Principles of Programming Languages http://www.di.unipi.it/~andrea/Didattica/PLP-16/ Prof. Andrea Corradini Department of Computer Science, Pisa

Lesson 16

• The Dataflow framework for Global Analysis

The Dataflow Framework

- We will present a simple iterative algorithm to find the solution of a given dataflow problem.
- Main issues:
 - How do we know that this algorithm terminates?
 - How precise is the solution produced by this algorithm?
- We provide a formal ground to the theory using the algebraic notion of *semilattice*

How do we know that liveness terminates?

• Given a control flow graph G, find, for each edge E in G, the set of variables alive at E.

Example of Liveness Problem

• Solution of the liveness analysis for the sample program

Dataflow Equations for Liveness

p: v = E

 $IN(p) = (OUT(p) \setminus \{v\}) \cup vars(E)$

 $OUT(p) = \bigcup IN(p_s), p_s \in succ(p)$

- The algorithm that solves liveness keeps iterating the application of these equations, until we reach a *fixed point*.
 - If *f* is a function, then *p* is a **fixed point** of f if *f(p) = p*.
- The key observation is that none of these equations take information away of its result.
 - The result that they produce is always the same, or larger than the previous result (*monotonicity*)
- Given this property, we eventually reach a fixed point, because the INs and OUTs sets cannot grow forever.

(Meet) Semilattices

- All dataflow analyses map program points to elements of algebraic structures called *semilattices*.
- A (meet) semilattice $L = (S, \leq, \land, T)$ is formed by:
 - A set S
 - A partial order \leq between elements of S.
 - A greatest element T (top)
 - A binary **meet** operator Λ
- The meet has to satisfy
 - $-e_1 \wedge e_2 \leq e_1$ and $e_1 \wedge e_2 \leq e_2$
 - − For any e' ∈ S, if e' ≤ e_1 and e' ≤ e_2 , then e' ≤ $e_1 \land e_2$
- It follows that $x \le y$ if, and only if $x \land y = x$
- Thus we could also define a semilattice omitting ≤

Properties of Meet

- Meet is idempotent: $x \land x = x$
- Meet is commutative: $y \land x = x \land y$
- Meet is associative: $x \land (y \land z) = (x \land y) \land z$
- The top element T is the unit: $(T \land x) = x$

By the above properties the meet can be extended to arbitrary finite subsets of S:

- $\land \{\} = T$
- $\Lambda \{s_1, ..., s_{n+1}\} = (\Lambda \{s_1, ..., s_n\}) \Lambda s_{n+1}$
- ΛX is the **greatest lower bound** of X, for $X \subseteq S$

Semilattice structures on powersets

- The four examples of dataflow analysis that we have seen all use *subsets* of a suitable set as values for the INs and the OUTs of program points (sets of variables, of expressions, or of definitions)
- Some dataflow analyses, such as *live variables*, use the *union* of sets for joining information
- Others, such as *available expressions*, use the *intersection of sets* for joining information
- As a matter of fact, the powerset of a set is a *lattice*, and depending on our needs we can consider it as a *meet semilattice* in two different ways

The Semilattice of Liveness Analysis

var x,y,z;

x = input;

while (x > 1) {

y = x / 2;

if (y > 3)

x = x - y;

z = x - 4;

if (z > 0)

x = x / 2;

z = z - 1;

Given the program on the left, we consider the semilattice
 L = (P^{x, y, z}, ⊇, ∪, {})

- The **partial order** is set inclusion, i.e. $A \le B$ iff $A \supseteq B$ for all $A, B \subseteq \{x, y, z\}$
- The meet operator is union
- The **top element** is the empty set The expected properties hold:
- $A \le B$ if and only if $A \land B = A$ - $A \supseteq B$ if and only if $A \cup B = A$
- Top is the unit of meet: $(T \land A) = A$ - {} $\cup A = A$

output x;

