
Principles	of	Programming	Languages	
h"p://www.di.unipi.it/~andrea/Dida2ca/PLP-16/	

Prof.	Andrea	Corradini	
Department	of	Computer	Science,	Pisa	

•  Names	and	bindings	
•  Storage	organiza=on	
•  Scopes	and	sta=c	scoping	

Lesson 18!



(Recap)	Abstract	Machine	for	a	Language	L	

•  Given	a	programming	language	L,	an	Abstract	Machine	
ML	for	L	is	a	collec'on	of	data	structures	and	algorithms	
which	can	perform	the	storage	and	execu'on	of	programs	
wri6en	in	L					

•  Structure	of	an	abstract	machine:	

Programs	
	

Data	

Memory	 	
Operations and Data Structures for:	
•  Primitive Data processing	
•  Sequence control	
•  Data Transfer control	
•  Memory management	

Interpreter	

2	



Programming	Languages	and	Abstrac=on	

•  High	Level	PL’s	have	been	developed	to		
–  abstract	from	machine	languages	(à	portability)	
– make	programming	easier	for	soLware	developers	

•  Each	PL	genera=on	abstracts	more	
•  Modern	languages	include	sophis=cated	
abstrac=on	mechanisms	to	be	used	by	
programmers	

•  The	study	of	PL’s	focuses	on	the	study	of	
abstrac=ons,	abstrac=on	mechanisms,	and	how	
they	can	be	implemented	(efficiently…)		

3	



Abstrac=on	mechanisms	
Abstrac=on	Mechanisms	are	independent	of	the	concept	to	
be	abstracted		
•  Naming	

–  Associate	a	name	with	a	possibly	complex	en=ty	
•  Abstrac=on	by	Parametriza=on	

–  Abstracts	from	iden=ty	of	data	by	using	parameters	
•  Procedures	with	parameter	
•  Generic	types,	…	

•  Abstrac=on	by	Specifica=on	
–  Abstracts	from	implementa=on	details	

•  Interfaces	
•  Func=on	prototypes,	…	

•  Discussed	in	depth	in	
–  [B.	Liskov,	J.	GuYag]	Program	Development	in	Java:	Abstrac=on,	
Specifica=on,	and	Object-Oriented	Design	

4	



PL’s	defining	Abstract	Machines	
The	defini=on	of	a	PL	mainly	consists	of	defining		
•  the	Abstract	Machine	components,	and		
•  the	abstrac=on	mechanism	[abs]	to	extend	them:	

–  PrimiCve	Data	processing	[DP]	
•  Data	types	and	opera=ons	
•  Procedures,	…	

–  Sequence	control	[SC]	
•  Control	structures,	…	

– Data	Transfer	control	[DTC]	
•  Parameter	passing	mechanisms	
•  Scoping	rules,	…	

– Memory	management		[MM]	
•  Sta=c	/	stack	/	heap	alloca=on	mechanisms,	…	

5	



Programming	Language	Concepts	
•  The	proposed	view	allows	us	to	relate	the	typical	
concepts	of	Programming	Languages	in	a	unifying	
framework	
– Names,	bindings	and	scope		[abs]	
–  Values	and	data	types		[DP]	
–  Variables	and	storage	management			[MM]	
–  Control	abstrac=on		[abs,	SC]	
– Data	abstrac=on		[abs,	DP]	
– Generic	abstrac=on		[abs,	DP]	
–  Concurrency		[SC]	

•  We	will	discuss	some	of	them	in	generality,	
making	reference	to	concrete	examples	when	
useful	

1-6	



Run-=me	environment	

•  The	compiler	must	implement	the	abstrac=ons	of	
the	source	programming	languages,	including	
names,	scopes,	procedures,	parameters,	…	

•  It	creates	and	manages	a	run-'me	environment	
for	providing	such	abstrac=ons	during	execu=on	
–  Layout	and	alloca=on	of	memory	
– Mechanism	for	accessing	variables	
–  Linkage	between	procedures,	parameter	passing	
mechanisms	

–  Interface	to	Opera=ng	System,	I/O,	…	

7	



Names	and	abstrac=on	
•  Names	are	a	fundamental	abstrac=on	mechanism	
•  Used	by	programmers	and	language	designers	to	refer	to	
variables,	constants,	opera=ons,	types,	…	

