Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-16/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 18

* Names and bindings
* Storage organization
* Scopes and static scoping

(Recap) Abstract Machine for a Language L

* Given a programming language L, an Abstract Machine
M, for L is a collection of data structures and algorithms

which can perform the storage and execution of programs
written in L

e Structure of an abstract machine:

Memory Interpreter

Operations and Data Structures for:

< > ¢ Primitive Data processing
Sequence control

* Data Transfer control

* Memory management

Programs

Data

Programming Languages and Abstraction

* High Level PL's have been developed to
— abstract from machine languages (= portability)
— make programming easier for software developers

 Each PL generation abstracts more

 Modern languages include sophisticated
abstraction mechanisms to be used by
programmers

* The study of PL’s focuses on the study of
abstractions, abstraction mechanisms, and how
they can be implemented (efficiently...)

Abstraction mechanisms

Abstraction Mechanisms are independent of the concept to
be abstracted

* Naming
— Associate a name with a possibly complex entity
* Abstraction by Parametrization

— Abstracts from identity of data by using parameters
* Procedures with parameter
* Generic types, ...

e Abstraction by Specification

— Abstracts from implementation details
* Interfaces
* Function prototypes, ...

* Discussed in depth in

— [B. Liskov, J. Guttag] Program Development in Java: Abstraction,
Specification, and Object-Oriented Design

PL's defining Abstract Machines

The definition of a PL mainly consists of defining
* the Abstract Machine components, and

* the abstraction mechanism [abs] to extend them:

— Primitive Data processing [DP]
 Data types and operations
* Procedures, ...
— Sequence control [SC]
 Control structures, ...
— Data Transfer control [DTC]
* Parameter passing mechanisms
e Scopingrules, ...
— Memory management [MM]
e Static / stack / heap allocation mechanisms, ...

Programming Language Concepts

 The proposed view allows us to relate the typical
concepts of Programming Languages in a unifying
framework
— Names, bindings and scope [abs]
— Values and data types [DP]
— Variables and storage management [MM]
— Control abstraction [abs, SC]
— Data abstraction [abs, DP]
— Generic abstraction [abs, DP]
— Concurrency [SC]

 We will discuss some of them in generality,
making reference to concrete examples when
useful

Run-time environment

* The compiler must implement the abstractions of
the source programming languages, including
names, scopes, procedures, parameters, ...

* |t creates and manages a run-time environment
for providing such abstractions during execution

— Layout and allocation of memory
— Mechanism for accessing variables

— Linkage between procedures, parameter passing
mechanisms

— Interface to Operating System, 1/0, ...

Names and abstraction

Names are a fundamental abstraction mechanism

Used by programmers and language designers to refer to
variables, constants, operations, types, ...

Their use applies to all dimensions of programming

languages:
— Control abstraction:
* Control flow constructs (if-then, while, for, return) hide low-level

machine ops
* Subroutines (procedures and functions) allow programmers to focus
on manageable subset of program text, hiding implementation details

— Data abstraction:

* User-defined data types
* Object-oriented classes hide data representation details behind a set of

operations

Bindings and Binding Time

* Abinding is an association between a name and an entity

* An entity that can have an associated name is called
denotable

* Binding time is the time at which a decision is made to create
a name <> entity binding (the actual binding can be created
later):

— Language design time

— Language implementation time
— Program writing time

— Compile time

— Link time

— Load time

— Run time

Binding Time Examples

Language design time: the design of specific program
constructs (syntax), primitive types, and meaning (semantics)
— Syntax (hames <= grammar)

« if (a>0) b:=a; (Csyntaxstyle)

« if a>0 then b:=a end if (Adasyntax style)
— Keywords (names <= builtins)

e class (C++andJava), endif or end if (Fortran, space insignificant)
— Reserved words (names <> special constructs)

* main (C), writeln (Pascal)
— Meaning of operators (operator <= operation)

* + (add), $ (mod), ** (power)
— Built-in primitive types (type name <> type)