}

The Semilattice of Available Expressions

• Given the program on the left, we have the semilattice

 $L = (P^{\{a+b, a^{*}b, a+1\}}, \subseteq, \cap, \{a+b, a^{*}b, a+1\})$

- The partial order is set containement,
 i.e. A ≤ B iff A ⊆ B for all A,B ⊆ D
- The meet operator is intersection
- The top element is D
- ⁾ The expected properties hold:
 - $A \le B$ if and only if $A \land B = A$
 - $A \subseteq B$ if and only if $A \cap B = A$
 - Top is the unit of meet: $(T \land A) = A$ - D \circ A = A for all A \subset D

Lattice Diagrams

- We can represent the partial order between the elements of a (semi)lattice as a *Hasse Diagram*.
 - If there exists a path in this diagram, from an element e_1 to another element e_2 , then we say that $e_1 \le e_2$
 - The greatest element is at the top

Mapping Program Points to Lattice Points

Data-Flow Analysis Framework

- A Data-Flow Analysis Framework (D, S, ∧, F) consists of:
 - A direction D in {FORWARDS, BACKWARDS}
 - A domain of values (S, Λ) which forms a meet semilattice
 - A family *F* of *transfer functions* from S to S, including the identity function and closed under composition

Monotone Transfer Functions

- Given family of functions F over a semilattice S (i.e. such that for all f ∈ F, f : S → S), these properties are equivalent:
 - Any element f ∈ F is monotonic, that is for all x ∈ S, y ∈ S, and f ∈ F, x ≤ z y implies f(x) ≤ f(y)For all x and y in S and f in F, $f(x \land y) ≤ f(x) \land f(y)$
- A dataflow analysis framework is **monotone** if all transfer functions *f* in *F* are monotonic
- It is **distributive** if for all f in F $f(x \land y) = f(x) \land f(y)$

Monotone Transfer Functions

 It is easy to check that the transfer functions used in the liveness analysis problem are monotonic:

p: v = E

 $IN(p) = (OUT(p) \setminus \{v\}) \cup vars(E)$

 $OUT(p) = \bigcup IN(p_s), p_s \in succ(p)$

• And the same for those used for available expressions: p: v = E

 $IN(p) = \bigcap OUT(p_s), p_s \in pred(p)$

 $OUT(p) = (IN(p) \cup \{E\}) \setminus \{Expr(v)\}$

 Often basic blocks are annotated with values instead of individual statements: OUT[B] and IN[B]

Data-Flow Iterative Algorithm [Forward]

- Given:
 - a data-flow graph with ENTRY and EXIT nodes
 - one transfer function f_B for each basic block B
 - A "boundary condition" v_{ENTRY}
- Computes values IN[B] and OUT[B] for all blocks
 - 1) OUT[ENTRY] = v_{ENTRY} ;
 - 2) for each block B, but ENTRY {
 - 3) OUT[B] = T }
 - 4) while (changes to any OUT occur) {
 - 5) for (each basic block B other than ENTRY){
 - 6) $IN[B] = \Lambda_{P \text{ a predecessor of } B} OUT[P];$
 - 7) OUT[B] = $f_B(IN[B]); \}$

Example: Dataflow analysis for Reaching Definitions

- Each point in the program is associated with the set of definitions that are active at that point
- Semilattice:
 - Powerset of definitions (assignments)
 - Meet operator: union. Top element: empty set
- The *transfer function* for a block kills definitions of variables that are redefined in the block and adds definitions of variables that occur in the block: $f_B(x) = gen_B U(x kill_B)$
- The confluence operator is union.

Termination

The algorithm is ensured to terminate if

- The framework is monotonic
- The semilattice S has finite height
 - It is not possible to have an infinite chain of elements in *S*, e.g., $I_0 \le I_1 \le I_2 \le ...$ such that every element in this chain is different
 - Notice that the semilattice can still have an infinite number of elements.

