Lesson 17

• Loops in Control Flow Graphs
 – Convergence speed of data-flow analysis
• Region based Data-Flow analysis
• Symbolic analysis
Determining Loops in Flow Graphs: Dominators

• **Dominator**: \(d \text{ dom} \ n \)

 – Node \(d \) of a CFG dominates node \(n \) if every path from the entry node to \(n \) goes through \(d \)

 – The loop entry dominates all nodes in the loop

• The **immediate dominator** \(m \) of a node \(n \) is the last dominator of \(n \) on any path from the initial node to \(n \)

 – If \(d \neq n \) and \(d \text{ dom} \ n \) then \(d \text{ dom} \ m \)

• Since each node has a unique **immediate dominator**, dominators form a tree
Dominator Tree of a CFG
Data-Flow Analysis for Dominators

• The set of dominators for each node n, $D(n)$, can be computed with dataflow analysis

• Fact: $d \, \text{dom} \, n$ iff $d = n$ or $d \, \text{dom} \, m$ for all m in $\text{pred}(n)$
 – Direction: $forwards$
 – Semilattice: powerset of CFG nodes
 – Transfer function: $f_{B}(x) = x \cup \{B\}$
 – Meet operator: intersection ($must$)
 – Boundary: $\text{OUT}[ENTRY] = \{ENTRY\}$
 – Initialization: $\text{OUT}[B] = \text{all Nodes}$
Natural Loops

• A *back edge* in a CFG is an edge $a \rightarrow b$ where b dominates a

• A *natural loop*:
 – has a single-entry node d, the *header*, which dominates all nodes in the loop
 – has a *back edge* that enters node d

• Given a back edge $n \rightarrow d$
 – Its *natural loop* consists of d plus the nodes that can reach n without going through d
 – The *loop header* is node d
Reducible Flow Graphs

• A flow graph is *reducible* if and only if deleting all back edges the resulting graph is acyclic.

• **We consider only CFGs which are reducible.**

Example of a reducible CFG

Example of a nonreducible CFG
(not a natural loop: no back edge to dominator 1)
Natural Inner/Outer Loops

• In reducible CFGs, unless two loops have the same header, they are disjoint or one is nested within the other
• A nested loop is an \textit{inner loop} if it contains no other loops
• A loop is an \textit{outer loop} if it is not contained within another loop
Natural Inner/Outer Loops Example

CFG

Dominator tree

Natural loop for 1 \textit{dom} 9

Natural loop for 3 \textit{dom} 4

Natural loop for 4 \textit{dom} 7

Natural loop for 7 \textit{dom} 10

Natural loop for 3 \textit{dom} 8

CFG
Depth of a Control Flow Graph

- Depth: *largest number of back edges in any acyclic path in the graph*
- Intuition: not larger than the maximal nesting of loops
Speed of convergence of data-flow analysis

• Maximum number of iterations: (height of the lattice) \(x \) (number of nodes)

• If value of interest can be propagated along acyclic path (like for *reaching definitions, available expressions, live variables*), few passes are sufficient in general, depending on number of loop nesting (typically, depth of CFG + 1).

• Otherwise, several iterations in loops might be needed: eg. constant folding

```
L:  x = y;
y = z;
z = 1;
goto L
```
Region-Based Analysis

• In dataflow analysis, transfer functions are associated with basic blocks
• Here we associate them with regions, which provide a hierarchical view on the program
• Proceeds from smaller to larger regions, up to entire procedures
• Need more algebraic structure:
 – Semilattice of values
 – Semilattice of transfer functions with meet, composition and closure operator
Regions

• A *region* is a portion of the flow graph with a single entry point.
 – A single statement of a high-level language is a region
 – Each block or other form of statement nesting is a region
• A *region* is a collection of nodes N and edges E such that
 – N has a dominator h
 – No node external of N can reach a node m in N without passing through h
 – E contains all edges between nodes in N (but, possibly, for some to h)
• Note: *natural loops* are regions, but regions may not contain loops
Region hierarchies