•  Their	use	applies	to	all	dimensions	of	programming	
languages:	
–  Control	abstrac=on:	

•  Control	flow	constructs	(if-then,	while,	for,	return)	hide	low-level	
machine	ops	

•  Subrou=nes	(procedures	and	func=ons)	allow	programmers	to	focus	
on	manageable	subset	of	program	text,	hiding	implementa=on	details	

–  Data	abstrac=on:	
•  User-defined	data	types	
•  Object-oriented	classes	hide	data	representa=on	details	behind	a	set	of	
opera=ons	

	
8	



Bindings	and	Binding	Time	
•  A	binding	is	an	associa=on	between	a	name	and	an	enCty	
•  An	en=ty	that	can	have	an	associated	name	is	called	

denotable	
•  Binding	Cme	is	the	=me	at	which	a	decision	is	made	to	create	

a	name	↔	en=ty	binding	(the	actual	binding	can	be	created	
later):		
–  Language	design	=me	
–  Language	implementa=on	=me	
–  Program	wri=ng	=me	
–  Compile	=me	
–  Link	=me	
–  Load	=me	
–  Run	=me	
	

9	



Binding	Time	Examples	
•  Language	design	Cme:	the	design	of	specific	program	

constructs	(syntax),	primi=ve	types,	and	meaning	(seman=cs) 
–  Syntax (names ↔ grammar) 

•  if (a>0) b:=a;	(C	syntax	style)	
•  if a>0 then b:=a end if	(Ada	syntax	style)	

–  Keywords (names ↔ builtins) 
•  class	(C++	and	Java),	endif	or	end if	(Fortran,	space	insignificant)	

–  Reserved words (names ↔ special constructs) 
•  main	(C),	writeln	(Pascal)	

–  Meaning of operators (operator ↔ operation) 
•  +	(add),	%	(mod),	**	(power)	

–  Built-in primitive types (type name ↔ type) 
•  float,	short,	int,	long,	string	

10	



Binding	Time	Examples	(cont’d)	
•  Language	implementaCon	Cme:	fixing	implementa=on	
constants	such	as	numeric	precision,	run-=me	memory	
sizes,	max	iden=fier	name	length,	number	and	types	of	
built-in	excep=ons,	etc.	(if	not	fixed	by	the	language	
specifica=on)	
–  Internal	representa=on	of	types	and	literals		
(type	↔	byte	encoding,	if	not	specified	by	language)	

•  3.1	(IEEE	754)	and	"foo	bar"	(\0	terminated	or	embedded	string	
length)	

–  Storage	alloca=on	method	for	variables	(sta=c/stack/heap)	
•  Program	wriCng	Cme:	the	programmer’s	choice	of	
algorithms	and	data	structures	

11	



Binding	Time	Examples	(cont’d)	
•  Compile	Cme:	the	=me	of	transla=on	of	high-level	constructs	

to	machine	code	and	choice	of	memory	layout	for	data	
objects	
–  The	specific	type	of	a	variable	in	a	declara=on	(name↔type)	
–  Storage	alloca=on	mechanism	for	a	global	or	local	variable	

(name↔alloca=on	mechanism)	
•  Link	Cme:	the	=me	at	which	mul=ple	object	codes	(machine	

code	files)	and	libraries	are	combined	into	one	executable	
(e.g.	external	names	are	bound)	
–  Linking	calls	to	sta=c	library	rou=nes	(func=on↔address)	

•  printf	(in	libc)	
–  Merging	and	linking	mul=ple	object	codes	into	one	executable	

12	



Binding	Time	Examples	(cont’d)	
•  Load	Cme:	when	the	opera=ng	system	loads	the	executable	

in	memory	(e.g.	physical	addresses	of	sta=c	data) 
–  Loading executable in memory and adjusting absolute 

addresses 
•  Mostly	in	older	systems	that	do	not	have	virtual	memory	

•  Run	Cme:	when	a	program	executes 
–  Dynamic linking of libraries (library function↔library code) 

•  DLL,	dylib	
–  Nonstatic allocation of space for variable (variable↔address) 

•  Stack	and	heap	
–  Type	of	a	variable	(variable↔address)	in	dynamically	typed	
languages	