Asymptotic Complexity of the Solver

- Assumption: a lattice of height H, and a program with B blocks.
- The IN/OUT set associated with a block can change at most H times; hence, the loop at line 4 iterates H*B times
- 2. The loop at line 5 iterates B times
- Each application of the meet operator, at line 6, can be done in O(H)
- A block can have B predecessors; thus, line 6 is O(H*B)
- By combining (1), (2) and (4), we have O(H*B*B*H*B) = O(H²*B³)

1: OUT[ENTRY] = v_{ENTRY}

- 2: for each block B, but ENTRY
- 3: OUT[B] = T
- 4: while (any OUT set changes)
- 5: for each block B, but ENTRY
- 6: $IN[B] = \Lambda_{p \in pred(B)}OUT[P]$
- 7: $OUT[B] = f_b(IN[B])$

This is a pretty high complexity, yet most real-world implementations of dataflow analyses tend to be linear on the program size, in practice.

Constraint System and Fixed Point

- The application of a dataflow analysis framework to a Control Flow Graph determines a constraint system
 F(x₁, ..., x_n) = (F₁(x₁, ..., x_n), ..., F_n(x₁, ..., x_n))
 where the unknowns are the sets INs and OUTs
- The solution is a fixed point of *F*. i.e, a tuple of elements such that

$$F(x_1, ..., x_n) = (x_1, ..., x_n)$$

- The solution that we find with the iterative solver is the maximum fixed point of the constraint system, assuming monotone transfer functions, and a semilattice with meet operator of finite height
- Such a solution is *conservative*

Accuracy, Safeness, and Conservative Estimations

In the framework of static analysis:

- *Conservative*: refers to making safe assumptions when insufficient information is available at compile time, i.e. the compiler has to guarantee not to change the meaning of the optimized code
- *Safe*: (similar) the values computed by the analysis approximate the exact ones in a way that does not affect the meaning of the optimized code
- Accuracy: refers to the fact that more and better information enables more code optimizations

Example: Reaching Definitions

 What would be a solution that our iterative solver would produce for the reaching definitions problem in the program below?

Example: Reaching Definitions

 What would be a solution that our iterative solver would produce for the reaching definitions problem in the program below?

Example: Reaching Definitions

 What would be a solution that our iterative solver would produce for the reaching definitions problem in the program below?

The solution is conservative because the branch is always false. Therefore, the statement c = 3 can never occur, and the definition d_4 will never reach the end of the program.

More Intuition on MFP Solutions

Wrong Solutions: False Negatives

- It is ok if we say that a program does more than it really does.
 - This excess of information is usually called false positive
- The problem are the false negatives.
 - If we say that a program does not do something, and it does, we may end up pruning away correct behavior

The Ideal Solution

- The MFP solution fits the constraint system tightly, but it is a conservative solution.
 - What would be an ideal solution?
 - In other words, given a block B in the program, what would be an ideal solution of the dataflow problem for the IN set of B?
- The ideal solution computes dataflow information through each *possible path* from ENTRY to B, and then meets/joins this info at the IN set of B.
 - A path is possible if it is *executable*.

The Ideal Solution

- Each possible path P, e.g.: ENTRY $\rightarrow B_1 \rightarrow ... \rightarrow B_K \rightarrow B$ gives us a transfer function f_p , which is the composition of the transfer functions associated with each B_i .
- We can then define the ideal solution as:

IDEAL[B] = $\bigwedge_{p \text{ is a possible path from ENTRY to B}} f_p(v_{ENTRY})$

- Any solution that is smaller than ideal is wrong.
- Any solution that is larger is conservative.

The Meet over all Paths Solution

- Finding the ideal solution to a given dataflow problem is undecidable in general.
 - Due to loops, we may have an infinite number of paths.
 - Some of these paths may not even terminate.
- We define our meet over all paths (MOP) solution:

 $MOP[B] = \bigwedge_{p \text{ is a path from ENTRY to B}} f_p(v_{ENTRY})$

- Two natural questions:
 - Is MOP the solution that our iterative solver produces for a dataflow problem?
 - What is the difference between the ideal solution and the MOP solution?

