Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-16/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 21

Type systems
Type safety
Type checking
— Equivalence, compatibility and coercion
Primitive and composite types
— Discrete and scalar types
— Tuples and records
— Arrays

What is a Data Type?

* A (data) type is a homogeneous collection of
values, effectively presented, equipped with a set of
operations which manipulate these values

* Various perspectives:

— collection of values from a “domain” (the denotational

approach)

— internal structure of a bunch of data, described down to
the level of a small set of fundamental types (the
structural approach)

— collection of well-defined operations that can be applied
to objects of that type (the abstraction approach)

Advantages of Types

* Program organization and documentation

— Separate types for separate concepts
* Represent concepts from problem domain

— Document intended use of declared identifiers
* Types can be checked, unlike program comments

* |dentify and prevent errors

— Compile-time or run-time checking can prevent
meaningless computations such as 3 + true — “Bill”

* Support implementation and optimization
— Example: short integers require fewer bits
— Access components of structures by known offset

Type system

A type system consists of

1. The set of predefined types of the language.

2. The mechanisms which permit the definition of new types.

3. The mechanisms for the control (checking) of types, which include:

1. Equivalence rules which specify when two formally different
types correspond to the same type.

2. Compatibility rules specifying when a value of a one type can
be used in given context.

3. Rules and techniques for type inference which specify how the
language assigns a type to a complex expression based on
information about its components (and sometimes on the
context).

4. The specification as to whether (or which) constraints are statically
or dynamically checked.

Type errors

A type error occurs when a value is used in a way that is
inconsistent with its definition

Type errors are type system (thus language) dependent
Implementations can react in various ways

— Hardware interrupt, fp addition to non-legal bit configuration
— OS exception, e.g. segmentation fault when dereferencing 0 in C
— Continue execution possibly with wrong values

Examples

— Array out of bounds access
e C/C++: runtime errors
* Java: dynamic type error

— Null pointer dereference
e C/C++: run-time errors
* Java: dynamic type error
* Haskell/ML: pointers are hidden inside datatypes

— Null pointer dereferences would be incorrect use of these datatypes, therefore
static type errors

Type safety

e Alanguage is type safe (strongly typed) when
no program can violate the distinctions
between types defined in its type system

* |[n other words, a type system is safe when no
program, during its execution, can generate
an unsignalled type error

e Also: if code accesses data, it is handled with
the type associated with the creation and
previous manipulation of that data

Safe and not safe languages

Not safe: C and C++
— Casts, pointer arithmetic

Almost safe (aka “weakly typed”): Algol family, Pascal,
Ada.

— Dangling pointers.

* Allocate a pointer p to an integer, deallocate the memory
referenced by p, then later use the value pointed to by p.

* No language with explicit deallocation of memory is fully type-
safe.

Safe (aka “strongly typed”): Lisp, Smalltalk, ML,
Haskell, Java, JavaScript

— Dynamically typed: Lisp, Smalltalk, JavaScript

— Statically typed: ML, Haskell, Java

Type checking

* To prevent type errors, before any operation is
performed, its operands must be type-checked to
ensure that they comply with the compatibility
rules of the type system

— mod operation: check that both operands are integers
— and operation: check that both operands are booleans

— indexing operation: check that the left operand is an
array, and that the right operand is a value of the
array’s index type.

 Statically typed languages: (most) type checking is
done during compilation

 Dynamically typed languages: type checking is
done at runtime

Static vs dynamic typing

In a statically typed PL:

— all variables and expressions have fixed types (either stated
by the programmer or inferred by the compiler)

— most operands are type-checked at compile-time.

Most PLs are called “statically typed”, including Ada, C,
C++, Java, Haskell, ... even if some type-checking is done
at run-time (e.g. access to arrays)

In a dynamically typed PL:

— values have fixed types, but variables and expressions do
not

— operands must be type-checked when they are computed
at run-time.

Some PLs and many scripting languages are dynamically
typed, including Smalltalk, Lisp, Prolog, Perl, Python.

Example: Ada static typing

Ada function definition: : , .
---------------- Knowing that n’s type is

function 1s even (n: Integer) Integer, the compiler

return Boolean 1is infers that the type of

begin “n mod 2 = 0” will be
return (n mod 2 = 0); Boolean.
end;
Call:

.~~~ Knowing that p’s type is Integer,
’ the compiler infers that the type
of “p+1” will be Integer.

p: Integer;
ifis_even(p+1) ...

Even without knowing the values of variables and parameters, the Ada
compiler can guarantee that no type errors will happen at run-time.

Example: Python dynamic typing

* Python function definition:

def even (n): P
return (n $ 2 == 0)

-~ The type of n is unknown.
So the “%” (mod) operation
must be protected by a run-
time type check.

The types of variables and parameters are not declared, and cannot

be inferred by the Python compiler. So run-time type checks are
needed to detect type errors.

Static vs dynamic type checking

Static typing is more efficient
— No run-time checks
— Values do not need to be tagged at run-time

Static typing is often considered more secure

— The compiler guarantees that the object program
contains no type errors. With dynamic typing you rely
on the implementation.

Dynamic typing is more flexible

— Needed by some applications where the types of the
data are not known in advance.

* JavaScript array: elements can have different types
* Haskell list: all elements must have same type

Note: type safety is independent of dynamic/static

Static typing Is conservative

* |n JavaScript, we can write a function like

function f(x) { return x < 10 ? x : x(); }

Some uses will produce type error, some will not.

e Static typing must be conservative

if (possibly-non-terminating-boolean-expression)
then £ (5);
else £(15);

Cannot decide at compile time if run-time error will occur!