» float, short, int, long, string

Binding Time Examples (cont’d)

* Language implementation time: fixing implementation
constants such as numeric precision, run-time memory
sizes, max identifier name length, number and types of
built-in exceptions, etc. (if not fixed by the language
specification)

— Internal representation of types and literals
(type <= byte encoding, if not specified by language)

» 3.1 (IEEE 754) and "foo bar" (\O terminated or embedded string
length)

— Storage allocation method for variables (static/stack/heap)

* Program writing time: the programmer’s choice of
algorithms and data structures

Binding Time Examples (cont’d)

 Compile time: the time of translation of high-level constructs
to machine code and choice of memory layout for data
objects

— The specific type of a variable in a declaration (hame<>type)
— Storage allocation mechanism for a global or local variable
(name<=allocation mechanism)

* Link time: the time at which multiple object codes (machine
code files) and libraries are combined into one executable
(e.g. external names are bound)

— Linking calls to static library routines (function<=address)
 printf (in libc)
— Merging and linking multiple object codes into one executable

Binding Time Examples (cont’d)

* Load time: when the operating system loads the executable
in memory (e.g. physical addresses of static data)

— Loading executable in memory and adjusting absolute
addresses
* Mostly in older systems that do not have virtual memory

* Run time: when a program executes
— Dynamic linking of libraries (library function<=library code)
* DLL, dylib
— Nonstatic allocation of space for variable (variable<=address)
e Stack and heap

— Type of a variable (variable<=address) in dynamically typed
languages

The Effect of Binding Time

* Early binding times (before run time, “static”) are associated with
greater efficiency and clarity of program code

— Compilers make implementation decisions at compile time
(avoiding to generate code that makes the decision at run time)

— Syntax and static semantics checking is performed only once at
compile time and does not impose any run-time overheads

* Late binding times (at run time, “dynamic”) are associated with
greater flexibility (but sometimes make the effects of executing the
program obscure)

— Compilers must generate the code that makes the decision at
run time

— Languages such as Smalltalk-80 with polymorphic types allow
variable names to refer to objects of multiple types at run time

— Method binding in object-oriented languages must be late to
support dynamic binding

Binding Lifetime versus Object Lifetime

* Key events:

— Obiject creation (“Object” here is any entity in the programming
language)

— Creation of bindings

— The object is manipulated via its binding

— Deactivation and reactivation of (temporarily invisible) bindings
— Destruction of bindings

— Destruction of objects

* Binding lifetime: time between creation and destruction of binding
to object. Examples:

— a pointer variable is set to the address of an object
— aformal argument is bound to an actual argument

* Object lifetime: time between creation and destruction of an
object

Binding Lifetime versus Object Lifetime (cont’d)

* Bindings are visible in scopes, portions of the program that
can be determine statically or dinamically

* Bindings are temporarily invisible when code is executed
where the binding (name <> object) is out of scope

creation of binding to destruction of
binding to object binding to
object temporarily object
i ‘ invisible l T
object object
création in destruction
memory time — >

* Since scopes are typically nested, allocation of objects
in memory can follow a stack based, LIFO policy

Object Storage

Objects (program data and code) have to be stored in memory during
their lifetime

Static objects have an absolute storage address that is retained
throughout the execution of the program

— Global variables and data

— Subroutine code and class method code
Stack objects are allocated in last-in first-out order, usually in conjunction
with subroutine calls and returns

— Actual arguments passed by value to a subroutine

— Local variables of a subroutine
Heap objects may be allocated and deallocated at arbitrary times, but
require a storage management algorithm

— Example: Lisp lists

— Example: Java class instances are always stored on the heap

Typical Program and Data Layout

Upper addr

Virtual memory address space

0000

in Memory

 The compiler assumes that the

target program will run in a logical
stack address space

* The operating system will map

- . logical addresses to physical ones
—_ * Program code is at the bottom of

the memory region (code section)