Distributive Frameworks

 We say that a dataflow framework is distributive if, for all x and y in S, and every transfer function f in F we have that:

 $f(x \land y) = f(x) \land f(y)$

- The MOP solution and the solution produced by our iterative algorithm *are the same* if the dataflow framework is *distributive*.
- If the dataflow framework is not distributive, but is monotone, we still have that IN[B] ≤ MOP[B] for every block B
- Note: our four examples of data-flow analyses, e.g., liveness, availability, reaching defs and anticipability, are distributive. Let's see why....

Distributive Frameworks

Our analyses use transfer functions such as $f(x) = (x \setminus x_k) \cup x_g$. For instance, for liveness, if x = "v = E", then we have that $IN[x] = OUT[x] \setminus \{v\} \cup vars(E)$. So, we only need a bit of algebra:

$$f(x \land x') = ((x \land x') \land x_k) \cup x_g$$
(i)
= $((x \land x_k \land x' \land x_k)) \cup x_g$ (ii)
= $((x \land x_k) \cup x_g) \land ((x' \land x_k) \cup x_g)$ (iii)
= $f(x) \land f(x')$ (iv)

To see why (ii) and (iii) are true, just remember that in any of the four data-flow analyses, either Λ is \cap , or it is U.

Map Lattices

- If S is a set and L = $(T, \Lambda)^{\Diamond}$ is a meet semilattice, then the structure $L_s = (S \rightarrow T, \Lambda_s)$ is also a semilattice, which we call a *map semilattice*.
 - The domain is $S \rightarrow T$ (functions from S to T)
 - The meet is defined by $f \wedge f' = \lambda x.f(x) \wedge f'(x)$

• equivalently, $(f \wedge f')(x) = f(x) \wedge f'(x)$

- The ordering is $f \le f' \Leftrightarrow \forall x, f(x) \le f'(x)$

• A typical example of a map lattice is used in the constant propagation analysis.

⁴: This is set "T", not the symbol of "top"

Constant Propagation

- How could we optimize the program on the left?
- Which information would be necessary to perform this optimization?
- How can we obtain this information?

Constant Propagation

What is the semilattice that we are using in this example?

Constant Propagation

• We are using a map lattice, that maps variables to an element in the lattice L below:

How are the transfer functions, assuming a meet operator?

Constant Propagation: Transfer Functions

• The transfer function depends on the statement *p* that is being evaluated. I am giving some examples, but a different transfer function must be designed for every possible instruction in our program representation:

$$p: v = c$$

 $OUT(p) = \lambda x.x = v ? c : IN(p)(x)$
 $p: v = u$

How is the meet operator, e.g.,
$$\Lambda$$
, defined?

 $OUT(p) = \lambda x.x = v ? IN(p)(u) : IN(p)(x)$

p: v = t + u

 $a \cdot a = a$

 $IN(p) = \bigwedge OUT(p_s), p_s \in pred(p)$

The meet operator

\land	UNDEF	C ₁	NAC
UNDEF	UNDEF	C ₁	NAC
C ₂	C ₂	c₁∧c₂	NAC
NAC	NAC	NAC	NAC

If we have two constants, e.g., c_1 and c_2 , then we have that $c_1 \wedge c_2 = c_1$ if $c_1 = c_2$, and NAC otherwise

p:v=c

$$OUT(p) = \lambda x.x = v ? c : IN(p)(x)$$

p:v=u

 $OUT(p) ~=~ \lambda x.x = v ~?~ IN(p)(u) ~:~ IN(p)(x)$

p: v = t + u

_ _ _

 $IN(p) = \bigwedge OUT(p_s), p_s \in pred(p)$

Are these functions monotone?

- The constant propagation framework is monotone, but it is not distributive.
 - As a consequence, the MOP solution is more precise than the iterative solution.
- Consider this program:

- This program has only two paths, and throughout any of them we find that z is a constant.
 - Indeed, variables are constants along any path in this program.

