Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-16/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 20

* Dynamic scoping and its implementation
— Association lists
— Central Reference Tables

e Subroutines as parameters: Deep and Shallow binding
* Subroutines as result: unlimited extent

Dynamic Scoping

Scope rule: the “current” binding for a given name is the one
encountered most recently during execution

Typically adopted in (early) functional languages that are
interpreted

Perl v5 allows you to choose scope method for each variable
separately

With dynamic scope:

— Name-to-object bindings cannot be determined by a compiler in general

— Easy for interpreter to look up name-to-object binding in a stack of
declarations

Generally considered to be “a bad programming language
feature”
— Hard to keep track of active bindings when reading a program text
— Most languages are now compiled, or a compiler/interpreter mix

Sometimes useful:
— Unix environment variables have dynamic scope

Effect of Static Scoping

* The following pseudo-code
program demonstrates the effect

Program execution: , _ o
of scoping on variable bindings:

a:integer ‘—-—__\\ ~* a:integer
bind :
main () 'naing proceiTre first() {
a:=2 a:=
second () proc§dure second () {
a:integer :flnti?ir
first() irs
a:=1 -——"‘// procedure main () {
write integer (a) a:=2 a0
secon

_ ‘- write integer (a)}
Program prints 1 -

Effect of Dynamic Scoping

* The following pseudo-code
program demonstrates the effect

Program execution: , _ o
of scoping on variable bindings:

a:integer * a:integer
main () procedure first() {

2:=2 Binding depends on execution
procedure second() {

second () .
a:integer —2inding a:integer
first()) first ()}

a:=1 — procedure main () {
write integer (a) a:=2
- second ()

. i write integer(a)}
Program prints 2 -

Dynamic Scoping Problems

In this example, function scaled score probably does not do what the
programmer intended: with dynamic scoping, max score in scaled scoreis
bound to foo's local variable max score after foo calls scaled score, which

was the most recent binding during execution:
max score:integer —— maximum possible score

function scaled score(raw_score:integer) :real({
return raw _score/max score*100

-}

procedure foo{
max score:real := 0 -- highest percentage seen so far

foreach student in class
student.percent := scaled score(student.points)
if student.percent > max score
max score := student.percent

Dynamic Scope Implementation with
Bindings Stacks

Each time a subroutine is called, its local variables are
pushed on a stack with their name-to-object binding

When a reference to a variable is made, the stack is
searched top-down for the variable's name-to-object
binding

After the subroutine returns, the bindings of the local
variables are popped

Different implementations of a binding stack are used
in programming languages with dynamic scope, each
with advantages and disadvantages

Dynamic Scoping with
Association Lists (A-lists)

List of bindings maintained at runtime

Bindings are pushed on enter _scope and popped
on exit_scope

Look up: walks down the list till the first entry for
the given name

Entries in the list include information about types
Used in many implementations of LISP

Sometimes the A-list is accessible from the
program, providing reflexive features

Look up is inefficient

A-lists: an example

Referencing environment A-list

l (newest declarations are at this end of the list)

| | param \

other info

J | local var]

other info

(\J

global proc

other info

P | global proc | other info
4

J | global var | other info
\4

| | global var | other info

l

(predefined names)

[, J :integer

procedure P (I : integer)

procedure Q
J 1 integer

P)
—— main program

Q

A-list after entering P in the exection of Q

-

Referencing environment A-list

l

J | local var] other info
Y (\J
| Q | global proc | other info

P | global proc | other info
4

J | global var | other info
4

| | global var | other info

l

(predefined names)

A-list after exiting P

Central reference tables

Similar to LeBlanc&Cook hash table, but stack
of scopes not needed (and at runtime!)

