	

Addr widen(Addr a, Type t, Type w){  
 temp = new Temp();   
 if(t = w) return a;  //no coercion needed  
 elseif(t = integer and w = float){  
  gen(temp '=' '(float)' a);  
 elseif(t = integer and w = double){  
  gen(temp '=' '(double)' a); 
 elseif ...  
 else error;  
 return temp; }  

}  
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Built-in	primiAve	types	
•  Typical	built-in	primiAve	types:	

	Boolean 	=		{false,	true}	
	Character 	=		{…,	‘A’,	…,	‘Z’,	

	 	…,	‘0’,	…,	‘9’,	
	 	…}	

	Integer 	=		{…,	–2,	–1,		
	 	0,	+1,	+2,	…}	

	Float 	=		{…,	–1.0,	…,		
	 	0.0,	+1.0,	…}	

PL- or implementation-defined 
set of characters (ASCII, ISO-
Latin, or Unicode) 

PL- or implementation-defined 
set of whole numbers 

PL- or implementation-defined 
set of real numbers 

§  Note:	In	some	PLs	(such	as	C),	booleans	and	characters	are	just	small	
integers.	

§  Names of types vary from one PL to another: not significant. 
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Terminology	
•  Discrete	types	–	countable	

–  integer,	boolean,	char	
– enumeraAon	
– subrange	

•  Scalar	types	-	one-dimensional	
– discrete	
–  real	

type Color is (red, green, blue); 

type Population is range 0 .. 1e10; 
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Composite	types	
•  Types	whose	values	are	composite,	that	is	composed	of	other	

values	(simple	or	composite):	
–  records	(unions)	
–  Arrays		(Strings)	
–  algebraic	data	types	
–  sets	
–  pointers	
–  lists	

•  Most	of	them	can	be	understood	in	terms	of	a	few	concepts:	
–  Cartesian	products	(records)		
–  mappings	(arrays)	
–  disjoint	unions	(algebraic	data	types,	unions,	objects)	
–  recursive	types	(lists,	trees,	etc.)	

•  Different	names	in	different	languages.		
•  Defined	applying	type	constructors	to	other	types	(eg	struct,	

array,	record,…)		
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An	brief	overview	of	composite	types		

•  We	review	type	constructors	in	Ada,	Java	and	
Haskell	corresponding	to	the	following	
mathemaAcal	concepts:		
– Cartesian	products	(records)		
– mappings	(arrays)	
– disjoint	unions	(algebraic	data	types,	unions)	
–  recursive	types	(lists,	trees,	etc.)	
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Cartesian	products	

•  S	×	T	denotes	the	Cartesian	product	of	S	and	T:	
	S	×	T		=		{	(x,	y)	|	x	∈	S;	y	∈	T	}	

•  We	can	generalise	to	tuples:	
	S1	×	S2	×	…	×	Sn		=		{	(x1,	x2,	…,	xn)	|	x1	∈	S1;	x2	∈	S2;	…;	xn	∈	Sn	}	

•  Basic	operaAons	on	tuples:	
–  construc?on	of	a	tuple	from	its	component	values	
–  selec?on	of	an	explicitly-designated	component	of	a	tuple		

•  we	can	select	the	1st	or	2nd	(but	not	the	ith)	component	

•  Records	(Ada),	structures	(C),	and	tuples	(Haskell)	can	
all	be	understood	in	terms	of	Cartesian	products.	
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Example:	Ada	records	(1)	

•  Type	declaraAons:	
 type Month is (jan, feb, mar, apr, may, jun, 
  jul, aug, sep, oct, nov, dec); 

type Day_Number is range 1 .. 31; 
type Date is record 
   m: Month; 
   d: Day_Number; 
  end record; 

•  ApplicaAon	code:	
	someday: Date := (jan, 1); 
… 
put(someday.m+1); put("/"); put(someday.d); 
someday.d := 29; someday.m := feb; 

record construction 

component selection component selection 
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Example:	Haskell	tuples	

•  DeclaraAons:	
 data Month = Jan | Feb | Mar | Apr 
  | May | Jun | Jul | Aug 
  | Sep | Oct | Nov | Dec 

type Date = (Month, Int) 
 

•  Set	of	values:	
	Date 	=		Month	×	Integer	

	 	=		{Jan,	Feb,	…,	Dec}	×	{…,	–1,	0,	1,	2,	…}	
•  ApplicaAon	code:	

	someday = (jan, 1)   //	tuple	construcAon 
m, d = someday   //	component	selecAon
	 	 	 	 	 	 	 	//	(by	paxern	matching)	

anotherday = (m + 1, d) 
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Arrays	as	mappings	
•  An	array	of	type				S	→	T			is	a	finite	mapping.	
•  S	is	typically	a	finite	range	of	consecuAve	values		

{l,	l+1,	…,	u},	called	the	array’s	index	range.	
•  Basic	operaAons	on	arrays:	

–  construcAon	of	an	array	from	its	components	
–  indexing	–	using	a	computed	index	value	to	select	a	component	

§  In	C	and	Java,	the	index	range	must	be	{0,	1,	…,	n–1}.	
In	Pascal	and	Ada,	the	index	range	may	be	any	scalar	
(sub)type	other	than	real/float.	

§  We	can	generalise	to	n-dimensional	arrays.	If	an	array	
has	index	ranges	of	types	S1,	…,	Sn,	the	array’s	type	is	
S1	×	…	×	Sn	→	T.	
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When	is	the	index	range	known?	
•  A	sta?c	array	is	an	array	variable	whose	index	range	is	fixed	

by	the	program	code.	
•  A	dynamic	array	is	an	array	variable	whose	index	range	is	

fixed	at	the	Ame	when	the	array	variable	is	created.	
–  In	Ada,	the	definiAon	of	an	array	type	must	fix	the	index	type,	
but	need	not	fix	the	index	range.	Only	when	an	array	variable	is	
created	must	its	index	range	be	fixed.	