— The code section is protected from

heap run-time modification by the OS

» Static data objects are stored in the
static region

static data * Stack grows downward

* Heap grows upward

code

Static Allocation

Program code is statically allocated in most implementations of
imperative languages
Statically allocated variables are history sensitive
— Global variables keep state during entire program lifetime
— Static local variables in C functions keep state across function
invocations
— Static members in Java classes are “shared” by objects and keep state
during program lifetime (but they are allocated in the heap...)
Advantage of statically allocated object is the fast access due to
absolute addressing of the object
— Address determined by the compiler, does not need to be computed
at runtime

— Problem: static allocation of local variables cannot be used for
recursive subroutines: each new function instantiation needs fresh

locals

Static Allocation

Temporary storage
(e.g. for expression
evaluation)

Local variables

Bookkeeping
(e.g. saved CPU

registers)

Return address

Subroutine
arguments and
returns

Typical static subroutine

frame layout

A paradigmatic example: Fortran 77

Fortran 77 has no recursion

Global and local variables are
statically allocated as decided by
the compiler

Global and local variables are
referenced at absolute addresses

Avoids overhead of creation and
destruction of local objects for
every subroutine call

Each subroutine in the program
has a subroutine frame that is
statically allocated

This subroutine frame stores all

subroutine-relevant data that is
needed to execute

Inefficient use of memory, even in
absence of recursion

Stack Allocation

Each instance of a subroutine that is active has a subroutine
frame (or activation record) on a run-time stack

— Compiler generates subroutine calling sequence to setup frame,
call the routine, and to destroy the frame afterwards

Subroutine frame layouts vary between languages,
implementations, and machine platforms

Typically the stack is accessed through two pointers:

— The stack pointer (sp) points to the next available free space on
the stack

— The frame pointer (fp) points to the activation record of the
currently active subroutine

Some languages use only the stack pointer, like C
Stack and frame pointer are usually in registers

Lower addr

Typical Stack-Allocated
Activation Record

Temporary storage
(e.g. for expression
evaluation)

Local variables

Bookkeeping
(e.g. saved CPU
registers)

Return address

fp

Higher addr

Subroutine
arguments and
returns

Typical subroutine
frame layout

A frame pointer (fp) points to
the frame of the currently
active subroutine at run time

Subroutine arguments, local
variables, and return values
are accessed by constant
address offsets from the fp

Sometimes arguments and/or
the return value are placed in
registers

Activation Records on the Stack

] [Stack growth

Sp—

lemporaries

Local variables

Bookkeeping
Return address

Higher addr

Arguments

lemporaries
Local variables

Bookkeeping
Return address

Arguments

lemporaries
Local variables

Bookkeeping

Return address
Arguments

lemporaries
Local variables

Bookkeeping
Return address

Arguments

Activation records are pushed and
popped onto/from the runtime stack

The stack pointer (sp) points to the
next available free space on the stack
to push a new activation record onto
when a subroutine is called

The frame pointer (fp) points to the
activation record of the currently
active subroutine, which is always the
topmost frame on the stack

The fp of the previous active frame is
saved in the current frame and

restored after the call

In this example:
M called A
A called B
B called A

Lower addr

Example Activation Record

Temporaries

fp-32

-36: foo (4 bytes)
-32. bar (8 byvtes)

| -24: p (4 bytes)

Bookkeeping
(16 bytes)

Return address
to the caller of P

fo , (4 bytes)
0; a (4 bvtes)
fp+4 4:b (4 bvtes)

Higher addr

The size of the types of local variables
and arguments determines the fp offset
in a frame

Example Pascal procedure:

procedure P (a:integer,
var b:real)
(* a is passed by value
b is passed by reference,
= pointer to b's wvalue

*)

var
foo:integer, (* 4 bytes *)
bar:real; (* 8 bytes *)

p:“*integer; (* 4 bytes *)
begin

end

Generating Code for Stack Allocation

of Activation Records

tl :=a + b
param tl

param c
t2 := call foo,2

func foo

return x

int foo(int a,int b) {
return x}

d = foo(a+b,c)

100:
108:
116:
124:
132:
140:
148:
156:
164:
172: ..