13	



The	Effect	of	Binding	Time	
•  Early	binding	2mes	(before	run	=me,	“staCc”)	are	associated	with	

greater	efficiency	and	clarity	of	program	code	
–  Compilers	make	implementa=on	decisions	at	compile	=me	
(avoiding	to	generate	code	that	makes	the	decision	at	run	=me)	

–  Syntax	and	sta=c	seman=cs	checking	is	performed	only	once	at	
compile	=me	and	does	not	impose	any	run-=me	overheads	

•  Late	binding	2mes	(at	run	=me,	“dynamic”)	are	associated	with	
greater	flexibility	(but	some=mes	make	the	effects	of	execu=ng	the	
program	obscure)	
–  Compilers	must	generate	the	code	that	makes	the	decision	at	
run	=me	

–  Languages	such	as	Smalltalk-80	with	polymorphic	types	allow	
variable	names	to	refer	to	objects	of	mul=ple	types	at	run	=me	

–  Method	binding	in	object-oriented	languages	must	be	late	to	
support	dynamic	binding		 14	



Binding	Life=me	versus	Object	Life=me	

•  Key	events:	
–  Object	crea=on		(“Object”	here	is	any	en=ty	in	the	programming	

language)	
–  Crea=on	of	bindings	
–  The	object	is	manipulated	via	its	binding	
–  Deac=va=on	and	reac=va=on	of	(temporarily	invisible)	bindings	
–  Destruc=on	of	bindings	
–  Destruc=on	of	objects	

•  Binding	lifeCme:	=me	between	crea=on	and	destruc=on	of	binding	
to	object.	Examples:		
–  a	pointer	variable	is	set	to	the	address	of	an	object	
–  a	formal	argument	is	bound	to	an	actual	argument	

•  Object	lifeCme:	=me	between	crea=on	and	destruc=on	of	an	
object	

15	



Binding	Life=me	versus	Object	Life=me	(cont’d)	
•  Bindings	are	visible	in	scopes,	por=ons	of	the	program	that	

can	be	determine	sta=cally	or	dinamically	
•  Bindings	are	temporarily	invisible	when	code	is	executed	

where	the	binding	(name	↔	object)	is	out	of	scope	

16	

•  Since	scopes	are	typically	nested,	alloca=on	of	objects	
in	memory	can	follow	a	stack	based,	LIFO	policy	



Object	Storage	
•  Objects	(program	data	and	code)	have	to	be	stored	in	memory	during	

their	life=me	
•  StaCc	objects	have	an	absolute	storage	address	that	is	retained	

throughout	the	execu=on	of	the	program	
–  Global	variables	and	data	
–  Subrou=ne	code	and	class	method	code	

•  Stack	objects	are	allocated	in	last-in	first-out	order,	usually	in	conjunc=on	
with	subrou=ne	calls	and	returns	
–  Actual	arguments	passed	by	value	to	a	subrou=ne	
–  Local	variables	of	a	subrou=ne	

•  Heap	objects	may	be	allocated	and	deallocated	at	arbitrary	=mes,	but	
require	a	storage	management	algorithm	
–  Example:	Lisp	lists	
–  Example:	Java	class	instances	are	always	stored	on	the	heap	

17	



Typical	Program	and	Data	Layout		
in	Memory	

•  The	compiler	assumes	that	the	
target	program	will	run	in	a	logical	
address	space	

•  The	opera=ng	system	will	map	
logical	addresses	to	physical	ones	

•  Program	code	is	at	the	boYom	of	
the	memory	region	(code	sec=on)	
–  The	code	sec=on	is	protected	from	

run-=me	modifica=on	by	the	OS	
•  Sta=c	data	objects	are	stored	in	the	

sta=c	region	
•  Stack	grows	downward	
•  Heap	grows	upward	

heap 

stack 

static data 

code 

0000	

Upper addr	

Vi
rtu

al
 m

em
or

y 
ad

dr
es

s s
pa

ce
	

18	



Sta=c	Alloca=on	
•  Program	code	is	sta=cally	allocated	in	most	implementa=ons	of	

impera=ve	languages	
•  Sta=cally	allocated	variables	are	history	sensiCve	

–  Global	variables	keep	state	during	en=re	program	life=me	
–  Sta=c	local	variables	in	C	func=ons	keep	state	across	func=on	

