
Principles	of	Programming	Languages	
h"p://www.di.unipi.it/~andrea/Dida2ca/PLP-16/	

Prof.	Andrea	Corradini	
Department	of	Computer	Science,	Pisa	

•  Dynamic	scoping	and	its	implementa;on	
–  Associa;on	lists	
–  Central	Reference	Tables	

•  Subrou;nes	as	parameters:	Deep	and	Shallow	binding		
•  Subrou;nes	as	result:	unlimited	extent	

Lesson 20!

Dynamic	Scoping	
•  Scope	rule:	the	“current”	binding	for	a	given	name	is	the	one	

encountered	most	recently	during	execu<on	
•  Typically	adopted	in	(early)	func;onal	languages	that	are	

interpreted	
•  Perl	v5	allows	you	to	choose	scope	method	for	each	variable	

separately	
•  With	dynamic	scope:	

–  Name-to-object	bindings	cannot	be	determined	by	a	compiler	in	general	
–  Easy	for	interpreter	to	look	up	name-to-object	binding	in	a	stack	of	

declara;ons	
•  Generally	considered	to	be	“a	bad	programming	language	

feature”	
–  Hard	to	keep	track	of	ac;ve	bindings	when	reading	a	program	text	
–  Most	languages	are	now	compiled,	or	a	compiler/interpreter	mix	

•  Some;mes	useful:	
–  Unix	environment	variables	have	dynamic	scope	

2	

Effect	of	Sta;c	Scoping	
•  The	following	pseudo-code	

program	demonstrates	the	effect	
of	scoping	on	variable	bindings:	

•  a:integer
procedure first(){
 a:=1}
procedure second(){
 a:integer
 first()}
procedure main(){
 a:=2
 second()
 write_integer(a)}

a:integer
main()
 a:=2
 second()
 a:integer
 first()
 a:=1
 write_integer(a)

Program	execu;on:	

Program	prints	“1”	

binding	

3	

Effect	of	Dynamic	Scoping	
•  The	following	pseudo-code	

program	demonstrates	the	effect	
of	scoping	on	variable	bindings:	

•  a:integer
procedure first(){
 a:=1}
procedure second(){
 a:integer
 first()}
procedure main(){
 a:=2
 second()
 write_integer(a)}

a:integer
main()
 a:=2
 second()
 a:integer
 first()
 a:=1
 write_integer(a)

Program	execu;on:	

Program prints “2”	

binding	

Binding	depends	on	execu;on	

4	

Dynamic	Scoping	Problems	
•  In this example, function scaled_score probably does not do what the

programmer intended: with dynamic scoping, max_score in scaled_score is
bound to foo's local variable max_score after foo calls scaled_score, which
was the most recent binding during execution:

max_score:integer –– maximum possible score

function scaled_score(raw_score:integer):real{
 return raw_score/max_score*100
 ...}

procedure foo{
 max_score:real := 0 –– highest percentage seen so far
 ...
 foreach student in class
 student.percent := scaled_score(student.points)
 if student.percent > max_score
 max_score := student.percent
}

5	

Dynamic	Scope	Implementa;on	with	
Bindings	Stacks	

•  Each	;me	a	subrou;ne	is	called,	its	local	variables	are	
pushed	on	a	stack	with	their	name-to-object	binding	

•  When	a	reference	to	a	variable	is	made,	the	stack	is	
searched	top-down	for	the	variable's	name-to-object	
binding	

•  A\er	the	subrou;ne	returns,	the	bindings	of	the	local	
variables	are	popped	

•  Different	implementa;ons	of	a	binding	stack	are	used	
in	programming	languages	with	dynamic	scope,	each	
with	advantages	and	disadvantages	

6	

Dynamic	Scoping	with		
Associa;on	Lists	(A-lists)	

•  List	of	bindings	maintained	at	run;me	
•  Bindings	are	pushed	on	enter_scope	and	popped	
on	exit_scope		