–  Arrays	as	formal	parameters	of	subrouAnes	are	oeen	dynamic	
(eg.	conformant	arrays	in	Pascal)	

•  A	flexible	(or	fully	dynamic)	array	is	an	array	variable	
whose	index	range	is	not	fixed	at	all,	but	may	change	
whenever	a	new	array	value	is	assigned.	
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§  FuncAon:	
	void print_vector (float v[], int n) { 
// Print the array v[0], …, v[n-1] in the form “[…  …]”. 
 int i; 
 printf("[%f", v[0]); 
 for (i = 1; i < n; i++) 
  printf(" %f", v[i]); 
 printf("]"); 

} 

 … 
print_vector(v1, 4);  print_vector(v2, 10); 
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Example:	C	staAc	arrays	

•  Array	variable	declaraAons:	
 float v1[] = {2.0, 3.0, 5.0, 7.0}; 
float v2[10]; 

index range 
is {0, …, 3} 

index range is {0, …, 9} 

A C array 
doesn’t know 
its own length! 
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Example:	Ada	dynamic	arrays	

•  Array	type	and	variable	declaraAons:	
 type Vector is 

  array (Integer range <>) of Float; 
v1: Vector(1 .. 4) := (1.0, 0.5, 5.0, 3.5); 
v2: Vector(0 .. m) := (0 .. m => 0.0); 

•  Procedure:	
 procedure print_vector (v: in Vector) is 
-- Print	the	array	v	in	the	form	“[…	…	…]”. 
begin 
 put('[');  put(v(v'first)); 
 for i in v'first + 1 .. v'last loop 
  put(' ');  put(v(i)); 
 end loop; 
 put(']'); 

end; 
 … 
print_vector(v1);  print_vector(v2); 
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Example:	Java	flexible	arrays	

•  Array	variable	declaraAons:	
 float[] v1 = {1.0, 0.5, 5.0, 3.5}; 
float[] v2 = {0.0, 0.0, 0.0}; 
 … 
v1 = v2; 

index range 
is {0, …, 3} 

v1’s index range is now {0, …, 2} 

index range is {0, …, 2} 

§  Method: 

	static void printVector (float[] v) { 
// Print the array v in the form “[… … …]”. 

 System.out.print("[" + v[0]); 
 for (int i = 1; i < v.length; i++) 
  System.out.print(" " + v[i]); 
 System.out.print("]"); 

} 

 … 
printVector(v1);  printVector(v2); 

Enhanced	for:	
for  (float f : v) 
System.out.print(" " + f)	



Array-level	operaAons	

•  Assigment		
–  Value	or	Reference	Model	

•  Comparison	for	equality	or	lexicographic	ordering	
(Ada)	

•  ArithmeAc	(pointwise)	+	specific	intrinsic	(built-
in)	operaAons	in	Fortran	90	(and	APL)	
–  Searching,	transposiAon,	reshaping…	

•  Slice	or	sec.on	
–  Returns	a	sub-array	by	selecAng	sub-ranges	of	
dimensions	
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Slicing	in	Fortran	90	
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7.4 Arrays 329

matrix(3:6, 4:7) matrix(6:, 5)

matrix(:4, 2:8:2) matrix(:, (/2, 5, 9/))

Figure 7.4 Array slices (sections) in Fortran 90. Much like the values in the header of an
enumeration-controlled loop (Section 6.5.1), a : b : c in a subscript indicates positions a, a + c ,
a + 2c , . . . through b. If a or b is omitted, the corresponding bound of the array is assumed. If c is
omitted, 1 is assumed. It is even possible to use negative values of c in order to select positions in
reverse order. The slashes in the second subscript of the lower right example delimit an explicit
list of positions.

Ada provides more limited support: a slice is simply a contiguous range of ele-
ments in a one-dimensional array. As we saw in Example 7.50, the elements can
themselves be arrays, but there is no way to extract a slice along both dimensions
as a single operation. !

In most languages, the only operations permitted on an array are selection of
an element (which can then be used for whatever operations are valid on its type),
and assignment. A few languages (e.g., Ada and Fortran 90) allow arrays to be
compared for equality. Ada allows one-dimensional arrays whose elements are
discrete to be compared for lexicographic ordering : A < B if the first element of A
that is not equal to the corresponding element of B is less than that corresponding
element. Ada also allows the built-in logical operators (or, and, xor) to be applied
to Boolean arrays.

Fortran 90 has a very rich set of array operations: built-in operations that take
entire arrays as arguments. Because Fortran uses structural type equivalence, the
operands of an array operator need only have the same element type and shape.
In particular, slices of the same shape can be intermixed in array operations, even
if the arrays from which they were sliced have very different shapes. Any of the
built-in arithmetic operators will take arrays as operands; the result is an array,



•  sta.c	array,	global	life.me		—	If	a	staAc	array	can	exist	
throughout	the	execuAon	of	the	program,	then	the	compiler	can	
allocate	space	for	it	in	sta1c	global	memory	

•  sta.c	array,	local	life.me	—	If	a	staAc	array	should	not	exist	
throughout	the	execuAon	of	the	program,	then	space	can	be	
allocated	in	the	subrou1ne’s	stack	frame	at	run	Ame.	

•  dynamic	array,	local	life.me	—	If	the	index	range	is	known	at	
runAme,	the	array	can	sAll	be	allocated	in	the	stack,	but	in	a	
variable	size	area	

•  fully	dynamic	—	If	the	index	range	can	be	modified	at	runAme	it	
has	to	be	allocated	in	the	heap	

Dope	vector:	run-Ame	data	structure	that	keeps	informaAon	about	
lower	(and	upper)	limits	of	arrays	ranges	

–  Needed	for	checking	bounds	and	compuAng	addresses	of	elements	

Array	allocaAon	
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AllocaAon	of	dynamic	arrays	on	stack	
334 Chapter 7 Data Types

-- Ada:
procedure foo (size : integer) is
M : array (1..size, 1..size) of real;
...
begin
    ...
end foo;

// C99:
void foo(int size) {
    double M[size][size];
    ...
}

M

sp

Temporaries

Pointer to M

Dope vector

Bookkeeping

Return address

Arguments
and returns

fp

Local
variables

Variable-size
part of the frame

Fixed-size part
of the frame

Figure 7.6 Elaboration-time allocation of arrays in Ada or C99. Here M is a square two-
dimensional array whose bounds are determined by a parameter passed to foo at run time.The
compiler arranges for a pointer to M and a dope vector to reside at static offsets from the frame
pointer. M cannot be placed among the other local variables because it would prevent those
higher in the frame from having static offsets. Additional variable-size arrays or records are easily
accommodated.