What is the meet of the functions $\lambda v . v = x ? 3 : v = y ? 2 : v = z ? 5 : U$ and $\lambda v . v = x ? 2 : v = y ? 3 : v = z ? 5 : U?$

The meet of the functions $\lambda v \cdot v = x ? 3 : v = y ? 2 : v = z ? 5 : U$ and $\lambda v \cdot v = x ? 2 : v = y ? 3 : v = z ? 5 : U$ is the function: $\lambda v \cdot v = x ? N : v = y ? N : v = z ? 5 : U$, which, in fact, points that neither x nor y are constants past the join point, but z indeed is.

> How is the solution that our iterative dataflow solver produces for this example?

- The iterative algorithm applies the meet operator too early, before computations would take place.
 - This early evaluation is necessary to avoid infinite program paths, but it may generate imprecision

- If (A, Λ_A) and (B, Λ_B) are lattices, then a product lattice A×B has the following characteristics:
 - The domain is $A \times B$
 - The meet is defined by

(a, b) Λ (a', b') = (a Λ_A a', b Λ_B b')

- The ordering is $(a, b) \le (a', b') \Leftrightarrow a \le a'$ and $b \le b'$

The system of data-flow equations ranges over a product lattice:

$$F(x_1, ..., x_n) = (F_1(x_1, ..., x_n), ..., F_n(x_1, ..., x_n))$$

If every x_i is a point in a lattice L, then the tuple (x₁, ..., x_n) is a point in the product of n instances of the lattice L, e.g., (L¹ × ... × Lⁿ)

Let's show how this product lattice surfaces using the example on the right. What are the IN and OUT sets for liveness analysis for this example?


```
IN[d_0] = OUT[d_0] \setminus \{a\}
OUT[d_0] = IN[d_1]
IN[d_1] = OUT[d_1] \setminus \{b\}
OUT[d_1] = IN[d_2]
IN[d_2] = OUT[d_2] \cup \{a, b\}
OUT[d_2] = IN[d_3] \cup IN[d_4]
IN[d_3] = OUT[d_3] \cup \{a\}
OUT[d_3] = \{\}
IN[d_4] = OUT[d_4] \cup \{b\}
OUT[d_4] = \{\}
```

In order to reduce the equations, Let just work with OUT sets.


```
OUT[d_0] = OUT[d_1] \setminus \{b\}
OUT[d_1] = OUT[d_2] \cup \{a, b\}
OUT[d_2] = OUT[d_3] \cup \{a\} \cup OUT[d_4] \cup \{b\}
OUT[d_3] = \{\}
                       But, given that now we
OUT[d_4] = \{\}
                                                                      d_0: a = •
                       only have out sets, let's
                       just call each
                       constraint variable x<sub>i</sub>
                                                                      d_1: b = 0
\mathbf{x}_0 = \mathbf{x}_1 \setminus \{\mathbf{b}\}
x_1 = x_2 \cup \{a, b\}
                                                                     d_{2}: a > b?
x_2 = x_3 \cup x_4 \cup \{a, b\}
X_3 = \{\}
                                                                                                b
X_4 = \{\}
```


Dataflow analysis as solution of a constraint system

Which product lattice do we have in this equation?

On Partial-Redundancy Elimination

- Partial Redundancy Elimination is one of the most complex classic compiler optimizations.
 - Includes many dataflow analyses
 - Subsumes several compiler optimizations:
 - Common subexpression elimination
 - Loop invariant code motion
- Four steps "Lazy Code Motion" algorithm
 - Find blocks where evaluation of an expression can be anticipated (backwards) (Very Busy Expressions)
 - Check availability of expressions along all paths leading to a block needing it (forwards) (Available Expressions)
 - Postpone the expression as much as possible (forwards)
 - Eliminate assignments to temporaries that are used only once (backwards)

Properties of Lazy Code Motion

- Lazy Code Motion has the following properties:
 - All redundant computations of expressions that can be eliminated without code duplication are eliminated.
 - 2. The optimized program does not perform any computation that is not in the original program execution.
 - 3. Expressions are computed at the latest possible time.
 - That is why it is called *lazy*.