invoca=ons	
–  Sta=c	members	in	Java	classes	are	“shared”	by	objects	and	keep	state	

during	program	life=me	(but	they	are	allocated	in	the	heap…)	
•  Advantage	of	sta=cally	allocated	object	is	the	fast	access	due	to	

absolute	addressing	of	the	object	
–  Address	determined	by	the	compiler,	does	not	need	to	be	computed	

at	run=me	
–  Problem:	sta=c	alloca=on	of	local	variables	cannot	be	used	for	

recursive	subrou=nes:	each	new	func=on	instan=a=on	needs	fresh	
locals	

19	



Sta=c	Alloca=on		
A	paradigma=c	example:	Fortran	77	

•  Fortran 77 has no recursion 
•  Global and local variables are 

statically allocated as decided by 
the compiler 

•  Global and local variables are 
referenced at absolute addresses 

•  Avoids overhead of creation and 
destruction of local objects for 
every subroutine call 

•  Each subroutine in the program 
has a subroutine frame that is 
statically allocated 

•  This subroutine frame stores all 
subroutine-relevant data that is 
needed to execute 

•  Inefficient use of memory, even in 
absence of recursion Typical static subroutine 

frame layout 

Temporary storage 
(e.g. for expression 

evaluation) 

Local variables 

Bookkeeping 
(e.g. saved CPU 

registers) 

Return address 

Subroutine 
arguments and 

returns 

20	



Stack	Alloca=on	
•  Each	instance	of	a	subrou=ne	that	is	ac=ve	has	a	subrou'ne	

frame	(or	ac'va'on	record)	on	a	run-=me	stack	
–  Compiler	generates	subrou=ne	calling	sequence	to	setup	frame,	
call	the	rou=ne,	and	to	destroy	the	frame	aLerwards	

•  Subrou=ne	frame	layouts	vary	between	languages,	
implementa=ons,	and	machine	plarorms	

•  Typically	the	stack	is	accessed	through	two	pointers:	
–  The	stack	pointer	(sp)	points	to	the	next	available	free	space	on	
the	stack	

–  The	frame	pointer	(fp)	points	to	the	ac=va=on	record	of	the	
currently	ac=ve	subrou=ne	

•  Some	languages	use	only	the	stack	pointer,	like	C	
•  Stack	and	frame	pointer	are	usually	in	registers	

21	



Typical	Stack-Allocated		
Ac=va=on	Record	

•  A frame pointer (fp) points to 
the frame of the currently 
active subroutine at run time 

•  Subroutine arguments, local 
variables, and return values 
are accessed by constant 
address offsets from the fp 

•  Sometimes arguments and/or 
the return value are placed in 
registers 

Typical subroutine 
frame layout 

Temporary storage 
(e.g. for expression 

evaluation) 

Local variables 

Bookkeeping 
(e.g. saved CPU 

registers) 

Return address 

Subroutine 
arguments and 

returns 

fp 

Lower addr	

Higher addr	

22	



Ac=va=on	Records	on	the	Stack	
•  Ac=va=on	records	are	pushed	and	

popped	onto/from	the	run=me	stack	
•  The	stack	pointer	(sp)	points	to	the	

next	available	free	space	on	the	stack	
to	push	a	new	ac=va=on	record	onto	
when	a	subrou=ne	is	called	

•  The	frame	pointer	(fp)	points	to	the	
ac=va=on	record	of	the	currently	
ac=ve	subrou=ne,	which	is	always	the	
topmost	frame	on	the	stack	

•  The	fp	of	the	previous	ac=ve	frame	is	
saved	in	the	current	frame	and	
restored	aLer	the	call	

•  In	this	example:	
M	called	A		
A	called	B		
B	called	A	

Temporaries 
Local variables 

Bookkeeping 
Return address 

Arguments 

A 

Temporaries 
Local variables 

Bookkeeping 
Return address 

Arguments 

B 

Temporaries 
Local variables 

Bookkeeping 
Return address 

Arguments 

A 

Temporaries 
Local variables 

Bookkeeping 
Return address 

Arguments 

M 

fp 

Higher addr	

sp Stack growth	

23	



Example	Ac=va=on	Record	
•  The size of the types of local variables 

and arguments determines the fp offset 
in a frame 

•  Example Pascal procedure: 
 
procedure P(a:integer, 
            var b:real) 
(* a is passed by value 
   b is passed by reference, 
     = pointer to b's value 
*) 
var 
  foo:integer;(* 4 bytes *) 
  bar:real;   (* 8 bytes *) 
  p:^integer; (* 4 bytes *) 
begin 
  ... 
end 