Each name has a slot with a stack of entries:
the current one on the top

On enter_scope the new bindings are pushed
On exit_scope the scope bindings are popped

More housekeeping work necessary, but
faster access than with A-lists

Central reference table
(each table entry points to the newest declaration of the given name)

P » global proc | other info
A
| > param other info >| global var | other info
Q > global proc | other info
A
J > local var other info >| global var | other info |, J - integer

procedure P (I : integer)

(other names) CRT after entering P in the exection of Q »

procedure Q
J rinteger
Central reference table

P ()

P > global proc | other info l

—— main program

I > global var | other info

Q

Q > global proc | other info
A

J > local var other info >| global var | other info

(other names) ~ CRT after exiting P

First, Second, and Third-Class
Subroutines

First-class object. an object entity that can be passed as a
parameter, returned from a subroutine, and assigned to a variable

— Primitive types such as integers in most programming languages
Second-class object. an object that can be passed as a parameter,
but not returned from a subroutine or assigned to a variable

— Fixed-size arrays in C/C++

Third-class object. an object that cannot be passed as a

parameter, cannot be returned from a subroutine, and cannot be
assigned to a variable

— Labels of goto-statements and subroutines in Ada 83

Functions in Lisp, ML, and Haskell are unrestricted first-class
objects

With certain restrictions, subroutines are first-class objects in
Modula-2 and 3, Ada 95, (C and C++ use function pointers)

Scoping issues for first/second
class subroutines

* Critical aspects of scoping when
— Subroutines are passed as parameters
— Subroutines are returned as result of a function

* Resolving names declared locally or globally in
the passed/returned subroutine is obvious
— Global objects are allocated statically (or on the stack,
in a fixed position)
* Their addresses are known at compile time

— Local objects are allocated in the activation record of
the subroutine

* Their addresses are computed as base of activation record +
statically known offset

What about the Referencing Environment?

« If a subroutine is passed as an argument to another
subroutine, when are the static/dynamic scoping rules
applied? That is, what is the referencing environment of a
subroutine passed as an argument?

1) When the reference to the subroutine is first created (i.e. when it is
passed as an argument)

2) Or when the argument subroutine is called
« Thatis, what is the referencing environment of a subroutine
passed as an argument?

— Eventually the subroutine passed as an argument is called and may
access non-local variables which by definition are in the referencing
environment of usable bindings

« The choice is fundamental in languages with dynamic scope:
deep binding (1) vs shallow binding (2)

« The choice is limited in languages with static scope

Effect of Deep Binding in
Dynamically-Scoped Languages

Program execution:

main (p)
bound:integer
bound 35
show (p,older)

bound:integer

bound 20

older (p)
return p.age>boun

if return value is true
write (p)

‘EA
binding

)|

Program prints persons

The following program
demonstrates the difference
between deep and shallow binding:

function older (p:person) :boolean
return p.age > bound

procedure show (p:person,c:function)
bound:integer

bound := 20
if c(p)
write (p)

procedure main (p)

bound:integer
bound := 35

show (p,older)

older than 35

14

Effect of Shallow Binding in
Dynamically-Scoped Languages

Program execution:

main (p)
bound:integer
bound := 35
show (p,older) Shallow
bound:integer binding
bound := 20 €~
older (p) /

return p.age>boun
if return value is true
write (p)

)|

Program prints persons

The following program
demonstrates the difference
between deep and shallow binding:

function older (p:person) :boolean
return p.age > bound

procedure show (p:person,c:function)
bound:integer

bound := 20
if c(p)
write (p)

procedure main (p)
bound:integer
bound := 35
show (p,older)

older than 20

15

Implementing Deep Bindings with
Subroutine Closures

Implementation of shallow binding obvious: look for
the last activated binding for the name in the stack

For deep binding, the referencing environment is
bundled with the subroutine as a closure and passed as
an argument

A subroutine closure contains
— A pointer to the subroutine code
— The current set of name-to-object bindings

Possible implementations:

— With Central Reference Tables, the whole current set of
bindings may have to be copied