Several languages, including Snobol, Icon, and all the scripting languages, allow
strings—arrays of characters—to change size after elaboration time. Java andEXAMPLE 7.57

Dynamic strings in Java and
C#

C# provide a similar capability (with a similar implementation), but describe
the semantics differently: string variables in these languages are references to
immutable string objects:

String s = "short"; // This is Java; use lowercase 'string' in C#
...
s = s + " but sweet"; // + is the concatenation operator

Here the declaration String s introduces a string variable, which we initialize
with a reference to the constant string "short". In the subsequent assignment, +
creates a new string containing the concatenation of the old s and the constant
" but sweet"; s is then set to refer to this new string, rather than the old.
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Arrays:	memory	layout	
•  ConAguous	elements	

–  column	major	-	only	in	Fortran	
–  row	major	

•  used	by	everybody	else	
•  Row	pointers	

–  an	opAon	in	C,	the	rule	in	Java	
–  allows	rows	to	be	put	anywhere	-	nice	for	big	arrays	
on	machines	with	segmentaAon	problems				

–  avoids	mulAplicaAon	
–  nice	for	matrices	whose	rows	are	of	different	lengths	

•  e.g.	an	array	of	strings	
–  requires	extra	space	for	the	pointers	
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Arrays’	memory	layout	in	C	

•  Address	computaAon	varies	a	lot	
•  With	conAguous	allocaAon	part	of	the	computaAon	can	be	done	staAcally	
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Compiling	array	declaraAons		
and	addressing	

•  TranslaAon	scheme	for	associaAng	with	an	
array	declaraAon	a	type	expression	and	the	
width	of	its	instances		

•  CompuAng	the	address	of	an	array	element:	
one-	and	mulA-dimensional	cases	

•  GeneraAng	three	address	code	for	addressing	
array	elements	
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DeclaraAon	of	MulAdimensional	Arrays:		
Syntax	Directed	TranslaAon	Scheme	for	type/width	

T	→	 	B	 	 	 	 	{			t	=	B.type;	w	=	B.width;		}	
	 	C 	 	 	 	{		T.type	=	C.type;	T.width	=	C.width	}		

B	→	 	int	 	 	 	 	{		B.type	=	‘integer’;	B.width	=	4;		}		
B	→	 	float	 	 	 	{		B.type	=	‘float’;	B.width	=	8;		}		
C	→	 	ε	 	 	 	 	{	C.type	=	t;	C.width	=	w;		}	
C	→	 	[	num	]	C1	 	 	{	C.type	=	array(num.value,	C1.type);	

	 	 	 	 			 			C.width	=	num.value	*	C1.width;		}	

B	

Annotated	parse	tree	for	
int[2][3] 

Example: int[2][3]	



Addressing	Array	Elements:		
One-Dimensional	Arrays	

•  Assuming	that	elements	are	stored	in	adjacent	cells:	

•  If	base,	low	and	w	are	known	at	compile	Ame:	
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= i * w + c     where c = baseA - low * w�
		

Example with low = 10; w = 4	
…	
t1 := c  //c = baseA - 10 * 4, can be stored in the symbol table 
t2 := i * 4 
t3 := t1[t2] 
…  := t3 

= baseA + (i - low) * w	

A : array [10..20] of integer; 
 
 
… := A[i] 

low		 Type’s	size		high		
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Addressing	Array	Elements:		
MulA-Dimensional	Arrays	

A : array [1..2,1..3] of integer; 

low1 = 1, low2 = 1, 	
n1 = high1 - low1  + 1 = 2,   n2 = 3, 	
w = 4  (element type size) 	

A[1][1] 

A[1][2] 

A[1][3] 

A[2][1] 

A[2][2] 

A[2][3] 

Row-major	

A[1][1] 

A[2][1] 

A[1][2] 

A[2][2] 

A[1][3] 

A[2][3] 

Column-major	

baseA baseA 

(as in C)	 (as	in	Fortran)	
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Addressing	Array	Elements:		
MulA-Dimensional	Arrays	

Example with low1 = 1; low2 = 1; n2 = 3; w = 4	
t1 := i * 3 
t1 := t1 + j 
t2 := c    // c = baseA - (1 * 3 + 1) * 4 
t3 := t1 * 4 
t4 := t2[t3]   // base t2, offset t3  
…  := t4 

= ((i * n2) + j) * w + c�
	where c = baseA - ((low1 * n2) + low2) * w�
		

A : array [1..2,1..3] of integer; (Row-major)�
 
… := A[i][j] = baseA + ((i - low1) * n2 + j - low2) * w	
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Addressing	Array	Elements:	Grammar	

Grammar:	
	
S	→	id	=	E	;	

	|	L	=	E	;	
E		→	E	+	E	
						 	|	id	
	 	|	L	
L	→	id	[	E	]	
	 	|	L	[	E	]	
	
	
•  Nonterminal	L	generates	an	array	name			
followed	by	a	sequence	of	indexes,	like	
 a[i][j][k] 

•  L	can	appear	both	as	lee-	and	right-value	

Synthesized attributes:	
	
E.addr 	 	name of temp holding value of E�
L.addr 	 	temporary to compute offset	
L.array 	 	pointer to symbol table entry for the array name	

	L.array.base 	    base address	
	L.array.type      type of the array, eg. array(2, array(3,int))	
	L.array.type.elem   type of array elements, eg. array(3,int)	

