Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-16/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 16

 The Dataflow framework for Global Analysis

The Dataflow Framework

* We will present a simple iterative algorithm to
find the solution of a given dataflow problem.
* Main issues:

— How do we know that this algorithm terminates?
— How precise is the solution produced by this
algorithm?

 We provide a formal ground to the theory
using the algebraic notion of semilattice

How do we know that liveness terminates?

* Given a control flow graph G, find, for each edge E
in G, the set of variables alive at E.

y = x / 2 (2} —s vy > 3
A ~—
(7}
{2} e SRR
(23
\J -
X = 1nput (2} —s-x > 1 z = x -4
A
?
{7} {7} at
\J
v z > 0
var X, y, 2 output x {2} \{9}\
T | {2} x =x /
(2} (2} U
l v /{?}
@ z 1

Example of Liveness Problem

e Solution of the liveness analysis for the sample program

y = x/ 2 —{xy}—Yy >3

Y
(x} L S
{x}
\/ el
x = input {x}—>x > 1 o
A
() {x} o
\J
v z > 0
var x, VY, Z output x {x} \{x,z}
f | fx2) -
T {} ’ —
l l \/ /{X’Z}
z 1

@ z =

X

/

2

Dataflow Equations for Liveness

p:v=F
IN(p) = (OUT(p)\{v})U vars(E)

OUT(p) = JIN(ps),ps € succ(p)
* The algorithm that solves liveness keeps iterating the
application of these equations, until we reach a fixed point.
e |If fis afunction, then p is a fixed point of f if f(p) = p.

 The key observation is that none of these equations take
information away of its result.

* The result that they produce is always the same, or larger
than the previous result (monotonicity)

* Given this property, we eventually reach a fixed point,
because the INs and OUTs sets cannot grow forever.

(Meet) Semilattices

All dataflow analyses map program points to elements
of algebraic structures called semilattices.

A (meet) semilattice L= (S, <, A\, T) is formed by:
— AsetS

— A partial order < between elements of S.

— A greatest element T (top)

— A binary meet operator A
The meet has to satisfy

—e; Ne,<e; and e, Ae,<e,

— Foranye' €S,ife'<e;ande'<e, thene'<e, A e,
It follows that x<y if,andonlyif x A y=x
Thus we could also define a semilattice omitting <

Properties of Meet
* Meet isidempotent: x A x =x
* Meetis commutative:y A x=x Ay
* Meet is associative:x A (y Az)=(x Ay) Az
* The top element T is the unit: (T A x) =x

By the above properties the meet can be
extended to arbitrary finite subsets of S:

* A{}=T
 A{sy 5ot =(A{sy, s s.}) As .,
* AX is the greatest lower bound of X, for XES

Semilattice structures on powersets

The four examples of dataflow analysis that we have
seen all use subsets of a suitable set as values for the
INs and the OUTs of program points (sets of variables,
of expressions, or of definitions)

Some dataflow analyses, such as live variables, use the
union of sets for joining information

Others, such as available expressions, use the
intersection of sets for joining information

As a matter of fact, the powerset of a set is a lattice,
and depending on our needs we can consider it as a
meet semilattice in two different ways

The Semilattice of Liveness Analysis

var x,V,z; °
X = input;

while (x > 1) {

Given the program on the left, we
consider the semilattice
L=(Povd, 2, U, {}

The partial order is set inclusion, i.e.
A<Biff A 2 Bforall AB & {x,, z}

The meet operator is union
The top element is the empty set

The expected properties hold:

y = x / 2;
if (y > 3)
°
X = X -V
°
z = x = 4
if (z > 0)
°
X =x / 2
z =z - 1

output x;

A<B if andonlyif AAB=A

— A=2Bifandonlyif AUB=A

Top is the unit of meet: (T A A) = A
— {} UA=A

The Semilattice of Available
Expressions

0 €

0 €

0 €

0 €

Given the program on the left, we have
the semilattice
L= (Plarb.a™atll ', {atb, a*b, a+1})

Let D = {a+b, a*b, a+1}

The partial order is set containement,
i.e. A<Biff A& BforallA,B & D

The meet operator is intersection
The top element is D

> ——@® The expected properties hold:

A<B if andonlyif AAB=A
— A S Bifandonlyif AnNB=A

Top is the unit of meet: (T A A) = A
— DN A=A forall ASD

Lattice Diagrams

* We can represent the partial order between the
elements of a (semi)lattice as a Hasse Diagram.