— With A-lists, the head of the list is copied

Closures in Dynamic Scoping
implemented with A-lists

Central Stack Referencing environment A-list
procedure P(procedure C)
declare |, J I
call C y
F oo J
procedure F
declare | Q
J
procedure Q o v
declare J P |
C==Qe---_ -
call F ~~_
- . 4—/
QT TT T === F
—— main program | Main program |
call P(Q) AR v
Q
Each frame in the stack has a pointer to the current beginning of the A-lists. #L
When the main program passes Q to P with deep binding, it bundles its A-list
pointer in Q’s closure (dashed arrow). When P calls C (which is Q), it restores P
the bundled pointer. When Q elaborates its declaration of J (and F elaborates
its declaration of 1), the A-list is temporarily bifurcated. v
M

Deep/Shallow binding
with static scoping

Not obvious that it makes a difference. Recall:

Deep binding: the scoping rule is applied when the subroutine is passed as
an argument

Shallow binding: the scoping rule is applied when the argument
subroutine is called

In both cases non-local references are resolved looking at the static
structure of the program, so refer to the same binding declaration

But in a recursive function the same declaration can be executed several
times: the two binding policies may produce different results

No language uses shallow binding with static scope

Implementation of deep binding easy: just keep the static pointer of the
subroutine in the moment it is passed as parameter, and use it when it is
called

Deep binding with static scoping:
an example in Pascal

program binding_example (input, output);
procedure A(I : integer; procedure P);

procedure B;
begin

writeln(I);
end;

begin (*x A *)
if T > 1 then
P
else
A(2, B);

end;

procedure C; begin end;

begin (* main *)
A(1, C);
end.

When B is called via formal parameter P, two instances of | exist. Because the closure
for P was created in the initial invocation of A, B’s static link (solid arrow) points to the
frame of that earlier invocation. B uses that invocation’s instance of | in its writeln
statement, and the output is a 1. With shallow binding it would print 2.

Returning subroutines

* |n languages with first-class subroutines, a
function f may declare a subroutine g,
returning it as result

e Subroutine g may have non-local references
to local objects of f. Therefore:

— g has to be returned as a closure
— the activation record of f cannot be deallocated

(define plus-x (lambda (x) i L :*‘7\\\\
(lambda (Y) (+ X Y)))) : plus_x ritn = anon 0—’:’// anon y = 3
(let ((£ (plus-x 2))) ' mainprogram || | mainprogram |

(£ 3)) . returns 5 1 t-------mmmmm---o--- ! .

* (plus-x 2) returns an anonymous function which refers to the local x

First-Class Subroutine
Implementations

 |n functional languages, local objects have unlimited
extent. their lifetime continue indefinitely
— Local objects are allocated on the heap
— Garbage collection will eventually remove unused objects
* |n imperative languages, local objects have limited
extent with stack allocation
« To avoid the problem of dangling references,
alternative mechanisms are used:
— C, C++, and Java: no nested subroutine scopes
— Modula-2: only outermost routines are first-class

— Ada 95 "containment rule": can return an inner subroutine
under certain conditions

Object closures

Closures (i.e. subroutine + non-local enviroment) are
needed only when subroutines can be nested

Object-oriented languages without nested subroutines
can use objects to implement a form of closure

— a method plays the role of the subroutine

— instance variables provide the non-local environment
Objects playing the role of a function + non-local
enviroment are called object closures or function
objects

Ad-hoc syntax in some languages

— In C++ an object of a class that overrides operator() can be
called with functional syntax

Object closures in Java and C++

interface IntFunc ({ //Java
public int call(int i),
}
class PlusX implements IntFunc {
final int x;
PlusX(int n) { x = n; }
public int call(int i) { return i + x; }

}

IntFunc £ = new PlusX(2);

System.out.println(f.call(3)); // prints 5
class int func ({ // C++
public:
virtual int operator () (int i) = O0;

};
class plus _x : public int func ({
const int x;
public:
plus_x(int n) : x(n) { }
virtual int operator () (int i) { return i + x; }

};

plus x £(2); // £ is an instance of plus x
cout << £(3) << "\n"; // prints 5