L.type 	 	type of the subarray generated by L	
	L.type.width 	    memory allocated for data of type L.type	



Addressing	array	elements:	
generaAng	three	address	statements	

S	→ 	id	=	E	; 	 	{	gen(	top.get(id.lexeme)	'='	E.addr);	}	 	 	//	no	array	
	|	L	=	E	;	 	 	{	gen(L.array.base	'['	L.addr	']'	'='	E.addr);	} 	//	address	=	base	+	offset	

E		→	E1	+	E2	 	 	{	E.addr		=	new	Temp();		 	 	 	 	//	similarly	for	*,	-,	…	
	 	 	 	gen(E.addr	'='	E1.addr	'+'	E2.addr);	}		
	|	id		 	 	{	E.addr	=	top.get(id.lexeme);	}		

	 	|	L	 	 	 	{	E.addr	=	new	Temp();		
	 	 	 	gen(E.addr	'='	L.array.base	'['	L.addr	']');	}		 	//	address	=	base	+	offset	

L	→	id	[	E	]		 	 	{	L.array	=	top.get(id.lexeme);		
	 	 	 	L.type	=	L.array.type.elem;	
	 	 	 	L.addr	=	new	Temp();	
	 	 	 	gen(L.addr	'='	E.addr	'*'	L.type.width);	}	 	//	computes	the	offset	

		 	|	L1	[	E	] 	 	{	L.array=L1.array;	
	 	 	 	L.type	=	L1.type.elem;	
	 	 	 	t	=	new	Temp();	
	 	 	 	L.addr=	new	Temp();	
	 	 	 	gen(t	'='	E.addr	'*'	L.type.width);		
	 	 	 	gen(L.addr	'='	L1.addr	'+'	t);	}		
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Example	-	generaAng	intermediate	code		
for	access	to	array:			c + a[i][j] 
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Strings	

•  A	string	is	a	sequence	of	0	or	more	characters.	
•  Usually	ad-hoc	syntax	is	supported		
•  Some	PLs	(ML,	Python)	treat	strings	as	primi1ve.	
•  Haskell	treats	strings	as	lists	of	characters.	Strings	are	

thus	equipped	with	general	list	operaAons	(length,	
head	selecAon,	tail	selecAon,	concatenaAon,	…).	

•  Ada	treats	strings	as	arrays	of	characters.	Strings	are	
thus	equipped	with	general	array	operaAons	(length,	
indexing,	slicing,	concatenaAon,	…).	

•  Also	in	C	strings	are	arrays	of	characters,	but	handled	
differently	from	other	arrays	

•  Java	treats	strings	as	objects,	of	class	String.	

59	



•  In	a	disjoint	union,	a	value	is	chosen	from	one	of	
several	different	types.	

•  Let	S	+	T	stand	for	a	set	of	disjoint-union	values,	each	
of	which	consists	of	a	tag	together	with	a	variant	
chosen	from	either	type	S	or	type	T.	The	tag	indicates	
the	type	of	the	variant:	

	S	+	T		=		{	le[	x	|	x	∈	S	}	∪	{	right	y	|	y	∈	T	}	
–  le[	x	is	a	value	with	tag	le[	and	variant	x	chosen	from	S	
–  right	x	is	a	value	with	tag	right	and	variant	y	chosen	from	T.	

•  We	write	le>	S	+	right	T	(instead	of	S	+	T)	when	we	
want	to	make	the	tags	explicit.	

Disjoint	Unions	
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Disjoint	Unions	

§  Basic	operaAons	on	disjoint-union	values	in	S	+	T:	
•  construc?on	of	a	disjoint-union	value	from	its	tag	and	
variant	

•  tag	test,	to	see	whether	the	variant	is	from	S	or	T	
•  projec?on,	to	recover	the	variant	in	S	or	in	T	

§  Algebraic	data	types	(Haskell),	discriminated	
records	(Ada),	unions	(C)	and	objects	(Java)	can	be	
understood	as	disjoint	unions.	

§  We	can	generalise	to	mulAple	variants:		
S1	+	S2	+	…	+	Sn.	
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Variant	records	(unions)	

•  Origin:	Fortran	I	equivalence	
statement:	variables	should	
share	the	same	memory	locaAon		

•  C’s	union	types	
•  MoAvaAons:	

–  Saving	space	
–  Need	of	different	access	to	the	
same	memory	locaAons	for	
system	programming	

–  AlternaAve	configuraAons	of	a	
data	type	
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Fortran	I	--	equivalence	statement	
integer i 
real r 
logical b 
equivalence (i, r, b) 

C	--	union	
union {  

 int i; 

 double d; 

 _Bool b;  
}; 



Variant	records	(unions)	(2)	
•  In	Ada,	Pascal,	unions	are	discriminated	by	a	
tag,	called	discriminant	

•  Integrated	with	records	in	Pascal/Ada,	not	in	C	
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ADA	–	discriminated	variant	
 type Form is 

  (pointy, circular, rectangular); 
type Figure (f: Form := pointy) is record 
   x, y: Float; 
   case f is 
    when pointy      => null; 
    when circular    => r: Float; 
    when rectangular => w, h: Float; 
   end case; 
  end record; 

tag 



Using	discriminated	records	in	Ada	

•  ApplicaAon	code:	
	box: Figure := 
  (rectangular, 1.5, 2.0, 3.0, 4.0); 

 function area (fig: Figure) return Float 
is 
begin 
 case fig.f is 
  when pointy => 
   return 0.0; 
  when circular => 
   return 3.1416 * fig.r**2; 
  when rectangular => 
   return fig.w * fig.h; 
 end case; 

end; 

discriminated-record 
construction 

tag test 

projection projection 
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(Lack	of)	Safety	in	variant	records	

•  Only	Ada	has	strict	rules	for	assignment:	tag	and	
variant	have	to	be	changed	together	

•  For	nondiscriminated	unions	(Fortran,	C)	no	
runAme	check:	responsibility	of	the	programmer	

•  In	Pascal	the	tag	field	can	be	modified	
independently	of	the	variant.	Even	worse:	the	tag	
field	is	opAonal.		