•  Look	up:	walks	down	the	list	;ll	the	first	entry	for	
the	given	name	

•  Entries	in	the	list	include	informa;on	about	types	
•  Used	in	many	implementa;ons	of	LISP	
•  Some;mes	the	A-list	is	accessible	from	the	
program,	providing	reflexive	features	

•  Look	up	is	inefficient	

7	

A-lists:	an	example	

8	

A-list	a\er	entering	P	in	the	exec;on	of	Q		 A-list	a\er	exi;ng	P	

CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 33 1–867

3.4.2 Association Lists and Central Reference Tables 33

Referencing environment A-list

(predefined names)

I, J : integer

procedure P (I : integer)
 . . .

procedure Q
 J : integer
 . . .
 P (J)
 . . .

−− main program
. . .
Q

Referencing environment A-list

(predefined names)

other infoP

other infoJ

other infoI

other infoI

other infoJ

other info

global proc

global var

global var

param

local var

global procQ

other infoP

other infoJ

other infoI

other infoJ

other info

global proc

global var

global var

local var

global procQ

(newest declarations are at this end of the list)

Figure 3.20 Dynamic scoping with an association list. The left side of the figure shows the referencing environment at the
point in the code indicated by the adjacent grey arrow: after the main program calls Q and it in turn calls P. When searching
for I, one will find the parameter at the beginning of the A-list. The right side of the figure shows the environment at the other
grey arrow: after P returns to Q. When searching for I, one will find the global definition.

P2, a lookup operation on I will find P2’s I; neither of the entries for M’s I will
be visible. The entry for type T indicates the scope number to be pushed onto
the scope stack during with statements. The entry for each subroutine contains
the head pointer of a list that links together the subroutine’s parameters, for use
in analyzing calls (additional links of these chains are not shown). During code
generation, many symbol table entries would contain additional fields, for such
information as size and run-time address. !

3.4.2 Association Lists and Central ReferenceTables

Pictorial representations of the two principal implementations of dynamic scoping
appear in Figures 3.20 and 3.21. Association lists are simple and elegant, but
can be very inefficient. Central reference tables resemble a simplified LeBlanc-
Cook symbol table, without the separate scope stack; they require more work at
scope entry and exit than do association lists, but they make lookup operations fast.

A-lists are widely used for dictionary abstractions in Lisp; they are supportedEXAMPLE 3.46
A-list lookup in Lisp by a rich set of built-in functions in most Lisp dialects. It is therefore natural

Copyright c⃝ 2009 by Elsevier Inc. All rights reserved.

Central	reference	tables	

•  Similar	to	LeBlanc&Cook	hash	table,	but	stack	
of	scopes	not	needed	(and	at	run;me!)	

•  Each	name	has	a	slot	with	a	stack	of	entries:	
the	current	one	on	the	top	

•  On	enter_scope	the	new	bindings	are	pushed	
•  On	exit_scope	the	scope	bindings	are	popped	
•  More	housekeeping	work	necessary,	but	
faster	access	than	with	A-lists	

9	

10	

CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 34 1–867

34 Chapter 3 Names, Scopes, and Bindings

(other names)

Central reference table

P

I

Q

J

(each table entry points to the newest declaration of the given name)

I, J : integer

procedure P (I : integer)
 . . .

procedure Q
 J : integer
 . . .
 P (J)
 . . .

−− main program
. . .
Q

other info

other infoother info

global proc

global varparam

other infoglobal proc

other infoother info global varlocal var

(other names)

Central reference table

P

I

Q

J

other info

other info

global proc

global var

other infoglobal proc

other infoother info global varlocal var

Figure 3.21 Dynamic scoping with a central reference table.The upper half of the figure shows the referencing environment
at the point in the code indicated by the upper grey arrow: after the main program calls Q and it in turn calls P. When searching
for I, one will find the parameter at the beginning of the chain in the I slot of the table. The lower half of the figure shows the
environment at the lower grey arrow: after P returns to Q. When searching for I, one will find the global definition.