13

Type Checking: how does it work

* Checks that each operator is applied to
arguments of the right type. It needs:

— Type inference, to infer the type of an expression
given the types of the basic constituents

— Type compatibility, to check if a value of type A
can be used in a context that expects type B
e Coercion rules, to transform silently a type into a
compatible one, if needed
— Type equivalence, to know if two types are
considered the same

Towards Type Equivalence:
Type Expressions

* Type expressions are used in declarations and type
casts to define or refer to a type

Type ::= int | bool | ... | X | Tname |pointer-to(Type) |
array(num, Type) | record(Fields) | class(...) |
Type =2 Type | Type x Type

— Primitive types, such as int and bool

— Type constructors, such as pointer-to, array-of, records
and classes, and functions

— Type names, such as typedefs in C and named types in
Pascal, refer to type expressions

15

Graph Representations for
Type Expressions

* Internal compiler representation, built during
parsing

° Example: int *f (char*,char¥*)

/fun\ fun
}gs\ poi1|1ter (argsw }rllter
poirllter poirllter int p01nter int
char char char

Tree forms DAGs

16

Cyclic Graph Representations

Source program

struct Node
{ int wval;
struct Node *next;

};

struct

val next

int pointer

Internal compiler representation
of the Node type: cyclic graph

17

Equivalence of Type Expressions

 Two different notions: name equivalence
and structural equivalence

— Two types are structurally equivalent if
1. They are the same basic types, or

2. They have the form TC(T1,..., Tn) and TC(S], ...,
Sn), where TC is a type constructor and Ti is
structurally equivalent to Si forall 1 <=i<=n, or

3. Oneis atype name that denotes the other.

— Two types are name equivalent if they satisfy
1. and 2.

18

On Structural Equivalence

e Structural equivalence: unravel all type
constructors obtaining type expressions
containing only primitive types, then check if
they are equivalent — _———

. type Student = record
® Used N C/C++’ C# name, address : string

age : integer

type School = record
name, address : string
age : integer

X : Student;
y : School;

X:=y;
--ok with structural equivalence
--error with name equivalence 19

Structural Equivalence of
Recursive Type Expressions

 Two structurally equivalent type expressions have the
same pointer address when constructing graphs by
(maximally) sharing nodes

pointer

struct

val next

int pointer

struct Node
{ int wval;

struct Node *next;

};

struct Node s, *p;
p = &s; // OK

*p = s; // OK

p = s; // ERROR

pointer
struct

val next

int

p p01nter
struct

next

20

On Name Equivalence

 Each type name is a distinct type, even when the type
expressions that the names refer to are the same

* Types are identical only if names match
e Used for Abstract Data Types and by OO languages
e Used by Pascal (inconsistently)

type link = “node; With name equivalence in Pascal:

var next : link; P := next FAIL
last : link; last :=p FAIL

p : “node; q :=r OK

q, r : “node; next := last OK

P :=q FAIL !!! o

On Name Equivalence

* Name equivalence: sometimes “aliases” needed

TYPE stack element = INTEGER;
MODULE stack;

IMPORT stack element;

EXPORT push, pop;

(* alias *)

PROCEDURE push (elem : stack_element);
PROCEDURE pop() : stack_element;

var st:stack;
st.push (42) ; // this should be OK

Type compatibility and Coercion

* Type compatibility rules vary a lot

— Integers as reals OK
— Subtypes as supertypes OK
— Reals as integers P77
— Doubles as floats 27?7

* When an expression of type A is used in a
context where a compatible type B is
expected, an automatic implicit
conversion is performed, called coercion

Type checking with attributed grammars
A simple language example

P—D;$§

E —
D—D;D fale o
lid: T literal Synthesized attributes
T — boolean hum T.type : type expression
char id E.type : type of expression
nteger Eand E or type_error
array [num] of T E4E o .
AT S.type : void if statement is
S— id:=EF EE\E] well-typed, type error
|if Ethen S R otherwise
| while Edo S
|1S;S
Pointerto T

Pascal-like pointer
dereference operator 24

Declarations

D—id:T { addtype(id.entry, T.type) }
T — boolean { T.type := boolean }

T — char { T.type :=char}

T — integer { T.type :=integer }

T — array [num] of T,

{ T.type := array(1..num.val, T,.type) }

T—AN"T, { T.type := pointer(T,) }

Parametric types:
type constructor

25

Checking Statements

S —id := E{ S.type := (if id.type = E.type then void else type error)}
* Note: the type of id is determined by scope’s environment:
id.type = lookup(id.entry)

S—if EthenS, {S.type :=(if E.type = boolean then S .type
else type error) }

S — while Edo S, { S.type := (if E.type = boolean then S,.type
else type error) }

§—=5,;5, {S.type := (if S;.type = void and S,.type = void
then void else type error) }

26

Checking Expressions

E — true { E.type = boolean }

E — false { E.type = boolean }

E — literal { E.type = char }

E — num { E.type = integer }

E—id { E.type = lookup(id.entry) }

E—E +E, {E.type:=(if E,.type =integer and E,.type = integer
then integer else type error) }

E— E,and E, { E.type := (if E,.type = boolean and E,.type = boolean
then boolean else type error) }

E—E/[E,] {E.type:=(if E.type =array(s, t) and E,.type = integer
then t else type error) }

* Parameter tis set with the unification of E,.type = array(s, t)