Temporaries 

Bookkeeping 
(16 bytes) 

Return address 
to the caller of P 

(4 bytes) fp 

Lower addr	

Higher addr	

-36: foo (4 bytes) 
-32: bar (8 bytes) 
-24: p (4 bytes) 

0: a (4 bytes) 
4: b (4 bytes) 

fp-32 

fp+4 

24	



25	

Genera=ng	Code	for	Stack	Alloca=on	
of	Ac=va=on	Records	

t1 := a + b 
param t1 
param c 
t2 := call foo,2 
… 
 
 
func foo 
… 
return x 

100: ADD #16,SP 
108: MOV a,R0 
116: ADD b,R0 
124: MOV R0,4(SP) 
132: MOV c,8(SP) 
140: MOV #156,*SP 
148: GOTO 500 
156: MOV 12(SP),R0 
164: SUB #16,SP 
172: … 
 
500: … 
564: MOV R0,12(SP) 
572: GOTO *SP Return to caller	

Store return value	

Push frame	

Store a+b�
Store c�
Store return address �
Jump to foo�
Get return value�
Remove frame	

Note:	Language	and	machine	dependent	
Here	we	assume	C-like	implementa=on	with	
SP	and	no	FP	

int foo(int a,int b){ 
… 
return x} 
… 
d = foo(a+b,c) 
… 



Heap	Alloca=on	
•  Objects	allocated	on	heap	if	

–  LifeCme:	not	bound	to	a	subrou=ne	
•  Eg:	Unlimited	extent	

–  MulCplicity:	more	than	one	
•  Records,	class	instances,	…	

–  Size:	dynamic	
•  Dynamic	arrays	
•  Variable	length	strings	
•  Sets,	Lists,	Queues,	…	

•  Some	languages	use	heap	alloca=on	almost	by	default	
–  Scrip=ng	and	func=onal	languages	

•  Implicit	heap	allocaCon	
–  Done	automa=cally	when	crea=ng	data	structures	

•  Explicit	heap	allocaCon:	
–  Statements	and/or	func=ons	for	alloca=on	and	dealloca=on	
–  Malloc/free,	new/delete	

26	



Heap	Alloca=on	Algorithms	
•  The	heap	is	organized	as	a	list	of	free	blocks	of	
memory		

•  Heap	alloca=on	(triggered	e.g.	by	malloc	in	C,	or	by	
new	in	Pascal,	Java,	C++)	is	performed	by	searching	
the	heap	for	available	free	space	

•  Dele=on	of	objects	leaves	free	blocks	in	the	heap	
that	can	be	reused	

•  Internal	heap	fragmenta'on:	if	allocated	object	is	
smaller	than	the	free	block	the	extra	space	is	wasted	

•  External	heap	fragmenta'on:	smaller	free	blocks	
cannot	always	be	reused	resul=ng	in	wasted	space	

27	



Heap	Alloca=on	Algorithms	(cont’d)	

•  Maintain a linked list of free heap blocks 
•  First-fit: select the first block in the list that is large enough 
•  Best-fit: search the entire list for the smallest free block that is large 

enough to hold the object 
•  If an object is smaller than the block, the extra space can be added 

to the list of free blocks 
•  When a block is freed, adjacent free blocks are merged 
•  Buddy system: use heap pools of standard sized blocks of size 2k 

–  If no free block is available for object of size between 2k-1+1 and 2k then 
find block of size 2k+1 and split it in half, adding the halves to the pool of 
free 2k blocks, etc. 