for Lisp interpreters to use an A-list to keep track of name-value bindings, and
even to make this list explicitly visible to the running program. Since bindings are
created when entering a scope, and destroyed when leaving or returning from a
scope, the A-list functions as a stack. When execution enters a scope at run time,
the interpreter pushes bindings for names declared in that scope onto the top of
the A-list. When execution finally leaves a scope, these bindings are removed. To
look up the meaning of a name in an expression, the interpreter searches from
the top of the list until it finds an appropriate binding (or reaches the end of the
list, in which case an error has occurred). Each entry in the list contains whatever
information is needed to perform semantic checks (e.g., type checking, which we
will consider in Section 7.2) and to find variables and other objects that occupy

Copyright c⃝ 2009 by Elsevier Inc. All rights reserved.

CRT	a\er	entering	P	in	the	exec;on	of	Q		

CRT	a\er	exi;ng	P	

First,	Second,	and	Third-Class	
Subrou;nes	

•  First-class object: an object entity that can be passed as a
parameter, returned from a subroutine, and assigned to a variable
–  Primitive types such as integers in most programming languages

•  Second-class object: an object that can be passed as a parameter,
but not returned from a subroutine or assigned to a variable
–  Fixed-size arrays in C/C++

•  Third-class object: an object that cannot be passed as a
parameter, cannot be returned from a subroutine, and cannot be
assigned to a variable
–  Labels of goto-statements and subroutines in Ada 83

•  Functions in Lisp, ML, and Haskell are unrestricted first-class
objects

•  With certain restrictions, subroutines are first-class objects in
Modula-2 and 3, Ada 95, (C and C++ use function pointers)

11	

Scoping	issues	for	first/second		
class	subrou;nes	

•  Cri;cal	aspects	of	scoping	when	
–  Subrou;nes	are	passed	as	parameters	
–  Subrou;nes	are	returned	as	result	of	a	func;on	

•  Resolving	names	declared	locally	or	globally	in	
the	passed/returned	subrou;ne	is	obvious	
– Global	objects	are	allocated	sta;cally	(or	on	the	stack,	
in	a	fixed	posi;on)	

•  Their	addresses	are	known	at	compile	;me	
–  Local	objects	are	allocated	in	the	ac;va;on	record	of	
the	subrou;ne	

•  Their	addresses	are	computed	as	base	of	ac2va2on	record	+	
sta2cally	known	offset	

12	

What	about	the	Referencing	Environment?	

•  If a subroutine is passed as an argument to another
subroutine, when are the static/dynamic scoping rules
applied? That is, what is the referencing environment of a
subroutine passed as an argument?
1)  When the reference to the subroutine is first created (i.e. when it is

passed as an argument)
2)  Or when the argument subroutine is called

•  That is, what is the referencing environment of a subroutine
passed as an argument?
–  Eventually the subroutine passed as an argument is called and may

access non-local variables which by definition are in the referencing
environment of usable bindings

•  The choice is fundamental in languages with dynamic scope:
deep binding (1) vs shallow binding (2)

•  The choice is limited in languages with static scope

13	

Effect	of	Deep	Binding	in		
Dynamically-Scoped	Languages	

•  The following program
demonstrates the difference
between deep and shallow binding:

function older(p:person):boolean
 return p.age > bound

procedure show(p:person,c:function)
 bound:integer
 bound := 20
 if c(p)
 write(p)

procedure main(p)
 bound:integer
 bound := 35
 show(p,older)

main(p)
 bound:integer
 bound := 35
 show(p,older)
 bound:integer
 bound := 20
 older(p)
 return p.age>bound
 if return value is true
 write(p)

Deep	
binding	

Program execution:	

Program prints persons
older than 35	 14	

Effect	of	Shallow	Binding	in	
Dynamically-Scoped	Languages	

•  The following program
demonstrates the difference
between deep and shallow binding:

function older(p:person):boolean
 return p.age > bound

procedure show(p:person,c:function)
 bound:integer
 bound := 20
 if c(p)
 write(p)

procedure main(p)
 bound:integer
 bound := 35
 show(p,older)

main(p)
 bound:integer
 bound := 35
 show(p,older)
 bound:integer
 bound := 20
 older(p)
 return p.age>bound
 if return value is true
 write(p)