E— E, N {E.type:=(if E,.type = pointer(t) then t
else type error) }

* Parameter tis set with the unification of E,.type = pointer(t)
27

Type Conversion and Coercion

* Type conversion is explicit, for example using
type casts

e Type coercion is implicitly performed by the
compiler to generate code that converts types

of values at runtime (typically to narrow or
widen a type)

* Both require a type system to check and infer
types from (sub)expressions

28

On Coercion

Coercion may change the representation of the value
or not

— Integer = Real binary representation is changed
{int x = 5; double y = x; ..}

— A > B subclasses binary representation not changed
class A extends B{ .. }
{B myBobject = new A(..);, ..}

Coercion may cause loss of information, in general

— Notin Java, with the exception of long as float

In statically typed languages coercion instructions are
inserted during semantic analysis (type checking)

Popular in Fortran/C/C++, tends to be replaced by
overloading and polymorphism

Popular again in modern scripting languages

Example: Type Coercion and Cast in Java

Coercion (implicit, widening)
— No loss of information (almost...)
Cast (explicit, narrowing)
— Some information can be lost

Explicit cast is always allowed

when coercion is

among numerical types

double 64
ﬂlat 32
oy 68

i?lv,t 32

/N

short 16 char

|

byte 8

(a) Widening conversions

double

!
float

'

long

'
/z* Y

char —=— short -—= byte

(b) Narrowing conversions

Handling coercion during translation

Translation of sum without type coercion:

E— E +E, { E.place := newtemp();
gen(E.place :=" E,.place ‘+" E,.place)}

With type coercion:

E—E, +E, { E.type = max(E,.type,E,.type);
a, = widen(E,.addr, E,.type, E.type) ;
a, = widen(E,.addr, E,.type, E.type);
E.addr = new Temp();
gen(E.addr '="a, '+' a,); }

where:

* max(T,,T,) returns the least upper bound of T, and T, in the widening
hierarchy

e widen(addr, T,, T,) generate the statement that copies the value of type
T, in addr to a new temporary, castingitto T,

Pseudocode for widen

Addr widen (Addr a, Type t, Type w) {
temp = new Temp () ;
if(t = w) return a; //no coercion needed

elseif(t = integer and w = float) {

gen(temp '=' '(float)' a);
elseif(t = integer and w = double) {
gen(temp '=' ' (double)' a);

elseif

else error;
return temp; }

Built-in primitive types

* Typical built-in primitive types:

Boolean = {false, true}

Character = {.., ‘A’, .. ‘z, . PL-orimplementation-defined
‘0" ‘9’ set of characters (ASCII, ISO-
! Latin, or Unicode)

Integer = {..,-2,-1, " PL- or implementation-defined
0,+1, +2, ..} set of whole numbers

Float = {...,-1.0, ..., . .
00,+1.0 .} PL- or implementation-defined

set of real numbers

= Note: In some PLs (such as C), booleans and characters are just small
integers.

= Names of types vary from one PL to another: not significant.

Terminology

* Discrete types — countable
— integer, boolean, char

— enumeration type Color is (red, green, blue);

— subrange type Population is range 0 .. 1elO;

* Scalar types - one-dimensional
— discrete
— real

Composite types

 Types whose values are composite, that is composed of other
values (simple or composite):

— records (unions)
— Arrays (Strings)
— algebraic data types
— sets
— pointers
— lists
* Most of them can be understood in terms of a few concepts:
— Cartesian products (records)
— mappings (arrays)
— disjoint unions (algebraic data types, unions, objects)
— recursive types (lists, trees, etc.)
* Different names in different languages.

* Defined applying type constructors to other types (eg struct,
array, record,...)

An brief overview of composite types

 We review type constructors in Ada, Java and
Haskell corresponding to the following
mathematical concepts:
— Cartesian products (records)
— mappings (arrays)
— disjoint unions (algebraic data types, unions)

— recursive types (lists, trees, etc.)

Cartesian products

S x T denotes the Cartesian product of Sand T:
SxT={(xy)|xesS,yeT}
We can generalise to tuples:
S xS, x...xS5, = {(x, %, ..., X)) | X ;ES; X, ESy; 3 X, ES, }
Basic operations on tuples:
— construction of a tuple from its component values
— selection of an explicitly-designated component of a tuple
* we can select the 1st or 2nd (but not the ith) component

Records (Ada), structures (C), and tuples (Haskell) can
all be understood in terms of Cartesian products.

Example: Ada records (1)

 Type declarations:

type Month is (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);

type Day Number is range 1 .. 31;
type Date is record
m: Month;

d: Day Number;
end record;

* Application code: . record construction

someday: Date := (jan, 1);

put (someday.m+1); put("/"); put(someday.d);
someday.d := 29; someday.m := feb; '

" component selection

Example: Haskell tuples

 Declarations:
data Month = Jan | Feb | Mar | Apr
| May | Jun | Jul | Aug
| Sep | Oct | Nov | Dec
type Date = (Month, Int)

e Set of values:
Date = Month x Integer
= {Jan, Feb, ..., Dec} x{...,-1,0,1, 2, ...}
* Application code:
someday = (jan, 1) //tuple construction
m, d = someday // component selection

// (by pattern matching)
anotherday = (m + 1, d)

Arrays as mappings

An array of type S — T s a finite mapping.

S is typically a finite range of consecutive values
{l, I+1, ..., u}, called the array’s index range.

Basic operations on arrays:
— construction of an array from its components
— indexing — using a computed index value to select a component

In C and Java, the index range must be {0, 1, ..., n—1}.
In Pascal and Ada, the index range may be any scalar
(sub)type other than real/float.

We can generalise to n-dimensional arrays. If an array
has index ranges of types S, ..., S,, the array’s type is
S;x.xS5 —T.