• Assumption: the CFG is reducible (thus natural loops are disjoint or nested)

• Building the region hierarchy for the CFG:
 – Every block is a leaf region
 – For each natural loop L, starting from the innermost, replace the body (all nodes and edges but for back edges to the header) of L with a new node representing a region R. All edges from L become edges from R, possibly loops. R is a body region.
 – Construct the loop region R', that is identical to R but without the loop: it represents the whole L
 – Finally construct one region for the resulting acyclic flow graph, if needed
Example: the region hierarchy of a CFG
Region based analysis: idea

• We define transfer functions for regions, exploiting the hierarchy

• One transfer function for each region R and subregion R': $f_{R, \text{IN}[R']}$ summarizes the effect of all possible paths from the entry of R to R'.

• One transfer function for each exit block B in R: $f_{R, \text{OUT}[B]}$ summarizes all paths from the entry of R to the exit of B.

• Move upwards:
 – For leaf regions, $f_{B, \text{IN}[B]}$ is the identity and $f_{B, \text{OUT}[B]}$ is the transfer function of the block
 – For body regions, they are an acyclic graph of subregions: compose the transfer functions in topological order (see later)
 – For loop regions, one has to take into account only the back edges to the header (see later)

• For the data-flow values, proceed from the top region to the leaves. Compute values at entry, then to the entry of sub regions, and so on.
Needed properties of transfer functions

• **Examples from reaching definitions:**
 \[f(x) = \text{gen} \cup (x - \text{kill}) \]

• **Composition**, for block/region sequences
 \[
 f_2 \circ f_1(x) = \text{gen}_2 \cup \left((\text{gen}_1 \cup (x - \text{kill}_1)) - \text{kill}_2 \right) \\
 = (\text{gen}_2 \cup (\text{gen}_1 - \text{kill}_2)) \cup (x - (\text{kill}_1 \cup \text{kill}_2))
 \]

• **Meet**, to combine transfer function along different paths to the same point
 \[
 (f_1 \land f_2)(x) = f_1(x) \land f_2(x) \\
 = (\text{gen}_1 \cup (x - \text{kill}_1)) \cup (\text{gen}_2 \cup (x - \text{kill}_2)) \\
 = (\text{gen}_1 \cup \text{gen}_2) \cup (x - (\text{kill}_1 \cap \text{kill}_2))
 \]
Needed properties of transfer functions

- **Closure** is needed for loops. Represents the effect of going around the cycle any number of times

\[f^* = I \land \left(\bigwedge_{n>0} f^n \right). \]

- For reaching definitions:

\[
\begin{align*}
f^2(x) &= f(f(x)) \\
&= \left(\text{gen} \cup ((\text{gen} \cup (x - \text{kill})) - \text{kill}) \right) \\
&= \text{gen} \cup (x - \text{kill})
\end{align*}
\]

\[
\begin{align*}
f^3(x) &= f(f^2(x)) \\
&= \text{gen} \cup (x - \text{kill})
\end{align*}
\]

\[
\begin{align*}
f^*(x) &= I \land f^1(x) \land f^2(x) \land \ldots \\
&= x \cup (\text{gen} \cup (x - \text{kill})) \\
&= \text{gen} \cup x
\end{align*}
\]
Composing transfer functions in body regions

• If R is a body region:

1) for (each subregion S immediately contained in R, in topological order) {

2) $f_{R,\text{IN}[S]} = \bigwedge$ predecessors B in R of the header of S $f_{R,\text{OUT}[B]}$;

/* if S is the header of region R, then $f_{R,\text{IN}[S]}$ is the meet over nothing, which is the identity function */

3) for (each exit block B in S)

4) $f_{R,\text{OUT}[B]} = f_{S,\text{OUT}[B]} \circ f_{R,\text{IN}[S]}$;

}
Region-based analysis of reaching definitions

\[d_1: i = m-1 \]
\[d_2: j = n \]
\[d_4: i = i+1 \]
\[d_5: a = u2 \]
\[d_6: j = u3 \]