•  Unions	not	included	recent	OO	laguages:	
replaced	by	algebraic	data	types	or	classes	+	
inheritance	
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Haskell/ML	algebraic	data	types	

•  Type	declaraAon:	
 data Number = Exact Int | Inexact Float 

Each Number value consists of a tag (constructor), 
together with either an Integer variant (if the tag is Exact) 
or a Float variant (if the tag is Inexact). 
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•  ApplicaAon	code:	
	pi = Inexact 3.1416 
 rounded :: Number -> Integer 
rounded num = 
 case num of 
  Exact i   -> i 
  Inexact r -> round r projection 

(by pattern 
matching) 

projection 
(by pattern 
matching) 



AcAve	paxerns	in	F#	
•  With	algebraic	data	types,	the	type	definiAon	determines	

uniquely	the	paxerns		
•  Ac1ve	pa_erns,	can	be	used	to	“wrap”	a	data	type,	

algebraic	or	not,	providing	a	different	perspecAve	for	use	of	
paxern	matching		

•  EssenAally,	acAve	paxerns	define	ad-hoc,	unnamed	union	
types	
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Ac?ve	pa"ern	defini?on	
let	(|Even|Odd|)	n	=	
				if	n	%	2	=	0	then	
									Even	
				else	
									Odd	

Roughly	equivalent	to	
type	numKind	=	
				|	Even	
				|	Odd	
	
let	get_choice	n	=	
				if	n	%	2	=	0	then	
								Even	
				else	
								Odd	

Using	ac?ve	pa"erns	
let	testNum	n	=	
				match	n	with	
				|	Even	->	prin�n	"%i	is	even"	n	
				|	Odd	->	prin�n	"%i	is	odd"	n;;§	



AcAve	Paxerns	defining		
Constructors	with	Parameters			
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/*	Ac?ve	pa"ern	for	Sequences	*/	
let	(|SeqNode|SeqEmpty|)	s	=	
				if	Seq.isEmpty	s	then	SeqEmpty	
				else	SeqNode	((Seq.head	s),	Seq.skip	1	s)	
	
/*	SeqNode	is	a	constructor	with	two	parameters	*/	
					
let	perfectSquares	=	seq	{	for	a	in	1	..	10	->	a	*	a	}	
	
let	rec	printSeq	=	funcAon	
				|	SeqEmpty	->	prin�n	"Done."	
				|	SeqNode(hd,	tl)	->	
								prin�	"%A	"	hd	
								printSeq	tl;;	
	
>	printSeq	perfectSquares;;	
1	4	9	16	25	36	49	64	81	100	Done.	



Java	objects	as	unions	

•  Type	declaraAons:	
 class Point { 
 private float x, y; 
 …  // methods 
} 
 class Circle extends Point { 
 private float r; 
 …  // methods 
} 
 class Rectangle extends Point { 
 private float w, h; 
 …  // methods 
} 

inherits x and y 
from Point	

inherits x and y 
from Point	
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Java	objects	as	unions	(2)	

•  Methods:	
 class Point { 
 … 
 public float area() 
 { return 0.0; } 

} 
 class Circle extends Point { 
 … 
 public float area() 
 { return 3.1416 * r * r; } 

} 
 class Rectangle extends Point { 
 … 
 public float area() 
 { return w * h; } 

} 

overrides Point’s 
area() method 

overrides Point’s 
area() method 
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Java	objects	as	unions	(3)	

•  ApplicaAon	code:	
 Rectangle box = 
  new Rectangle(1.5, 2.0, 3.0,4.0); 

 
float a1 = box.area(); 
 Point it = …; 
float a2 = it.area(); 

it can refer to a 
Point, Circle, or 
Rectangle object 

calls the appropriate 
area() method 
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Assignments	and	Expressions	
•  Fundamental	difference	between	imperaAve	and	funcAonal	

languages	
•  Impera?ve	languages:	“compuAng	by	means	of	side	effects”	

–  ComputaAon	is	an	ordered	series	of	changes	to	values	of	
variables	in	memory	(state)	and	statement	ordering	is	
influenced	by	run-Ame	tesAng	values	of	variables	

•  Expressions	in	(pure)	func?onal	language	are	referen1ally	
transparent:	
–  All	values	used	and	produced	depend	on	the	local	
referencing	environment	of	the	expression	

–  A	funcAon	is	idempotent	in	a	(pure)	funcAonal	language:	it	
always	returns	the	same	value	given	the	same	arguments	
because	of	the	absence	of	side-effects	
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L-Values	vs.	R-Values	and		
Value	Model	vs.	Reference	Model	

•  Consider	the	assignment	of	the	form:	 	a	:=	b	
–  a	is	an	l-value,	i.e.	an	expression	that	should	denote	a	locaAon	(an	array	

element	a[2],	a	variable	foo,	a	dereferenced	pointer	*p	or	a	more	
complex	expression	(f(a)+3)->b[c])	

–  b		is	an	r-value:	any	syntacAcally	valid	expression	with	type	compaAble	to	
that	of	a		

•  Languages	that	adopt	the	value	model	of	variables	copy	the	value	
of	b	into	the	locaAon	of	a	(e.g.	Ada,	Pascal,	C,	…)	

•  Languages	that	adopt	the	reference	model	of	variables	copy	
references,	resulAng	in	shared	data	values	
–  Clu,	Lisp/Scheme,	ML,	Haskell,	Smalltalk	adopt	the	reference	model	
–  Most	imperaAve	programming	languages	use	the	value	model	
–  Java	is	a	mix:	it	uses	the	value	model	for	built-in	types	and	the	reference	

model	for	class	instances	
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Assignment	in		
Value	Model	vs.	Reference	Model	
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6.1 Expression Evaluation 227

4a 4

2

2b

2c

a

b

c

Figure 6.2 The value (left) and reference (right) models of variables. Under the reference
model, it becomes important to distinguish between variables that refer to the same object
and variables that refer to different objects whose values happen (at the moment) to be
equal.

model of variables, as in Clu, there is (at least conceptually) only one 2—a sort of
Platonic Ideal—to which any variable can refer. The practical effect is the same in
this example, because integers are immutable: the value of 2 never changes, so we
can’t tell the difference between two copies of the number 2 and two references to
“the” number 2. !