When is the index range known?

* Astatic array is an array variable whose index range is fixed
by the program code.

A dynamic array is an array variable whose index range is
fixed at the time when the array variable is created.
— In Ada, the definition of an array type must fix the index type,
but need not fix the index range. Only when an array variable is
created must its index range be fixed.

— Arrays as formal parameters of subroutines are often dynamic
(eg. conformant arrays in Pascal)
* A flexible (or fully dynamic) array is an array variable

whose index range is not fixed at all, but may change
whenever a new array value is assigned.

Example: C static arrays

e Array variable declarations:

float v1[] = {2.0, 3.0, 5.0, 7.0}
float v2[10];

~ index range
is {0, ..., 3}

. index range is {0, ..., 9}
= Function:

void print vector (float v[], int n) {
// Print the array v[0], .., vI[n-1]"in the form “[.. ..]

144

int i;
printf ("[$£", v[0]);
for (1 = 1; 1 < n; 1t++) "
printf (" $£", v[i]); A C array
printf ("]1"); doesn’t know

} its own length!

print vector(vl, 4); print vector(vz, 10);

Example: Ada dynamic arrays

* Array type and variable declarations:

type Vector is

array (Integer range <>) of Float;
vl: Vector(l .. 4) := (1.0, 0.5, 5.0, 3.5);
vZ2: Vector(0 .. m) := (0 .. m => 0.0);

e Procedure:

procedure print vector (v: in Vector) 1is
—— Print the array v in the form “[... 7.

begin
put ('["'"); put(v(v'first));
for 1 in v'first + 1 .. v'last loop
put (" '"); put(v(i));
end loop;
put (']");
end;

print vector(vl); print vector (v2);

Example: Java flexible arrays

e Array variable declarations:

float[] vl = {1.0, 0.5, 5.0, 3.5} Indexrange
float[] v2 = {0.0, 0.0, 0.0}; 15 {0, ..., 3}
7 index range is {0, ..., 2}
vl = v2;
""""""""" v1l’s index range is now {0, ..., 2}
= Method:

static void printVector (float[] v) {

// Print the array v in the form “[..]
System.out.print ("[" + v[0]);
for (int 1 = 1; 1 < v.length; 1++)

System.out.print (" " + v[i]);
System.out.print ("]"); |Enhanced for:
} for (float f : v)
System.out.print (" " + f)

printVector (vl); printVector (v2);

Array-level operations

Assigment
— Value or Reference Model

Comparison for equality or lexicographic ordering
(Ada)

Arithmetic (pointwise) + specific intrinsic (built-
in) operations in Fortran 90 (and APL)

— Searching, transposition, reshaping...

Slice or section

— Returns a sub-array by selecting sub-ranges of
dimensions

Slicing in Fortran 90

matrix(3:6, 4:7) matrix(6:, 5)

matrix(:4, 2:8:2) matrix(:, (/2, 5, 9/))

Array allocation

» static array, global lifetime — If a static array can exist
throughout the execution of the program, then the compiler can
allocate space for it in static global memory

» static array, local lifetime — If a static array should not exist
throughout the execution of the program, then space can be
allocated in the subroutine’s stack frame at run time.

* dynamic array, local lifetime — If the index range is known at
runtime, the array can still be allocated in the stack, but in a
variable size area

fully dynamic — If the index range can be modified at runtime it
has to be allocated in the heap

Dope vector: run-time data structure that keeps information about
lower (and upper) limits of arrays ranges

— Needed for checking bounds and computing addresses of elements

Allocation of dynamic arrays on stack

sSp —>

-- Ada:
procedure foo (size : integer) is
M : array (1..size, 1..size) of real;

begin

end foo;
—
Local
variables
// C99:
void foo(int size) { _
double M[size] [size];
} fp—>

Bookkeeping

Return address

Arguments
and returns

Variable-size
part of the frame

Fixed-size part
of the frame

Arrays: memory layout

* Contiguous elements
— column major - only in Fortran

— row major
* used by everybody else

* Row pointers
— an option in C, the rule in Java

— allows rows to be put anywhere - nice for big arrays
on machines with segmentation problems

— avoids multiplication

— nice for matrices whose rows are of different lengths
e e.g. an array of strings

— requires extra space for the pointers

Arrays’ memory layout in C

char days[][10] = { char *days[] = {
"Sunday", "Monday", "Tuesday", "Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Wednesday", "Thursday",
"Friday", "Saturday" "Friday", "Saturday"

}; ¥

days[2] [3] == ’s’; /x in Tuesday */ days[2] [3] == ’s’; /* in Tuesday */

Sfu|ln|d|al|y v)
Mlo|n|d|al|y S nfdlaly M|lo|n
Tlu|le|s|d|al|y d y Tlu|le|s|d|a
Wle|ld|n|e|[s]|d y y Wlel|d|[n|e|s|d|a
Tlhlu|r|s|d|a VI | T|hlujr|s|d|a|y
Flr|i|d|a]|y Flrli|d|a]|y S|la
Sla|t|u|r|d|al|y tlu|r|d|la|y

* Address computation varies a lot
* With contiguous allocation part of the computation can be done statically

50

Compiling array declarations
and addressing

* Translation scheme for associating with an

array declaration a type expression and the
width of its instances

 Computing the address of an array element:
one- and multi-dimensional cases

* Generating three address code for addressing
array elements

Declaration of Multidimensional Arrays:

Syntax Directed Translation Scheme for type/width
Example: int[2] [3]