Transfer Function

	\(f_{R_6, \text{IN}[R_2]} \)	\(f_{R_6, \text{OUT}[R_2]} \)	\(f_{R_6, \text{IN}[R_3]} \)	\(f_{R_6, \text{OUT}[R_3]} \)	\(f_{R_6, \text{IN}[R_4]} \)	\(f_{R_6, \text{OUT}[R_4]} \)	\(f_{R_7, \text{IN}[R_6]} \)	\(f_{R_7, \text{OUT}[R_6]} \)	\(f_{R_7, \text{IN}[R_8]} \)	\(f_{R_8, \text{OUT}[R_8]} \)	\(f_{R_8, \text{IN}[R_1]} \)	\(f_{R_8, \text{OUT}[R_1]} \)	\(f_{R_8, \text{IN}[R_7]} \)	\(f_{R_8, \text{OUT}[R_7]} \)	\(f_{R_8, \text{IN}[R_5]} \)	\(f_{R_8, \text{OUT}[R_5]} \)	\(\emptyset \)	
\(R_6 \)	\(I \)	\(f_{R_2, \text{OUT}[R_2]} \) \(f_{R_6, \text{IN}[R_2]} \)	\(f_{R_6, \text{OUT}[R_2]} \)	\(f_{R_6, \text{IN}[R_3]} \)	\(f_{R_6, \text{OUT}[R_3]} \)	\(f_{R_6, \text{IN}[R_4]} \)	\(f_{R_6, \text{OUT}[R_4]} \)	\(f_{R_7, \text{IN}[R_6]} \)	\(f_{R_7, \text{OUT}[R_6]} \)	\(f_{R_7, \text{IN}[R_8]} \)	\(f_{R_8, \text{OUT}[R_8]} \)	\(f_{R_8, \text{IN}[R_1]} \)	\(f_{R_8, \text{OUT}[R_1]} \)	\(f_{R_8, \text{IN}[R_7]} \)	\(f_{R_8, \text{OUT}[R_7]} \)	\(f_{R_8, \text{IN}[R_5]} \)	\(f_{R_8, \text{OUT}[R_5]} \)	\(\emptyset \)
\(R_7 \)	\(\emptyset \)																	
\(R_8 \)	\(\emptyset \)																	
Composing transfer functions in loop regions

• If R is a loop region:

1) let S be the body region immediately nested within R; that is, S is R without back edges from R to the header of R;
2) $f_{R,\text{IN}[S]} = (\bigwedge\text{predecessors } B \text{ in } R \text{ of the header of } S \ f_{S,\text{OUT}[B]})^*$;
3) for (each exit block B in R)
4) $f_{R,\text{OUT}[B]} = f_{S,\text{OUT}[B]} \circ f_{R,\text{IN}[S]}$;

• $f_{R,\text{IN}[S]}$ represents the effect of executing any path from the entry of R to the entry of S, after executing any number of times the loop (possibly 0)
Computing data-flow values in a top-down pass

- The transfer functions associated with regions are used to compute values at the beginning of each region:

 (a) \(\text{IN}[R_n] = \text{IN}[\text{ENTRY}] \).

 (b) For each region \(R \) in \(\{R_1, \ldots R_{n-1}\} \), in the top-down order, compute \(\text{IN}[R] = f_{R', \text{IN}[R]}(\text{IN}[R']) \), where \(R' \) is the immediate enclosing region of \(R \).
The reaching definition running example

\[
\begin{align*}
R_8 & \rightarrow R_1 \\
R_6 & \rightarrow R_2\rightarrow R_3\rightarrow R_4\rightarrow R_5
\end{align*}
\]

Values computed by Region Based reaching definition analysis
Region-Based Symbolic Analysis

• The analysis identifies program variables whose value can be expressed as affine expressions (~ linear combinations) of certain reference variables, and it returns such expressions

• Reference variables can be
 – loop control variables
 – variables holding values returned by functions or read from input