•  Fibonacci heap: use heap pools of standard size blocks according 
to Fibonacci numbers 
–  More complex but leads to slower internal fragmentation 

28	



Problems	with	explicit	heap	alloca=on	

•  Explicit	manual	dealloca=on	errors	are	among	the	most	
expensive	and	hard	to	detect	problems	in	real-world	
applica=ons	
–  If	an	object	is	deallocated	too	soon,	a	reference	to	the	object	
becomes	a	dangling	reference	

–  If	an	object	is	never	deallocated,	the	program	leaks	memory	
•  Automa=c	garbage	collec=on	removes	all	objects	from	the	

heap	that	are	not	accessible,	i.e.	are	not	referenced,	
putng	them	in	the	free	list	
–  Disadvantage	is	GC	overhead,	but	GC	algorithm	efficiency	has	
been	improved	

–  Not	always	suitable	for	real-=me	processing	
–  Several	algorithms	available	

29	



Scope	of	a	binding	
•  The	scope	of	a	binding	is	the	textual	region	of	a	program	in	which	a	

name-to-object	binding	is	ac=ve	
•  “Scope”:	textual	region	of	maximal	size	where	bindings	are	not	

destroyed	
–  Module,	class,	subrou=ne,	block,	record/object	

•  StaCcally	scoped	language:	the	scope	of	bindings	is	determined	at	
compile	=me	
–  Used	by	almost	all	but	a	few	programming	languages	
–  More	intui=ve	to	user	compared	to	dynamic	scoping	

•  Dynamically	scoped	language:	the	scope	of	bindings	is	determined	
at	run	=me	
–  Used	e.g.	in	Lisp	(early	versions),	APL,	Snobol,	and	Perl	(selec=vely)	

•  The	difference	is	only	relevant	for	non-local	bindings:	those	
which	are	neither	global	nor	created	locally	in	the	scope	

30	



Sta=c	(lexical)	scoping	
•  The	bindings	between	names	and	objects	can	be	
determined	by	examina=on	of	the	program	text	

•  Scope	rules	of	the	language	define	the	scope	of	
bindings	
–  Early	Basic:	all	variables	are	global	and	visible	everywhere	
–  Fortran	77:		

•  scope	of	local	variables	limited	to	the	subrou=ne	(unless	“save”-
ed,	like	“sta=c”	in	C);		

•  scope	of	global	variable	is	the	whole	program	text	unless	hidden	
–  Algol	60,	Pascal,	Ada,	…	:	allow	nested	subrou2ne	
defini2ons		

–  Java,	…	:	allow	nested	classes		
•  Adopt	the	closest	nested	scope	rule	

31	



Closest	Nested	Scope	Rule	
	

•  To	find	the	object	
referenced	by	a	given	
name:	
–  Look	for	a	declara=on	in	

the	current	innermost	
scope	

–  If	there	is	none,	look	for	
a	declara=on	in	the	
immediately	
surrounding	scope,	etc.	

•  Built-ins	or	
predefined	objects	as	
defined	in	outermost	
scope,	external	to	the	
“global”	one	
–  I/O	rou=nes,	

mathema=cal	func=ons		

procedure P1(A1:T1) 
var X:real; 
... 
  procedure P2(A2:T2); 
  ... 
    procedure P3(A3:T3); 
    ... 
    begin 
    (* body of P3: P3,A3,P2,A2,X of P1,P1,A1 are visible *) 
    end; 
  ... 
  begin 
  (* body of P2: P3,P2,A2,X of P1,P1,A1 are visible *) 
  end; 
  procedure P4(A4:T4); 
  ... 
    function F1(A5:T5):T6; 
    var X:integer; 
    ... 
    begin 
    (* body of F1: X of F1,F1,A5,P4,A4,P2,P1,A1 are visible *) 
    end; 
  ... 
  begin 
  (* body of P4: F1,P4,A4,P2,X of P1,P1,A1 are visible *) 
  end; 
... 
begin 
(* body of P1: X of P1,P1,A1,P2,P4 are visible *) 
end 32	



Sta=c	Scope	Implementa=on		
with	Sta=c	Links	

•  Access	to	global	variable:	compiled	using	constant	address	
•  Access	to	local	variable:	compiled	using	frame	pointer	(stored	in	a	

register)	and	sta'cally	known	offset:			<offset>(FP)			
•  Access	to	nonlocal	variable?	
•  Scope	rules	are	designed	so	that	we	can	only	refer	to	variables	that	

are	alive:	the	variable	must	have	been	stored	in	the	ac=va=on	
record	of	a	subrou=ne	