Shallow	
binding	

Program execution:	

Program prints persons
older than 20	 15	

Implemen;ng	Deep	Bindings	with	
Subrou;ne	Closures	

•  Implementa;on	of	shallow	binding	obvious:	look	for	
the	last	ac;vated	binding	for	the	name	in	the	stack			

•  For	deep	binding,	the	referencing	environment	is	
bundled	with	the	subrou;ne	as	a	closure	and	passed	as	
an	argument	

•  A	subrou;ne	closure	contains	
–  A	pointer	to	the	subrou;ne	code	
–  The	current	set	of	name-to-object	bindings	

•  Possible	implementa;ons:	
– With	Central	Reference	Tables,	the	whole	current	set	of	
bindings	may	have	to	be	copied	

– With	A-lists,	the	head	of	the	list	is	copied	

16	

Closures	in	Dynamic	Scoping		
implemented	with	A-lists	

17	

CD_Ch03-P374514 [11:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 36 1–867

36 Chapter 3 Names, Scopes, and Bindings

procedure P(procedure C)
 declare I, J
 call C

procedure F
 declare I

procedure Q
 declare J
 call F

−− main program
 call P(Q)

Referencing environment A-listCentral Stack

main program

P I, J
C == Q

Q J

I

M

P

Q

F

I

J

J

I

F

Figure 3.22 Capturing the A-list in a closure. Each frame in the stack has a pointer to the
current beginning of the A-list, which the run-time system uses to look up names.When the main
program passes Q to P with deep binding, it bundles its A-list pointer in Q’s closure (dashed
arrow). When P calls C (which is Q), it restores the bundled pointer. When Q elaborates its
declaration of J (and F elaborates its declaration of I), the A-list is temporarily bifurcated.

any bindings created since the closure was created (P’s I and J in the figure)
temporarily invisible. New bindings created within the subroutine (or in any
subroutine it calls) are pushed using the temporary pointer. Because the A-list is
represented by pointers (rather than an array), the effect is to have two lists—
one representing the caller’s referencing environment and the other temporary
referencing environment resulting from use of the closure—that share their older
entries. When Q returns to P in our example, the original head of the A-list will
be restored, making P’s I and J visible again. !

With a central reference table implementation of dynamic scoping, the creation
of a closure is more complicated. In the general case, it may be necessary to
copy the entire main array of the central table and the first entry on each of its
lists. Space and time overhead may be reduced if the compiler or interpreter is
able to determine that only some of the program’s names will be used by the
subroutine in the closure (or by things that the subroutine may call). In this case,
the environment can be saved by copying the first entries of the lists for only the
names that will be used. When the subroutine is called through the closure, these
entries can then be pushed onto the beginnings of the appropriate lists in the
central reference table. Additional code must be executed to remove them again
after the subroutine returns.

Copyright c⃝ 2009 by Elsevier Inc. All rights reserved.

Each	frame	in	the	stack	has	a	pointer	to	the	current	beginning	of	the	A-lists.	
When	the	main	program	passes	Q	to	P	with	deep	binding,	it	bundles	its	A-list	
pointer	in	Q’s	closure	(dashed	arrow).	When	P	calls	C	(which	is	Q),	it	restores	
the	bundled	pointer.	When	Q	elaborates	its	declara;on	of	J	(and	F	elaborates	
its	declara;on	of	I),	the	A-list	is	temporarily	bifurcated.	