500:
564:
572:

ADD
MOV
ADD
MOV

#16,SP
a,R0O

b,R0
RO, 4 (SP)
MOV c, 8 (SP)
MOV #156,*SP
GOTO 500

MOV 12 (SP),RO
SUB #16,SP

MOV RO,12 (SP)
GOTO *SP

Push frame

Store a+b

Store ¢

Store return address
Jump to foo

Get return value
Remove frame

Store return value
Return to caller

Note: Language and machine dependent
Here we assume C-like implementation with
SP and no FP

25

Heap Allocation

* Objects allocated on heap if

— Lifetime: not bound to a subroutine
* Eg: Unlimited extent

— Multiplicity: more than one
* Records, class instances, ...

— Size: dynamic
* Dynamic arrays
* Variable length strings
* Sets, Lists, Queues, ...

 Some languages use heap allocation almost by default
— Scripting and functional languages

* Implicit heap allocation
— Done automatically when creating data structures

* Explicit heap allocation:
— Statements and/or functions for allocation and deallocation
— Malloc/free, new/delete

Heap Allocation Algorithms

The heap is organized as a list of free blocks of
memory

Heap allocation (triggered e.g. by malloc in C, or by
new in Pascal, Java, C++) is performed by searching
the heap for available free space

Deletion of objects leaves free blocks in the heap
that can be reused

Internal heap fragmentation: if allocated object is
smaller than the free block the extra space is wasted

External heap fragmentation: smaller free blocks
cannot always be reused resulting in wasted space

Heap Allocation Algorithms (cont’d)

Maintain a linked list of free heap blocks

First-fit: select the first block in the list that is large enough

Best-fit. search the entire list for the smallest free block that is large
enough to hold the object

If an object is smaller than the block, the extra space can be added
to the list of free blocks

When a block is freed, adjacent free blocks are merged

Buddy system: use heap pools of standard sized blocks of size 2k

— If no free block is available for object of size between 2x1+1 and 2% then
find block of size 2k*1 and split it in half, adding the halves to the pool of

free 2% blocks, etc.
Fibonacci heap: use heap pools of standard size blocks according
to Fibonacci numbers
— More complex but leads to slower internal fragmentation

Problems with explicit heap allocation

e Explicit manual deallocation errors are among the most
expensive and hard to detect problems in real-world
applications

— If an object is deallocated too soon, a reference to the object
becomes a dangling reference

— If an object is never deallocated, the program leaks memory
 Automatic garbage collection removes all objects from the

heap that are not accessible, i.e. are not referenced,
putting them in the free list

— Disadvantage is GC overhead, but GC algorithm efficiency has
been improved

— Not always suitable for real-time processing
— Several algorithms available

Scope of a binding

The scope of a binding is the textual region of a program in which a
name-to-object binding is active

“Scope”: textual region of maximal size where bindings are not
destroyed

— Module, class, subroutine, block, record/object
Statically scoped language: the scope of bindings is determined at
compile time

— Used by almost all but a few programming languages

— More intuitive to user compared to dynamic scoping
Dynamically scoped language: the scope of bindings is determined
at run time

— Used e.g. in Lisp (early versions), APL, Snobol, and Perl (selectively)

The difference is only relevant for non-local bindings: those
which are neither global nor created locally in the scope

Static (lexical) scoping

 The bindings between names and objects can be
determined by examination of the program text

* Scope rules of the language define the scope of
bindings

— Early Basic: all variables are global and visible everywhere
— Fortran 77:

» scope of local variables limited to the subroutine (unless “save”-
ed, like “static” in C);

* scope of global variable is the whole program text unless hidden
— Algol 60, Pascal, Ada, ... : allow nested subroutine
definitions
— Java, ... : allow nested classes
* Adopt the closest nested scope rule

Closest Nested Scope Rule

procedure P1(Al1l:T1)

var X:real;

procedure P2 (A2:T2);