• Affine expressions can also refer to iteration counts

• Induction variables are those expressible as $a*i + b$, with $i =$ count of iterations
Symbolic Analysis: Motivations

• The identification of induction variables and of enables various kinds of optimizations
 – Values can be computed with addition or shift (not multiplication)
 – Access to array elements can be parallelized if they are distinct
 – Loop invariants and constants can be identified as degenerate affine expression over loop indexes

1) \(x = \text{input}(); \)
2) \(y = x-1; \)
3) \(z = y-1; \)
4) \(A[x] = 10; \)
5) \(A[y] = 11; \)
6) \(\text{if} \ (z > x) \)
7) \(z = x; \)

• \(x \) only reference variable
• With symbolic analysis we learn that \(y = x-1 \) and \(z = x-2 \)
• \textit{Thus the assignments to} \(A \) \textit{are at distinct locations}
• \textit{And the last statement is never executed}
Sample program and corresponding CFG (with regions, after some transformations)

1) \(a = 0; \)
2) \(\text{for } (f = 100; f < 200; f++) \) {
 3) \(a = a + 1; \)
 4) \(b = 10 \times a; \)
 5) \(c = 0; \)
 6) \(\text{for } (g = 10; g < 20; g++) \) {
 7) \(d = b + c; \)
 8) \(c = c + 1; \)
 }

- \(f \) and \(g \) are inductive variables.
- Can be expressed as
 - \(f = i + 99 \)
 - \(g = j + 9 \)
 with \(i, j \) iteration counters

- The control variables \(f \) and \(g \) are replaced by iteration counters
- \(for \) loops are transformed in \textit{repeat until
Data-flow analysis: the domain

• **Domain** of data-flow values: the map lattice
 \((Vars \rightarrow AffExp, \wedge_s)\) of *Symbolic maps*, where
 – \(Vars\) is the set of variable of the program
 – \((AffExp, \wedge_s)\) is the flat semilattice of all affine expressions of reference variables with NAA as bottom (representing “non-affine expression”)

• By definition of *map lattice* we have that
 – The meet is defined by \((f \wedge f')(x) = f(x) \wedge f'(x)\)
 – The ordering is \(f \leq f' \iff \forall x, f(x) \leq f'(x)\)
 – The bottom value is the map mapping all variables to NAA
Data-flow analysis:
Transfer functions of statements

• Transform a symbolic map, according to the semantics of the statement

1. If s is not an assignment statement, then f_s is the identity function.
2. If s is an assignment statement to variable x, then

$$f_s(m)(x) = \begin{cases}
m(v) & \text{for all variables } v \neq x \\
c_0 + c_1 m(y) + c_2 m(z) & \text{if } x \text{ is assigned } c_0 + c_1 y + c_2 z, \\
& (c_1 = 0, \text{ or } m(y) \neq \text{NAA}), \text{ and} \\
& (c_2 = 0, \text{ or } m(z) \neq \text{NAA}) \\
\text{NAA} & \text{otherwise.}
\end{cases}$$

"$c_0 + c_1 y + c_2 z$" represents any affine expression involving variables of the program.
Data-flow analysis:
Composition of transfer functions

• Standard composition of linear combinations, if defined, otherwise NAA values are propagated

1. If \(f_2(m)(v) = \text{NAA} \), then \((f_2 \circ f_1)(m)(v) = \text{NAA} \).

2. If \(f_2(m)(v) = c_0 + \sum_i c_i m(v_i) \), then

\[
(f_2 \circ f_1)(m)(v) = \begin{cases}
\text{NAA,} & \text{if } f_1(m)(v_i) = \text{NAA for some } i \neq 0, c_i \neq 0 \\
c_0 + \sum_i c_i f_1(m)(v_i) & \text{otherwise}
\end{cases}
\]
Region Based Analysis: meet and closure of transfer functions

- For Region Based Analysis we should define the *meet* and *closure* of transfer functions