Deep/Shallow	binding	
with	sta<c	scoping	

•  Not	obvious	that	it	makes	a	difference.	Recall:	
•  Deep	binding:	the	scoping	rule	is	applied	when	the	subrou;ne	is	passed	as	

an	argument	
•  Shallow	binding:	the	scoping	rule	is	applied	when	the	argument	

subrou;ne	is	called	
•  In	both	cases	non-local	references	are	resolved	looking	at	the	sta;c	

structure	of	the	program,	so	refer	to	the	same	binding	declara;on	
•  But	in	a	recursive	func<on	the	same	declara<on	can	be	executed	several	

<mes:	the	two	binding	policies	may	produce	different	results	
•  No	language	uses	shallow	binding	with	sta;c	scope	
•  Implementa;on	of	deep	binding	easy:	just	keep	the	sta;c	pointer	of	the	

subrou;ne	in	the	moment	it	is	passed	as	parameter,	and	use	it	when	it	is	
called	

18	

Deep	binding	with	sta<c	scoping:		
an	example	in	Pascal	

19	

3.6 The Binding of Referencing Environments 155

program binding_example(input, output);

procedure A(I : integer; procedure P);

procedure B;
begin

writeln(I);
end;

begin (* A *)
if I > 1 then

P
else

A(2, B);
end;

procedure C; begin end;

begin (* main *)
A(1, C);

end.

main program

A
I == 1
P == C

A
I == 2
P == B

B

Figure 3.15 Deep binding in Pascal. At right is a conceptual view of the run-time stack.
Referencing environments captured in closures are shown as dashed boxes and arrows. When B
is called via formal parameter P, two instances of I exist. Because the closure for P was created in
the initial invocation of A, B’s static link (solid arrow) points to the frame of that earlier invocation.
B uses that invocation’s instance of I in its writeln statement, and the output is a 1.

a variable. Simple types such as integers and characters are first-class values in
most programming languages. By contrast, a “second-class” value can be passed
as a parameter, but not returned from a subroutine or assigned into a variable,
and a “third-class” value cannot even be passed as a parameter. As we shall see
in Section 8.3.2, labels are third-class values in most programming languages,
but second-class values in Algol. Subroutines display the most variation. They
are first-class values in all functional programming languages and most scripting
languages. They are also first-class values in C# and, with some restrictions, in
several other imperative languages, including Fortran, Modula-2 and -3, Ada 95,
C, and C++.11 They are second-class values in most other imperative languages,
and third-class values in Ada 83.

Our discussion of binding so far has considered only second-class subroutines.
First-class subroutines in a language with nested scopes introduce an additional
level of complexity: they raise the possibility that a reference to a subroutine may

11 Some authors would say that first-class status requires anonymous function definitions—lambda
expressions—that can be embedded in other expressions. C#, most scripting languages, and all
functional languages meet this requirement, but most imperative languages do not.

When	B	is	called	via	formal	parameter	P,	two	instances	of	I	exist.	Because	the	closure	
for	P	was	created	in	the	ini;al	invoca;on	of	A,	B’s	sta;c	link	(solid	arrow)	points	to	the	
frame	of	that	earlier	invoca;on.	B	uses	that	invoca;on’s	instance	of	I	in	its	writeln	
statement,	and	the	output	is	a	1.	With	shallow	binding	it	would	print	2.	

Returning	subrou;nes	
•  In	languages	with	first-class	subrou;nes,	a	
func;on	f	may	declare	a	subrou;ne	g,	
returning	it	as	result	

•  Subrou;ne	g	may	have	non-local	references	
to	local	objects	of	f.	Therefore:	
–  g	has	to	be	returned	as	a	closure	
–  the	ac;va;on	record	of	f	cannot	be	deallocated	

20	

(define plus-x (lambda (x)
 (lambda (y) (+ x y))))
...
(let ((f (plus-x 2)))
 (f 3)) ; returns 5

156 Chapter 3 Names, Scopes, and Bindings

main program main program

plus_x
x = 2
rtn = anon

anon y = 3

Figure 3.16 The need for unlimited extent. When function plus_x is called in Example 3.36,
it returns (left side of the figure) a closure containing an anonymous function. The referencing
environment of that function encompasses both plus_x and main—including the local vari-
ables of plus_x itself. When the anonymous function is subsequently called (right side of the
figure), it must be able to access variables in the closure’s environment—in particular, the x
inside plus_x.