T— B { t=B.type; w = B.width; }
C { T.type = C.type; T.width = C.width }
B — int { B.type = ‘integer’; B.width =4, }
B — float { B.type = ‘float’; B.width = 8, }
C — £ {C.type = t; C.width = w; }
C— [num] C, { C.type = array(num.value, C,.type);
C.width = num.value * C,.width; }
T type = array(2, array(3, integer))
width = 24
g . t = integer - C type = array(2, array(3, integer))
type = integer ¢ — 4 7 width = 24
 width = 4 X ~_
iI:lt [9] C type = array(3, integer)
.. width = 12
. ‘ . \
' K type = integer
[3] ' idth =4

Annotated parse tree for
int[2] [3]

Addressing Array Elements:
One-Dimensional Arrays

* Assuming that elements are stored in adjacent cells:
A : array [10..20] of integer;

d \

low high Type’s size

/

:= A[i] = base,+ (i-low)*w
* If base, low and w are known at compile time:
=i*w+c wherec = base, - low *w

Example with low = 10; w =4

tl

= ¢ //c = base, - 10 * 4, can be stored in the symbol table
t2 =i * 4
t3 = tl[t2]

t3 53

Addressing Array Elements:

low, =1, low, =1,

array [1..2,1..3] of integer;

n, =high, -low, +1=2, n,=3,
w =4 (element type size)

base,

(as in C)

A[1][1]

A[l][2]

A[1l][3]

A[2][1]

A[2] [2]

A[2] [3]

Row-major

base,

Column-major

A[1][1]

A[2][1]

A[l][2]

A[2][2]

A[1][3]

A[2][3]

Multi-Dimensional Arrays

(asin Fortran)54

Addressing Array Elements:
Multi-Dimensional Arrays

A : array [1..2,1..3] of integer; (Row-major)

. := A[i][3]1 = base,+ ((i-low)) *n,+j-low, *w

=((*ny)+)) *wa+c
where ¢ = base, - ((low, * n,) + low,) * w

Example with low, = 1; low, = 1;n, =3;w =4

tl :=1i * 3

tl = t1 + j

t2 := c // c¢ = base, -(1*3+1)*4
t3 = t1 * 4

td := t2[t3] // base t2, offset t3

t4 55

Addressing Array Elements: Grammar

Grammar: Synthesized attributes:
S—id=E; E.addr name of temp holding value of £
| L=E; L.addr temporary to compute offset
E —-E+E L.array pointer to symbol table entry for the array name
| id L.array.base base address
| L L.array.type type of the array, eg. array(2, array(3,int))
L—id[E] L.array.type.elem type of array elements, eg. array(3,int)
| L[E] L.type type of the subarray generated by L

L.typewidth memory allocated for data of type L.type

* Nonterminal L generates an array name
followed by a sequence of indexes, like

afi1][J][k]

e L can appear both as left- and right-value
56

Addressing array elements:
generating three address statements

S—id=E; { gen(top.get(id.lexeme) '=' E.addr); } // no array
| L=E; { gen(L.array.base '[' L.addr ']' '=' E.addr); } // address = base + offset
E —E, +E, { E.addr = new Temp(), // similarly for *, -, ...
gen(E.addr'=' E,.addr '+' E,.addr); }
| id { E.addr = top.get(id.lexeme); }
| L { E.addr = new Temp(),
gen(E.addr'=' L.array.base '[' L.addr']');} // address = base + offset
L—id[E] { L.array = top.get(id.lexeme);

L.type = L.array.type.elem;

L.addr = new Temp(),

gen(L.addr '=" E.addr '*' L.type.width); } // computes the offset
| L, [E] {L.array=L,.array;

L.type = L,.type.elem;

t = new Temp();

L.addr=new Temp();

gen(t'=' E.addr '*' L.type.width);

gen(L.addr'="L,.addr '+' t); }

Example - generating intermediate code
foraccesstoarray: ¢ + a[i][3]

E.addr = ts
|
+
E.adallr C a |7" 4 t; = 1 * 12
c L.array = a ty =] x4
L.type = integer t3 = t1 + T2
L.addr = t3 ty = a [t3]
L.array = a / \ \ ty = c + t4
L.type = array(3, integer) [E.addr = j]
L.addr = t; |
[E.addr=1 |

a.type

= array(2, array(3, integer)) '
i

Strings

A string is a sequence of 0 or more characters.
Usually ad-hoc syntax is supported
Some PLs (ML, Python) treat strings as primitive.

Haskell treats strings as lists of characters. Strings are
thus equipped with general list operations (length,
head selection, tail selection, concatenation, ...).

Ada treats strings as arrays of characters. Strings are
thus equipped with general array operations (length,
indexing, slicing, concatenation, ...).

Also in C strings are arrays of characters, but handled
differently from other arrays

Java treats strings as objects, of class String.

Disjoint Unions

* In a disjoint union, a value is chosen from one of
several different types.

* Let S + T stand for a set of disjoint-union values, each
of which consists of a tag together with a variant
chosen from either type S or type T. The tag indicates
the type of the variant:

S+T ={leftx | x&S}U{righty |yET}
— left x is a value with tag left and variant x chosen from S
— right x is a value with tag right and variant y chosen from T.

 We write left S + right T (instead of S + T) when we
want to make the tags explicit.

Disjoint Unions

= Basic operations on disjoint-union values in S+ T

e construction of a disjoint-union value from its tag and
variant

e tag test, to see whether the variantisfromSor T
e projection, to recover the variantinSorinT

= Algebraic data types (Haskell), discriminated
records (Ada), unions (C) and objects (Java) can be
understood as disjoint unions.