- **Meet**: The value of a variable for the meet of two functions is NAA unless it has the same value for both functions:

\[
(f_1 \land f_2)(m)(v) = \begin{cases}
 f_1(m)(v) & \text{if } f_1(m)(v) = f_2(m)(v) \\
 \text{NAA} & \text{otherwise}
\end{cases}
\]

- **Closure**: Given a symbolic map \(m \) and a transfer function \(f \) (representing a single execution of a loop) we can summarize the effect of 0 or any number of execution of a loop only if \(m \) is loop invariant:

\[
f^*(m)(v) = \begin{cases}
 m(v) & \text{if } f(m)(v) = m(v) \\
 \text{NAA} & \text{otherwise}
\end{cases}
\]
Region Based Analysis: closure is not enough

• For symbolic analysis, the closure operator on transfer functions, summarizing 0 or any number of execution of a loop is not informative enough
 – The symbolic map needs to be parametrized by the number of times a loop is executed
 – When the loop terminates, the number of iterations is used to determine the value of induction variables after the loop

• We need to compute the effect of composing a transfer function g (the effect of one iteration) a fixed number of times: $g^0 = I, g^{i+1} = g \cdot g^i$

• Therefore we introduce parametrized (transfer) function composition
Region Based Analysis: parametrized function composition

- For a transfer function g representing the execution of one cycle, we determine g^i for all $i >= 0$
- Potential induction variables are of three kinds:
 1. if $g(m)(x) = m(x) + c$ with c constant, then $g^i(m)(x) = m(x) + c$ i [x is a basic induction variable]
 2. if $g(m)(x) = m(x)$, then $g^i(m)(x) = m(x)$ [x is a symbolic constant]
 3. if $g(m)(x) = c_o + c_1 m(x_1) + ... + c_n m(x_n)$ where each x_k is basic induction variable or symbolic constant, then $g^i(m)(x) = c_o + c_1 g^i(m)(x_1) + ... + c_n g^i(m)(x_n)$ [x is a (non basic) induction variable]
 4. In all other cases $g^i(m)(x) = NAA$
Region Based Symbolic Analysis: the modified algorithm

• The algorithm is still made of two passes:
 – A bottom-up pass to compute the transfer functions for all regions
 – A top-down pass to compute the symbolic map at the entry of each region

• But for each loop region R and body sub-region S, instead of $f_{R,IN[S]}$ (representing the effect of executing any number of times the loop) one computes $f_{R,i,IN[S]}$ (representing the effect of executing exactly i times the loop)

$$f_{R,i,IN[S]} = \left(\bigwedge_{\text{predecessors } B \text{ in } R \text{ of the header of } S} f_{S,OUT[B]} \right)^{i-1}$$
Region Based Symbolic Analysis: the modified algorithm (2)

- If the number of iterations of a loop is known, the summary of the region is computed by replacing \(i \) with the actual count.
- In the top-down pass \(f_{R,i,\text{IN}[S]} \) is used to compute the symbolic map at the entry of the \(i \)-th iteration of a loop.
- To avoid that NAA variables penetrate into inner loops, if \(m(v) \) is used in an assignment in region \(R \) but \(m(v) = \text{NAA} \) at the entry of \(R \), the assignment \(t = v \) is added, and \(m(v) \) is replaced by \(t \) everywhere. Example:

```c
for (i = 1; i < n; i++) {
    a = input();
    for (j = 1; j < 10; j++) {
        a = a - 1;
        b = j + a;
        a = a + 1;
    }
}
```

```c
for (i = 1; i < n; i++) {
    a = input();
    t = a;
    for (j = 1; j < 10; j++) {
        a = t - 1;
        b = t - 1 + j;
        a = t;
    }
}
```
Sample program and corresponding CFG (with regions, after some transformations)

1) a = 0;
2) for (f = 100; f < 200; f++) {
3) a = a + 1;
4) b = 10 * a;
5) c = 0;
6) for (g = 10; g < 20; g++) {
7) d = b + c;
8) c = c + 1;
9) }