•  If	a	variable	is	not	in	the	local	scope,	we	are	sure	there	is	an	
ac=va=on	record	for	the	surrounding	scope	already	allocated	on	
the	stack:	
–  The	current	subrou=ne	can	only	be	called	when	it	was	visible	
–  The	current	subrou=ne	is	visible	only	when	the	surrounding	scope	is	

ac=ve	
•  Each	frame	on	the	stack	contains	a	sta'c	link	poin=ng	to	the	frame	

of	the	staCc	parent	

33	



Example	Sta=c	Links	
•  Subrou=nes	C	and	D	are	

declared	nested	in	B	
–  B	is	sta=c	parent	of	C	and	D	

•  B	and	E	are	nested	in	A	
–  A	is	sta=c	parent	of	B	and	E	

•  The	fp	points	to	the	frame	
at	the	top	of	the	stack	to	
access	locals	

•  The	sta=c	link	in	the	frame	
points	to	the	frame	of	the	
sta=c	parent	

34	



A	Typical	Calling	Sequence	
•  The	caller		

–  Saves	(in	the	dedicated	area	in	its	ac=va=on	record)	any	registers	
whose	values	will	be	needed	aLer	the	call		

–  Computes	values	of	actual	parameters	and	moves	them	into	the	stack	
or	registers		

–  Computes	the	staCc	link	and	passes	it	as	an	extra,	hidden	argument		
–  Uses	a	special	subrou=ne	call	instruc=on	to	jump	to	the	subrou=ne,	

simultaneously	passing	the	return	address	on	the	stack	or	in	a	register		
•  In	its	prologue,	the	callee		

–  allocates	a	frame	by	subtrac=ng	an	appropriate	constant	from	the	sp		
–  saves	the	old	fp	into	the	stack,	and	assigns	it	an	appropriate	new	value		
–  saves	any	registers	that	may	be	overwriYen	by	the	current	rou=ne	

(including	the	staCc	link	and	return	address,	if	they	were	passed	in	
registers)		

	
35	



A	Typical	Calling	Sequence	(cont’d)	

•  ALer	the	subrou=ne	has	completed,	the	callee	
– Moves	the	return	value	(if	any)	into	a	register	or	a	
reserved	loca=on	in	the	stack	

–  Restores	registers	if	needed	
–  Restores	the	fp	and	the	sp	
–  Jumps	back	to	the	return	address		

•  Finally,	the	caller	
– Moves	the	return	value	to	wherever	it	is	needed	
–  Restores	registers	if	needed		

	
	

36	



Sta=c	Chains	

•  How	do	we	access	non-local	objects?	
•  The	sta=c	links	form	a	sta=c	chain,	which	is	a	
linked	list	of	sta=c	parent	frames	

•  When	a	subrou=ne	at	nes=ng	level	j	has	a	
reference	to	an	object	declared	in	a	sta=c	parent	
at	the	surrounding	scope	nested	at	level	k,	then		
j-k	sta=c	links	form	a	sta=c	chain	that	is	traversed	
to	get	to	the	frame	containing	the	object	

•  The	compiler	generates	code	to	make	these	
traversals	over	frames	to	reach	non-local	objects	

37	



Example	Sta=c	Chains	
•  Subrou=ne	A	is	at	nes=ng	level	1	

and	C	at	nes=ng	level	3	
•  When	C	accesses	an	object	of	A,	2	

sta=c	links	are	traversed	to	get	to	
A's	frame	that	contains	that	
object	

38	



Displays	
•  Access	to	an	object	in	a	scope	k	levels	out	
requires	that	the	sta=c	chain	be	dereferenced	k	
=mes.		

•  An	object	k	levels	out	will	require	k	+	1	memory	
accesses	to	be	loaded	in	a	register.	

•  This	number	can	be	reduced	to	a	constant	by	use	
of	a	display,	a	vector	where	the	k-th	element	
contains	the	pointer	to	the	ac=va=on	record	at	
nes=ng	level	k	that	is	currently	ac=ve.	

•  Faster	access	to	non-local	objects,	but	
bookeeping	cost	larger	than	that	of	sta=c	chain		

39	