= We can generalise to multiple variants:
S;+S,+...+S,.

Variant records (unions)

Origin: Fortran | equivalence _
] Fortran | -- equivalence statement
statement: variables should integer i
share the same memory location |zeal =
. logical b
C’s union types equivalence (i, r, b)
Motivations:
— Saving space C - union
— Need of different access to the union é _
. in 1l;
same memory locations for double d:
system programming _Bool b;
— Alternative configurations of a i

data type

Variant records (unions) (2)

* |[n Ada, Pascal, unions are discriminated by a
tag, called discriminant

* Integrated with records in Pascal/Ada, not in C

ADA — discriminated variant

type Form 1is I
(pointy, ciygglarf“fééfangular);
type Figure (f: Form := pointy) is record
X, y: Float;
case f 1is

when pointy => null;

when circular => r: Float;

when rectangular => w, h: Float;
end case;

end record;

Using discriminated records in Ada

e Application code: .~ discriminated-record

box: Figure := L construction
(rectangular, 1.5, 2.0, 3.0, 4.0);

function area (fig: Figure) return Float

is

begin

return 0.0; tag test
when circular =>
return 3.1416 * fig.r**2;
when rectangular => .
return fig.w * flg hj
end case; -

end; TN L.
" projection

(Lack of) Safety in variant records

On

ly Ada has strict rules for assignment: tag and

variant have to be changed together

For nondiscriminated unions (Fortran, C) no
runtime check: responsibility of the programmer

In
INC

Pascal the tag field can be modified
ependently of the variant. Even worse: the tag

fie
Un

d is optional.
ions not included recent OO laguages:

replaced by algebraic data types or classes +
inheritance

Haskell/ML algebraic data types

 Type declaration:

data Number = Exact Int | Inexact Float

* Each Number value consists of a tag (constructor),
together with either an Integer variant (if the tag is Exact)
or a Float variant (if the tag is Inexact).

e Application code:
pl = Inexact 3.1416

rounded :: Number -> Integer
rounded num =

case num of

- Exact 1 -> i

projection .
 Inexact r -> round r

(by pattern
matching)

Active patternsin F

e With algebraic data types, the type definition determines
uniquely the patterns

e Active patterns, can be used to “wrap” a data type,
algebraic or not, providing a different perspective for use of
pattern matching

* Essentially, active patterns define ad-hoc, unnamed union

types
P Roughly equivalent to
type numKind =
Active pattern definition | Even : :
let (|Even|Odd]|) n = | odd IUSIng active pz_atterns
if n % 2 =0 then et teitl:um ntl;
Even : _ match n wi
olse Iet.fgeto_chc_)lce E = | Even -> printfn "%i is even" n
Odd ! r:EA) 2=0then | Odd -> printfn "%i is odd" n;;§
ven
else
Odd

Active Patterns defining
Constructors with Parameters

/* Active pattern for Sequences */
let (|SeqNode|SeqEmpty|) s =
if Seq.isEmpty s then SeqEmpty
else SeqNode ((Seq.head s), Seq.skip 1 s)

/* SeqNode is a constructor with two parameters */
let perfectSquares =seq {forain1..10->a *a}

let rec printSeq = function
| SegEmpty -> printfn "Done."
| SeqNode(hd, tl) ->
printf "%A " hd
printSeq tl;;

> printSeq perfectSquares;;
1491625364964 81 100 Done.

Java objects as unions

* Type declarations:

class Point {
private float x,
... // methods

}

Yr

class Circle extends Point {

private float r;
.. // methods
J

class Rectangle extends

private float w,
// methods

h;

inherits x and y
from Point

Point {

inherits x and y
from Point

Java objects as unions (2)

e Methods:
class Point {

public float area ()
{ return 0.0; }

}

class Circle extends Point {

i;UbliC float area () overrides Point’s
{ return 3.1416 * ¢ % r,; } area() method

}

class Rectangle extends Point {

gublic float area() ..
{ return w * h; } 7 overrides Point’s

J area() method

Java objects as unions (3)

e Application code:

Rectangle box =
new Rectangle (1.5, 2.0, 3.0,4.0);

it can refer to a
Point, Circle, or
Rectangle object

float al = box.area();

Point 1t = ..;

float a2 = it.area(); calls the appropriate

area() method

Assignments and Expressions

Fundamental difference between imperative and functional

languages

Imperative languages: “computing by means of side effects”
— Computation is an ordered series of changes to values of

variables in memory (state) and statement ordering is
influenced by run-time testing values of variables

Expressions in (pure) functional language are referentially
transparent:

— All values used and produced depend on the local
referencing environment of the expression

— A function is idempotent in a (pure) functional language: it
always returns the same value given the same arguments
because of the absence of side-effects

L-Values vs. R-Values and
Value Model vs. Reference Model

Consider the assignment of the form: a:=>b

— ais an l-value, i.e. an expression that should denote a location (an array
element a[2], a variable foo, a dereferenced pointer *p or a more
complex expression (f(a)+3)->b]c])

— b is an r-value: any syntactically valid expression with type compatible to
that of a

Languages that adopt the value model of variables copy the value
of b into the location of a (e.g. Ada, Pascal, C, ...)

Languages that adopt the reference model of variables copy
references, resulting in shared data values
— Clu, Lisp/Scheme, ML, Haskell, Smalltalk adopt the reference model
— Most imperative programming languages use the value model

— Java is a mix: it uses the value model for built-in types and the reference
model for class instances

Assignment in
Value Model vs. Reference Model

b:=2;
c:=b;
a:=b+c

4

al 4 a

/2

c| 2 C

Figure 6.2 The value (left) and reference (right) models of variables. Under the reference
model, it becomes important to distinguish between variables that refer to the same object
and variables that refer to different objects whose values happen (at the moment) to be

equal.