In a language that uses the reference model, every variable is an l-value. When
it appears in a context that expects an r-value, it must be dereferenced to obtain
the value to which it refers. In most languages with a reference model (including
Clu), the dereference is implicit and automatic. In ML, the programmer must use
an explicit dereference operator, denoted with a prefix exclamation point. We will
revisit ML pointers in Section 7.7.1.

The difference between the value and reference models of variables becomes
particularly important (specifically, it can affect program output and behavior)
if the values to which variables refer can change “in place,” as they do in many
programs with linked data structures, or if it is possible for variables to refer
to different objects that happen to have the “same” value. In this latter case it
becomes important to distinguish between variables that refer to the same object
and variables that refer to different objects whose values happen (at the moment)
to be equal. (Lisp, as we shall see in Sections 7.10 and 10.3.3, provides more than
one notion of equality, to accommodate this distinction.) We will discuss the value
and reference models of variables further in Section 7.7.

DESIGN & IMPLEMENTATION

Implementing the reference model
It is tempting to assume that the reference model of variables is inherently
more expensive than the value model, since a naive implementation would
require a level of indirection on every access. As we shall see in Section 7.7.1,
however, most compilers for languages with a reference model use multiple
copies of immutable objects for the sake of efficiency, achieving exactly the
same performance for simple types that they would with a value model.

b	:=	2;	
c	:=	b;	
a	:=	b	+	c	



Seman?cs:	assignment	with	side	effects	
C	{e1	:=	e2}	r	s	=	update(x	as	Loc,	v	as	Sval)	s2	

	 	where	(x,	s1)	=	E{e1}	r	s	
	 	and		(v,s2)	=	E{e2}	r	s1	

Evaluates	first	e1	then	e2:	store		
changes	are	propagated	

Example:	DeclaraAon	of	variables	and	assignment	
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Syntax	
Decl	::=	var	Ide	=	Exp	|	
Exp	::=	…	
Com	::=		Exp	:=	Exp	|	…	

Seman?c	interpreta?on	func?ons	
D:	Decl	à	Env	à	Store	à	(Env	x	Store)	
C:	Cmd	à	Env	à	Store	à	Store	
E:	Exp	à	Env	à	Store	à	Eval	no	side	eff	
E:	Exp	à	Env	à	Store	à	(Eval	x	Store)	
Env	=	Ide	à	Dval 		
Store	=	Loc	à	Sval	
Dval	=	…	+	Loc	+	…	
Eval	=	…	+	Loc	+	Sval	+	…	

Seman?cs:	declara?on	
D{var	x	=	e}	r	s	=	(r[l/x],	s[n/l])	

	where	l	=	newloc(s)		
	and			n	=	E{e}	r	s	

Allocates	a	new	loca1on	
bound	to	x	and	containing	n	
Seman?cs:	assignment	
C	{e1	:=	e2}	r	s	=	update(x,	v)	s	

	where	x	=	E{e1}	r	s	as	Loc		
	and		v	=	E{e2}	r	s	as		Sval	

No	side-effects,	no	coercion	



DenotaAonal	semanAcs	of		
value	model	and	reference	model		

•  A	PL	with	value	model	has	the	usual	Env	and	Store	semanAc	domains	
–  Env	=	Ide	à	Dval 	 	 	(Dval	=	…	+	Loc	+	…)	
–  Store	=	Loc	à	Sval	
–  Seman1c	interpreta1on	func1on	E:	Exp	à	Env	à	Store	à	(Eval	x	Store)	

•  “r-values”	are	expressions	that	evaluate	to	elements	of	domain	Sval	
(storable	values)		

•  “l-values”	are	expressions	e	that	evaluate	to	locaAons:	(E{e}	r	s	as	Loc)	
•  In	a	PL	with	reference	model,	conceptually	there	is	no	Store,	but	only	

–  Env	=	Ide	à	Dval	 	thus				E:	Exp	à	Env	à	Eval	
•  The	main	binding	operator	is	let	

	Exp	=	…	|	let		Ide	=	Exp	in	Exp 		
with	semanAcs		

	E{	let	x	=	e	in	e1	}	r	=	E{	e1	}	r[	E{e}r	/	x	]		
•  Note:			let	x	=	e	in	e1			can	be	seen	as	syntacAc	sugar	for				(λ	x.	e1)	e	
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References	and	pointers	
•  Most	implementa?ons	of	PLs	have	as	target	architecture	a	Von	

Neumann	one,	where	memory	is	made	of	cells	with	addresses	
•  Thus	implementaAons	use	the	value	model	of	the	target	

architecture	
•  AssumpAon:	every	data	structure	is	stored	in	memory	cells	
•  We	“define”:	

–  A	reference	to	X	is	the	address	of	the	(base)	cell	where	X	is	stored	
–  A	pointer	to	X	is	a	locaAon	containing	the	address	of	X	

•  Value-model-based	implementaAon	can	mimic	the	reference	model	
using	pointers	and	standard	assignment	
–  Each	variable	is	associated	with	a	locaAon	
–  To	let	variable	x	refer	to	data	X,	the	address	of	(reference	to)	X	is	wrixen	

in	the	locaAon	of	x,	which	becomes	a	pointer.		
–  Can	be	modeled	by	requiring	that	Loc	is	contained	in	Sval		
–  Expressions	of	“reference	types”	must	return	a	locaAon	
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DenotaAonal	SemanAcs	of	Reference	
Memory	Model	on	Value	Memory	Model		
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Seman?c	interpreta?on	func?ons	
D:	Decl	à	Env	à	Store	à	(Env	x	Store)	
C:	Cmd	à	Env	à	Store	à	Store	
E:	Exp	!	Env	!	Store	!	(Eval	x	Store)	
Env	=	Ide	à	Dval 		
Store	=	Loc	à	Sval	
Dval	=	…	+	Loc	+	…	
Eval	=	…	+	Loc	+	Sval	+	…	
Sval	=	…	+	Loc	+	…	