 To find the object

rocedure P3(A3:T3); .
procedure PS{RI:T) referenced by a given
begin Nname:

(* body of P3: P3,A3,P2,A2,X of P1,P1,Al are visible *) — Look for a declaration in
end; \

L. the current innermost
begin scope

(* body of P2: P3,P2,A2,X of P1,P1,Al are visible ¥*) - Ifthereisru)ne,locﬂ<for
end; R a declaration in the
procedure P4 (A4:T4) immediately

function F1(A5:T5) :T6; surroundmg SCOpE, etc.

var X:integer; ° Built_ins Or
begin predefined objects as
(* body of F1: X of F1,F1,A5,P4,A4,P2,P1,Al are visible *) deﬁned in Outermost
d;
= scope, external to the
begin “global” one
(* body of P4: F1,P4,A4,P2,X of P1,P1,Al are visible *)]
end: — 1/0O routines,
... mathematical functions
begin

(* body of P1: X of P1,P1,Al1,P2,P4 are visible ¥*)
end

Static Scope Implementation
with Static Links

Access to global variable: compiled using constant address

Access to local variable: compiled using frame pointer (stored in a
register) and statically known offset: <offset> (FP)

Access to nonlocal variable?

Scope rules are designed so that we can only refer to variables that

are alive: the variable must have been stored in the activation
record of a subroutine

If a variable is not in the local scope, we are sure there is an

activation record for the surrounding scope already allocated on
the stack:

— The current subroutine can only be called when it was visible

— The current subroutine is visible only when the surrounding scope is
active

Each frame on the stack contains a static link pointing to the frame
of the static parent

Nesting

Example Static Links

Cells
A celtsE
E cettsB
B cualls D

Steick freames

C
static link —

D
static link —

B

static link —

v

E
static link —

D callsC)

A

Subroutines C and D are
declared nested in B

— B is static parent of Cand D

B and E are nested in A
— A is static parent of Band E

The fp points to the frame
at the top of the stack to
access locals

The static link in the frame
points to the frame of the
static parent

A Typical Calling Sequence

e The caller

Saves (in the dedicated area in its activation record) any registers
whose values will be needed after the call

Computes values of actual parameters and moves them into the stack
or registers

Computes the static link and passes it as an extra, hidden argument

Uses a special subroutine call instruction to jump to the subroutine,
simultaneously passing the return address on the stack or in a register

* Inits prologue, the callee

allocates a frame by subtracting an appropriate constant from the sp
saves the old fp into the stack, and assigns it an appropriate new value

saves any registers that may be overwritten by the current routine
(including the static link and return address, if they were passed in

registers)

A Typical Calling Sequence (cont’d)

e After the subroutine has completed, the callee

— Moves the return value (if any) into a register or a
reserved location in the stack

— Restores registers if needed
— Restores the fp and the sp
— Jumps back to the return address

* Finally, the caller
— Moves the return value to wherever it is needed
— Restores registers if needed

Static Chains

How do we access non-local objects?

The static links form a static chain, which is a
linked list of static parent frames

When a subroutine at nesting level j has a
reference to an object declared in a static parent
at the surrounding scope nested at level k, then
j-k static links form a static chain that is traversed
to get to the frame containing the object

The compiler generates code to make these
traversals over frames to reach non-local objects

Nesting

Example Static Chains

v

Steick freames
C
fp—™ static link —
D
static link —
B
static link —
Culls
R
A cullsE E
static link —
E cultsB
B cullsD A

D callsC)

Subroutine A is at nesting level 1
and C at nesting level 3

When C accesses an object of A, 2
static links are traversed to get to
A's frame that contains that
object

38

Displays

Access to an object in a scope k levels out
requires that the static chain be dereferenced k
times.

An object k levels out will require kK + 1 memory
accesses to be loaded in a register.

This number can be reduced to a constant by use
of a display, a vector where the k-th element
contains the pointer to the activation record at
nesting level k that is currently active.

Faster access to non-local objects, but
bookeeping cost larger than that of static chain