Example: Declaration of variables and assignment

Syntax

Decl ::= var Ide = Exp |
Exp ::=...

Com ::= Exp :=Exp | ...

Semantics: declaration
D{var x = e} r s =(r[l/x], s[n/I])
where | = newloc(s)
and n=E{e}rs
Allocates a new location
bound to x and containing n

Semantics: assighment with side effects
C{el :=e2}rs=update(x as Loc, v as Sval) s2

where (x, s1) = E{el}rs
and (v,s2) = E{e2}rsl
Evaluates first el then e2: store
changes are propagated

Semantics: assighment

C{el :=e2}rs=update(x, v)s
where x = E{el} r s as Loc
and v = E{e2}rsas Sval

No side-effects, no coercion

Semantic interpretation functions

D: Decl = Env = Store = (Env x Store)
C: Cmd = Env - Store = Store

E: Exp = Env - Store = Eval no side eff
E: Exp = Env > Store - (Eval x Store)
Env = Ide = Dval

Store = Loc = Sval

Dval =...+ Loc +...

Eval = ... + Loc + Sval + ...

Denotational semantics of
value model and reference model

A PL with value model has the usual Env and Store semantic domains
— Env =Ide - Dval (Dval = ... + Loc +...)
— Store = Loc = Sval
— Semantic interpretation function E: Exp = Env = Store = (Eval x Store)

* “r-values” are expressions that evaluate to elements of domain Sval
(storable values)

* “l-values” are expressions e that evaluate to locations: (E{e} r s as Loc)

* InaPL with reference model, conceptually there is no Store, but only
— Env=Ide - Dval thus E: Exp = Env - Eval

* The main binding operator is let
Exp=.. | let Ide =Expin Exp
with semantics
E{letx=einel}r=E{el}r[E{e}r/x]
* Note: letx=einel can be seen as syntactic sugar for (Ax.el)e

References and pointers

Most implementations of PLs have as target architecture a Von
Neumann one, where memory is made of cells with addresses

Thus implementations use the value model of the target
architecture

Assumption: every data structure is stored in memory cells
We “define”:

— Areference to X is the address of the (base) cell where X is stored

— A pointer to X is a location containing the address of X
Value-model-based implementation can mimic the reference model
using pointers and standard assignment

— Each variable is associated with a location

— To let variable x refer to data X, the address of (reference to) X is written
in the location of x, which becomes a pointer.

— Can be modeled by requiring that Loc is contained in Sval
— Expressions of “reference types” must return a location

Denotational Semantics of Reference
Memory Model on Value Memory Model

Semantic interpretation functions

D: Decl = Env = Store = (Env x Store)
C: Cmd = Env = Store - Store

E: Exp = Env = Store - (Eval x Store)
Env = Ide = Dval

Store = Loc = Sval

Dval =... + Loc + ...
Eval = ... + Loc + Sval + ... Semantics: declaration
Sval = ... + Loc + ... D{var x = e} rs = (r[l/x], s1[n/I])
where | = newloc(s)
X1l 5 and (n,sl1) = E{e}rs

and (n as Loc)
y Allocates a new location bound
5 to x and referring to n

Special Cases of Assignments

« Assignment by variable initialization

— Use of uninitialized variable is source of many problems, sometimes
compilers are able to detect this but with programmer involvement e.g.
definite assignment requirement in Java

— Implicit initialization, e.g. 0 or NaN (not a number) is assigned by default
when variable is declared

« Combinations of assignment operators (+=, -=, *=, ++, --.)

— InC/C++ a+=b isequivalentto a=a+b (but a[i++]+=b is
different from a[i++]=a[i++]+Db,!)

— Compiler produces better code, because the address of a variable is
only calculated once

* Multiway assignments in Clu, ML, and Perl
— a,b := ¢,d // assigns c to a and d to b simultaneously,
* eg.a,b :=b,a swaps a with b
— a,b := £(c) // £ returns a pair of values

Assignment of composite values

What happens when a composite value is assigned to a
variable of the same type?

Value model: all components of the composite value are
copied into the corresponding components of the composite
variable.

Reference model: the composite variable is made to contain
a reference to the composite value.

Note: this makes no difference for basic or immutable types.

C and Ada adopt value model

Java adopts value model for primitive values, reference model
for objects.

Functional languages usually adopt the reference model

Example: Ada value model (1)

e Declarations:
type Date 1is

record
y: Year Number;
m: Month;

d: Day Number;
end record;
dateA: Date := (2004, jan, 1);
dateB: Date;

e Effect of copy semantics:

dateA dateB

dateB := dateA;
dateB.y := 2005; <=

3-81

Example: Java reference model (1)

* Declarations:

class Date {

int y, m, d;

public Date (int y, int m, int d)
{ ..}
}
Date dateR new Date (2004, 1, 1);
Date dateS new Date (2004, 12, 25);

* Effect of reference semantics:

dateR dateS

dateS = dateR;
dateR.y = 2005; <

3-82

Ada reference model with pointers (2)

 We can achieve the effect of reference model
in Ada by using explicit pointers:
type Date Pointer 1s access Date;

Date Pointer dateP = new Date;
Date Pointer dateQ = new Date;

aateP.all := datelh;
dateQ := dateP;

Java value model with cloning (2)

 We can achieve the effect of copy semantics in
Java by cloning:

Date dateR = new Date (2004, 4, 1);
dateT = dateR.clone() ;

Pointers

Thus in a language adopting the value model, the reference
model can be simulated with the use of pointers.