Seman?cs:	declara?on	
D{var	x	=ref	e}	r	s	=	(r[l/x],	s1[n/l])	

	where	l	=	newloc(s)		
	and		(n,s1)	=	E{e}	r	s	
	and	(n	as	Loc)	

Allocates	a	new	loca.on	bound	
to	x	and	referring	to	n	

x	 5	

x	 5	



Special	Cases	of	Assignments	
•  Assignment by variable initialization 

–  Use of uninitialized variable is source of many problems, sometimes 
compilers are able to detect this but with programmer involvement e.g. 
definite assignment requirement in Java 

–  Implicit initialization, e.g. 0 or NaN (not a number) is assigned by default 
when variable is declared 

•  Combinations of assignment operators   (+=, -=, *=, ++, --…) 
–  In C/C++   a+=b    is equivalent to   a=a+b    (but    a[i++]+=b   is 

different from    a[i++]=a[i++]+b, !) 
–  Compiler produces better code, because the address of a variable is 

only calculated once 
•  Multiway assignments in Clu, ML, and Perl 

–  a,b := c,d  // assigns c to a and d to b simultaneously,  
•  e.g. a,b := b,a    swaps  a  with  b 

–  a,b := f(c) // f returns a pair of values 
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Assignment	of	composite	values	
•  What	happens	when	a	composite	value	is	assigned	to	a	

variable	of	the	same	type?	
•  Value	model:	all	components	of	the	composite	value	are	

copied	into	the	corresponding	components	of	the	composite	
variable.	

•  Reference	model:	the	composite	variable	is	made	to	contain	
a	reference	to	the	composite	value.	

•  Note:	this	makes	no	difference	for	basic	or	immutable	types.		

•  C	and	Ada	adopt	value	model	
•  Java	adopts	value	model	for	primiAve	values,	reference	model	

for	objects.	
•  FuncAonal	languages	usually	adopt	the	reference	model	
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Example:	Ada	value	model	(1)	

•  DeclaraAons:	
 type Date is 

  record 
   y: Year_Number; 
   m: Month; 
   d: Day_Number; 
  end record; 

dateA: Date := (2004, jan, 1); 
dateB: Date; 

•  Effect	of	copy	semanAcs:	

dateB := dateA; 
dateB.y := 2005; 

jan 
1 

2004 
dateA	

? 
? 

? 
dateB	

jan 
1 

2004 
dateA	

jan 
1 

2004 
dateB	

jan 
1 

2004 
dateA	

jan 
1 

2005 
dateB	
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Example:	Java	reference	model	(1)	

•  DeclaraAons:	
 class Date { 
 int y, m, d; 
 public Date (int y, int m, int d) 

{ … } 
} 
 Date dateR = new Date(2004, 1, 1); 
Date dateS = new Date(2004, 12, 25); 

•  Effect	of	reference	semanAcs: 

dateS = dateR; 
dateR.y = 2005; 

1 
1 

2004 

dateR	

12 
25 

2004 

dateS	

1 
1 

2004 

dateR	 dateS	

1 
1 

2005 

dateR	 dateS	
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Ada	reference	model	with	pointers	(2)	

•  We	can	achieve	the	effect	of	reference	model	
in	Ada	by	using	explicit	pointers:	
 type Date_Pointer is access Date; 
Date_Pointer dateP = new Date; 
Date_Pointer dateQ = new Date; 
… 
dateP.all := dateA; 
dateQ := dateP; 
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Java	value	model	with	cloning	(2)	

•  We	can	achieve	the	effect	of	copy	semanAcs	in	
Java	by	cloning:	
 Date dateR = new Date(2004, 4, 1); 
dateT = dateR.clone(); 
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Pointers	

•  Thus	in	a	language	adopAng	the	value	model,	the	reference	
model	can	be	simulated	with	the	use	of	pointers.	

•  A	pointer	(value)	is	a	reference	to	a	parAcular	variable.	
•  A	pointer’s	referent	is	the	variable	to	which	it	refers.	
•  A	null	pointer	is	a	special	pointer	value	that	has	no	referent.	
•  A	pointer	is	essenAally	the	address	of	its	referent	in	the	store,	

but	it	also	has	a	type.	The	type	of	a	pointer	allows	us	to	infer	
the	type	of	its	referent.	

•  Pointers	mainly	serve	two	purposes:	
–  efficient	(someAmes	intuiAve)	access	to	elaborated	objects	(as	in	C)	
–  dynamic	creaAon	of	linked	data	structures,	in	conjuncAon	with	a	heap	

storage	manager	
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Dangling	pointers	

•  A	dangling	pointer	is	a	pointer	to	a	variable	that	
has	been	destroyed.	

•  Dangling	pointers	arise	from	the	following	
situaAons:	
–  where	a	pointer	to	a	heap	variable	sAll	exists	aeer	the	
heap	variable	is	destroyed	by	a	deallocator	

–  where	a	pointer	to	a	local	variable	sAll	exists	at	exit	
from	the	block	in	which	the	local	variable	was	
declared.	

•  A	deallocator	immediately	destroys	a	heap	variable.	
All	exisAng	pointers	to	that	heap	variable	become	
dangling	pointers.		

•  Thus	deallocators	are	inherently	unsafe.	
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Dangling	pointers	in	languages	

•  C	is	highly	unsafe:	
–  Aeer	a	heap	variable	is	destroyed,	pointers	to	it	might	sAll	
exist.	

–  At	exit	from	a	block,	pointers	to	its	local	variables	might	sAll	
exist	(e.g.,	stored	in	global	variables).	