outlive the execution of the scope in which that routine was declared. ConsiderEXAMPLE 3.36
Returning a first-class
subroutine in Scheme

the following example in Scheme:

1. (define plus-x (lambda (x)
2. (lambda (y) (+ x y))))
3. ...
4. (let ((f (plus-x 2)))
5. (f 3)) ; returns 5

Here the let construct on line 4 declares a new function, f, which is the result of
calling plus-x with argument 2. Function plus-x is defined at line 1. It returns
the (unnamed) function declared at line 2. But that function refers to parameter x
of plus-x. When f is called at line 5, its referencing environment will include the
x in plus-x, despite the fact that plus-x has already returned (see Figure 3.16).
Somehow we must ensure that x remains available. !

If local objects were destroyed (and their space reclaimed) at the end of each
scope’s execution, then the referencing environment captured in a long-lived clo-
sure might become full of dangling references. To avoid this problem, most func-
tional languages specify that local objects have unlimited extent : their lifetimes
continue indefinitely. Their space can be reclaimed only when the garbage col-
lection system is able to prove that they will never be used again. Local objects
(other than own/static variables) in most imperative languages have limited
extent : they are destroyed at the end of their scope’s execution. (C# and Small-
talk are exceptions to the rule, as are most scripting languages.) Space for local
objects with limited extent can be allocated on a stack. Space for local objects with
unlimited extent must generally be allocated on a heap.

Given the desire to maintain stack-based allocation for the local variables
of subroutines, imperative languages with first-class subroutines must gener-
ally adopt alternative mechanisms to avoid the dangling reference problem for
closures. C, C++, and (pre-Fortran 90) Fortran, of course, do not have nested
subroutines. Modula-2 allows references to be created only to outermost sub-
routines (outermost routines are first-class values; nested routines are third-class

•  (plus-x 2)	returns	an	anonymous	func<on	which	refers	to	the	local	x	

First-Class	Subrou;ne	
Implementa;ons	

•  In functional languages, local objects have unlimited
extent: their lifetime continue indefinitely
–  Local objects are allocated on the heap
–  Garbage collection will eventually remove unused objects

•  In imperative languages, local objects have limited
extent with stack allocation

•  To avoid the problem of dangling references,
alternative mechanisms are used:
–  C, C++, and Java: no nested subroutine scopes
–  Modula-2: only outermost routines are first-class
–  Ada 95 "containment rule": can return an inner subroutine

under certain conditions

21	

Object	closures	
•  Closures	(i.e.	subrou;ne	+	non-local	enviroment)	are	
needed	only	when	subrou;nes	can	be	nested	

•  Object-oriented	languages	without	nested	subrou;nes	
can	use	objects	to	implement	a	form	of	closure	
–  a	method	plays	the	role	of	the	subrou;ne	
–  instance	variables	provide	the	non-local	environment		

•  Objects	playing	the	role	of	a	func;on	+	non-local	
enviroment	are	called	object	closures	or	func<on	
objects	

•  Ad-hoc	syntax	in	some	languages	
–  In	C++	an	object	of	a	class	that	overrides	operator()	can	be	
called	with	func;onal	syntax	

22	

Object	closures	in	Java	and	C++	

23	

class int_func { // C++
 public:
 virtual int operator()(int i) = 0;
};
class plus_x : public int_func {
 const int x;
 public:
 plus_x(int n) : x(n) { }
 virtual int operator()(int i) { return i + x; }
};
...
plus_x f(2); // f is an instance of plus_x
cout << f(3) << "\n"; // prints 5

interface IntFunc { //Java
 public int call(int i);
}
class PlusX implements IntFunc {
 final int x;
 PlusX(int n) { x = n; }
 public int call(int i) { return i + x; }
}
...
IntFunc f = new PlusX(2);
System.out.println(f.call(3)); // prints 5