A pointer (value) is a reference to a particular variable.
A pointer’s referent is the variable to which it refers.
A null pointer is a special pointer value that has no referent.

A pointer is essentially the address of its referent in the store,
but it also has a type. The type of a pointer allows us to infer
the type of its referent.

Pointers mainly serve two purposes:

— efficient (sometimes intuitive) access to elaborated objects (as in C)

— dynamic creation of linked data structures, in conjunction with a heap
storage manager

Dangling pointers

A dangling pointer is a pointer to a variable that
has been destroyed.

Dangling pointers arise from the following
situations:

— where a pointer to a heap variable still exists after the
heap variable is destroyed by a deallocator

— where a pointer to a local variable still exists at exit
from the block in which the local variable was
declared.

A deallocator immediately destroys a heap variable.
All existing pointers to that heap variable become
dangling pointers.

Thus deallocators are inherently unsafe.

Dangling pointers in languages

Cis highly unsafe:

— After a heap variable is destroyed, pointers to it might still
exist.

— At exit from a block, pointers to its local variables might still
exist (e.g., stored in global variables).

Ada and Pascal are safer:

— After a heap variable is destroyed, pointers to it might still
exist.

— But pointers to local variables may not be stored in global
variables.

Java is very safe:

— It has no deallocator.

— Pointers to local variables cannot be obtained.
Functional languages are even safer:

— they don’t have pointers

Example: C dangling pointers

 Consider this C code:

struct Date {int vy, m, d;}; . allocates a new
struct Date *dateP, *dateQ; - heap variable
dateP = (struct Date*)malloc(sizeof (struct Date));

(
dateP->y = 2004; dateP->m = 1; dateP->d = 1;
dateQ = dateP;

free (dateQ) ; makes dateQ point
to the same heap

printf ("%d", dateP->y); .. variable as dateP

dateP->y = 2005; ~ deallocates that heap

variable (dateP and
o oy dateQ are now
can fail can fail dangling pointers)

Techniques to avoid dangling pointers

* Tombstones —
— A pointer variable refers to a P 3
tombstone that in turn refers .,
to an object - /)
— If the object is destroyed, the pr2[—
tombstone is marked as ot pn.
“expired” N - o

reused)

ptr2 —

89

Locks and Keys

Heap objects are associated R B
with an integer (lock)

initialized when created. e K ey K2
A valid pointer contains a key /

that matches the lock on the —

object in the heap. o —]

Every access checks that they

ptr2 [135942

match

A dangling reference is
unlikely to match.

Pointers and arrays in C

* InC, an array variable is a pointer to its first element

int *a == int al]
int **a == int *al[]
 BUT equivalences don't always hold

— Specifically, a declaration allocates an array if it specifies a size for the
first dimension, otherwise it allocates a pointer

int **a, int *al[] pointer to pointerto int
int *a[n], n-element array of row pointers
int a[n][m], 2-darray
* Pointer arithmetics: operations on pointers are scaled by the
base type size. All these expressions denote the third element

of a:
al[2] (a+2) [0] (a+1) [1] 2[a] O[a+2]

C pointers and recursive types

 Cdeclaration rule: read right as far as you can
(subject to parentheses), then left, then out a level
and repeat

int *a[n], n-element array of pointers to integer

int (*a) [n], polnter to n-element array of
integers

 Compiler has to be able to tell the size of the things
to which you point
— So the following aren't valid:

int al[]][] bad
int (*a) [] bad

Recursive types: Lists

A recursive type is one defined in terms of itself, like
lists and trees

A list is a sequence of 0 or more component values.

The length of a list is its number of components. The
empty list has no components.

A non-empty list consists of a head (its first
component) and a tail (all but its first component).

Typical constructor: cons: A x A-list -> A-list

A list is homogeneous if all its components are of the
same type. Otherwise it is heterogeneous.

List operations

e Typical list operations:
— length
— emptiness test
— head selection
— tail selection
— concatenation
— list comprehension

Example: Ada lists

 Type declarations for integer-lists:

type IntNode;
type IntList is access IntNode;.
type IntNode is record \
head: Integer;
tail: IntlList;
end record;

e mutually
recursive

D An IntList construction:

new IntNode'(2,
new IntNode'(3,
new IntNode'(5,
new IntNode'(7, null)))

Example: Java lists

* C(Class declarations for generic lists:
class List<E> {

public E head;
public List<E> tall; recursive

public List<E> (E el, List<E> t) {
head = h; tail = t;
}
}

o A list construction:
List<Integer> list =

new List<Integer>(2,
new List<Integer>(3,
new List<integer>(5, null))));

Example: Haskell lists

* Haskell has built-in list types:

[1, 2, 3] integer list containing 1, 2, 3

[Int] : type of lists of integers. Similarly [Char], [[Int]],
[(Int,Char)]

2:[4,5] ==[2, 4, 5] cons is “:”
head [1, 2,3] =1 tail [1, 2, 3] =12, 3]
Strings are lists of characters: "foo" ==['f','0','0'] : [Char]

range [1..10] ==1[1,2,3,4,5,6,7,8,9,10]

range with step [3,6..20] ==[3,6,9,12,15,18]

range with step [7,6..1] == [7,6,5,4,3,2,1]

infinite list [1..] ==[1, 2, 3, ...]

List comprehension [x*y | x<-[2,5,10],y <-[8,10,11]]
==[16,20,22,40,50,55,80,100,110]