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>$m(a)$</td>
<td>$m(b)$</td>
<td>$m(c)$</td>
</tr>
<tr>
<td>IN$[B_1]$</td>
<td>NAA</td>
<td>NAA</td>
<td>NAA</td>
</tr>
<tr>
<td>OUT$[B_1]$</td>
<td>0</td>
<td>NAA</td>
<td>NAA</td>
</tr>
<tr>
<td>IN$[B_2]$</td>
<td>$i - 1$</td>
<td>NAA</td>
<td>NAA</td>
</tr>
<tr>
<td>OUT$[B_2]$</td>
<td>i</td>
<td>$10i$</td>
<td>0</td>
</tr>
<tr>
<td>IN$[B_3]$</td>
<td>i</td>
<td>$10i$</td>
<td>$j - 1$</td>
</tr>
<tr>
<td>OUT$[B_3]$</td>
<td>i</td>
<td>$10i$</td>
<td>j</td>
</tr>
<tr>
<td>IN$[B_4]$</td>
<td>i</td>
<td>$10i$</td>
<td>j</td>
</tr>
<tr>
<td>OUT$[B_4]$</td>
<td>$i - 1$</td>
<td>$10i - 10$</td>
<td>j</td>
</tr>
</tbody>
</table>
Result of Region Based Analysis

1) $a = 0;$
2) for ($f = 100; f < 200; f++$) {
3) $a = a + 1;$
4) $b = 10 * a;$
5) $c = 0;$
6) for ($g = 10; g < 20; g++$) {
7) $d = b + c;$
8) $c = c + 1;$
7) }
8) }

1) $a = 0;$
2) for ($i = 1; i <= 100; i++$) {
3) $a = i;$
4) $b = 10*i;$
5) $c = 0;$
6) for ($j = 1; j <= 10; j++$) {
7) $d = 10*i + j - 1;$
8) $c = j;$
7) }
8) }

Modified program

<table>
<thead>
<tr>
<th>line</th>
<th>var</th>
<th>$i = 1$</th>
<th>$i = 2$</th>
<th>$1 \leq i \leq 100$</th>
<th>$i = 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>a</td>
<td>1</td>
<td>2</td>
<td>i</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>10</td>
<td>20</td>
<td>$10i$</td>
<td>1000</td>
</tr>
<tr>
<td>7</td>
<td>d</td>
<td>10,...,19</td>
<td>20,...,29</td>
<td>$10i,...,10i+9$</td>
<td>1000,...,1009</td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>1,...,10</td>
<td>1,...,10</td>
<td>1,...,10</td>
<td>1,...,10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m</th>
<th>$m(a)$</th>
<th>$m(b)$</th>
<th>$m(c)$</th>
<th>$m(d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$IN[B1]$</td>
<td>NAA</td>
<td>NAA</td>
<td>NAA</td>
<td>NAA</td>
</tr>
<tr>
<td>$OUT[B1]$</td>
<td>0</td>
<td>NAA</td>
<td>NAA</td>
<td>NAA</td>
</tr>
<tr>
<td>$IN[B2]$</td>
<td>$i - 1$</td>
<td>NAA</td>
<td>NAA</td>
<td>NAA</td>
</tr>
<tr>
<td>$OUT[B2]$</td>
<td>i</td>
<td>$10i$</td>
<td>0</td>
<td>NAA</td>
</tr>
<tr>
<td>$IN[B3]$</td>
<td>i</td>
<td>$10i$</td>
<td>$j - 1$</td>
<td>NAA</td>
</tr>
<tr>
<td>$OUT[B3]$</td>
<td>i</td>
<td>$10i$</td>
<td>j</td>
<td>$10i + j - 1$</td>
</tr>
<tr>
<td>$IN[B4]$</td>
<td>i</td>
<td>$10i$</td>
<td>j</td>
<td>$10i + j - 1$</td>
</tr>
<tr>
<td>$OUT[B4]$</td>
<td>$i - 1$</td>
<td>$10i - 10$</td>
<td>j</td>
<td>$10i + j - 11$</td>
</tr>
</tbody>
</table>

Sequence of values for the variables

Symbolic maps