•  Ada	and	Pascal	are	safer:	
–  Aeer	a	heap	variable	is	destroyed,	pointers	to	it	might	sAll	
exist.	

–  But	pointers	to	local	variables	may	not	be	stored	in	global	
variables.	

•  Java	is	very	safe:	
–  It	has	no	deallocator.	
–  Pointers	to	local	variables	cannot	be	obtained.	

•  FuncAonal	languages	are	even	safer:	
–  they	don’t	have	pointers	
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deallocates that heap 
variable (dateP and 
dateQ are now 
dangling pointers) 

Example:	C	dangling	pointers	

•  Consider	this	C	code:	
 struct Date {int y, m, d;}; 
 struct Date *dateP, *dateQ; 
dateP = (struct Date*)malloc(sizeof (struct Date)); 
dateP->y = 2004; dateP->m = 1; dateP->d = 1; 
 dateQ = dateP; 

 free(dateQ); 

 

 printf("%d", dateP->y); 
dateP->y = 2005; 

allocates a new 
heap variable 

makes dateQ point 
to the same heap 
variable as dateP	

can fail can fail 



Techniques	to	avoid	dangling	pointers	

•  Tombstones	
–  A	pointer	variable	refers	to	a	
tombstone	that	in	turn	refers	
to	an	object	

–  If	the	object	is	destroyed,	the	
tombstone	is	marked	as	
“expired”	
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Locks	and	Keys	

•  Heap	objects	are	associated	
with	an	integer	(lock)	
iniAalized	when	created.	

•  	A	valid	pointer	contains	a	key	
that	matches	the	lock	on	the	
object	in	the	heap.		

•  Every	access	checks	that	they	
match	

•  A	dangling	reference	is	
unlikely	to	match.	
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Pointers	and	arrays	in	C	
•  In	C,	an	array	variable	is	a	pointer	to	its	first	element	
  int *a == int a[] 
  int **a == int *a[] 

•  BUT	equivalences	don't	always	hold	
–  Specifically,	a	declaraAon	allocates	an	array	if	it	specifies	a	size	for	the	

first	dimension,	otherwise	it	allocates	a	pointer	
int **a, int *a[]  pointer	to	pointer	to int 
int *a[n], n-element	array	of	row	pointers 
int a[n][m], 2-d	array	

•  Pointer	arithmeAcs:	operaAons	on	pointers	are	scaled	by	the	
base	type	size.	All	these	expressions	denote	the	third	element	
of	a:		
 a[2]    (a+2)[0]     (a+1)[1]      2[a]      0[a+2] 
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C	pointers	and	recursive	types	
•  C	declaraAon	rule:	read	right	as	far	as	you	can	
(subject	to	parentheses),	then	lee,	then	out	a	level	
and	repeat	
int *a[n], n-element array of pointers to integer 

int (*a)[n], pointer to n-element array of 
integers	

•  Compiler	has	to	be	able	to	tell	the	size	of	the	things	
to	which	you	point	
–  So	the	following	aren't	valid:	
  int a[][]   bad 

  int (*a)[]   bad 
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Recursive	types:	Lists	

•  A	recursive	type	is	one	defined	in	terms	of	itself,	like	
lists	and	trees	

•  A	list	is	a	sequence	of	0	or	more	component	values.	
•  The	length	of	a	list	is	its	number	of	components.	The	

empty	list	has	no	components.	
•  A	non-empty	list	consists	of	a	head	(its	first	

component)	and	a	tail	(all	but	its	first	component).	
•  Typical	constructor:	cons:	A	x	A-list	->	A-list	
•  A	list	is	homogeneous	if	all	its	components	are	of	the	

same	type.	Otherwise	it	is	heterogeneous.	
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List	operaAons	

•  Typical	list	operaAons:	
–  length	
– empAness	test	
– head	selecAon	
–  tail	selecAon	
– concatenaAon	
–  list	comprehension	
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Example:	Ada	lists	

•  Type	declaraAons	for	integer-lists:	
 type IntNode; 
type IntList is access IntNode; 
type IntNode is record 
   head: Integer; 
   tail: IntList; 
  end record; 

mutually 
recursive 
mutually 
recursive 

§  An IntList construction: 

	new	IntNode'(2,	
	 	new	IntNode'(3,	
	 	 	 	new	IntNode'(5,	
	 	 	 	 	 	new	IntNode'(7,	null)))	
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Example:	Java	lists	

•  Class	declaraAons	for	generic	lists:	
 class List<E> { 
  public E head; 
 public List<E> tail; 

  public List<E> (E el, List<E> t) { 
  head = h;  tail = t; 
 } 

 } 

recursive 

§  A list construction: 

List<Integer>	list	=	
	new	List<Integer>(2,	
	 	new	List<Integer>(3,	
	 	 	 	new	List<integer>(5,	null))));	
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Example:	Haskell	lists	
•  Haskell	has	built-in	list	types:	

–  [1,	2,	3] 		integer	list	containing	1,	2,	3	
–  [Int]	:	type	of	lists	of	integers.		Similarly		[Char],		[[Int]],		

[(Int,Char)]	
–  2:[4,	5]	==	[2,	4,	5]	 	 	cons	is	“:”	
–  head	[1,	2,	3]	=	1 	 	 	tail	[1,	2,	3]		=	[2,	3]		
–  Strings	are	lists	of	characters:			"foo"	==	['f','o','o']	:	[Char]	
–  range		[1..10]	==	[1,2,3,4,5,6,7,8,9,10]!
–  range	with	step	[3,6..20]	==	[3,6,9,12,15,18]!
–  range	with	step	[7,6..1]	==	[7,6,5,4,3,2,1]	
–  infinite	list	[1..]	==	[1,	2,	3,	…]	
–  List	comprehension 			[	x*y	|	x	<-	[2,5,10],	y	<-	[8,10,11]]			

	 	==	[16,20,22,40,50,55,80,100,110]	!
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