— If there exists a path in this diagram, from an element
e, to another element e,, then we say thate; <e,

— The greatest element is at the top

/{}\ /{adl_b)a*b,am\
{y}><{

>< z} {a+ba*b}><{a+ba—|—1}><{a*ba+1}

{33 y} {2} {y, 2} {a + b} {a b} {a+1}

~_] T~

{z,y,2}

{z}

Mapping Program Points to Lattice Points
®— var x,v,z,a,b

| Note: the semilattice is reversed
I here....
' s

z = a + b P 5
I n

fatb / I

| T] {a*b} tatl}

y = a * b /I _ /’ %
l) ///

{fa+b,a*b} __’%,:_/:_’: I

P T N ! ‘f"“‘>{a+b a*b! {atb,atl} {a*b, a+l}
—~>Yy > a + b e
|
fatby /
, ' / {atb, a*b, a+1}
fa+b a=a-+1 /'
| The solution of a data-flow problem
{ is @ mapping between program
points to lattice points.
X = a + b

Data-Flow Analysis Framework

* A Data-Flow Analysis Framework (D, S, /\, F) consists
of:

 Adirection D in {FORWARDS, BACKWARDS}

* A domain of values (S,/\) which forms a meet
semilattice

* A family F of transfer functions from S to S,
including the identity function and closed under
composition

Monotone Transfer Functions

e Given family of functions F over a semilattice S (i.e.
such that forallf € F,f:S = S), these properties
are equivalent:

— Any element f € F is monotonic, that is
forallx €S,y €S,andf € F,x<zyimplies f(x) <f(y)

— ForallxandyinSandfinF, f(xAy)<f(x)A f(y)

* A dataflow analysis framework is monotone if all
transfer functions f in F are monotonic

 Itis distributive if forall fin F f(x Ay) =f(x) A f(y)

Monotone Transfer Functions

It is easy to check that the transfer functions used in
the liveness analysis problem are monotonic:

p:v=~FE
IN(p) = (OUT(p)\{v})U vars(E)
OUT(p) = UIN(ps),ps € succ(p)
And the same for those used for available expressions:
p:v=FE
IN(p) = N OUT(ps),ps € pred(p)
OUT(p) = (IN(p)U{E})\ {Ezpr(v)}

Often basic blocks are annotated with values instead of
individual statements: OUT[B] and IN[B]

Data-Flow lterative Algorithm [Forward]

* Given:
— a data-flow graph with ENTRY and EXIT nodes
— one transfer function f, for each basic block B
— A “boundary condition” vgyry

e Computes values IN[B] and OUT|[B] for all blocks

1) OUT[ENTRY] = Veyrrys

2) for each block B, but ENTRY {

3) OUT[B] =T}

4) while (changes to any OUT occur) {

5) for (each basic block B other than ENTRY){
6) IN[B] = /\Pa predecessor of B OUT[P];

7) OUT[B] = f5(IN[B]); }}

Example: Dataflow analysis for
Reaching Definitions

Each point in the program is associated with the
set of definitions that are active at that point

Semilattice:
— Powerset of definitions (assignments)
— Meet operator: union. Top element: empty set
The transfer function for a block kills definitions

of variables that are redefined in the block and
adds definitions of variables that occur in the

block: fa(x) =genz U (x —kill,)
The confluence operator is union.

Termination

The algorithm is ensured to terminate if
 The framework is monotonic
* The semilattice S has finite height

— |t is not possible to have an infinite chain of
elementsin S, e.g., I,</, </, <...such that every
element in this chain is different

— Notice that the semilattice can still have an
infinite number of elements.

1.

Asymptotic Complexity of the Solver

Assumption: a lattice of height H, and a
program with B blocks.

The IN/OUT set associated with a
block can change at most H times;
hence, the loop at line 4 iterates H*B
times

The loop at line 5 iterates B times

Each application of the meet
operator, at line 6, can be done in
O(H)

A block can have B predecessors;
thus, line 6 is O(H*B)

By combining (1), (2) and (4), we have
O(H*B*B*H*B) = O(H2*B3)

1: OUT[ENTRY] = Veprry

2: for each block B, but ENTRY
3: OUTIB]=T

4: while (any OUT set changes)
5: for each block B, but ENTRY
6: IN[B] = A\ < preq(e)OUTIP]
7: OUT[B] = f,(IN[B])

This is a pretty high complexity, yet
most real-world implementations of
dataflow analyses tend to be linear on
the program size, in practice.

Constraint System and Fixed Point

The application of a dataflow analysis framework to a
Control Flow Graph determines a constraint system

Fx;,,x)=F(x; ..., x,), .o, F (X}, .0y X))
where the unknowns are the sets INs and OUTs
The solution is a fixed point of F. i.e, a tuple of
elements such that

Fx;, ..., x)=(x, ..., x,)
The solution that we find with the iterative solver is
the maximum fixed point of the constraint system,
assuming monotone transfer functions, and a
semilattice with meet operator of finite height

Such a solution is conservative

Accuracy, Safeness, and
Conservative Estimations

In the framework of static analysis:

e Conservative: refers to making safe assumptions
when insufficient information is available at compile
time, i.e. the compiler has to guarantee not to
change the meaning of the optimized code

e Safe: (similar) the values computed by the analysis
approximate the exact ones in a way that does not
affect the meaning of the optimized code

e Accuracy: refers to the fact that more and better
information enables more code optimizations

21

Example: Reaching Definitions

 What would be a solution that our iterative
solver would produce for the reaching definitions
problem in the program below?
@ ——d a=1
b

d,yb=2
d;: (a==b)?
d;.c=3 d;:c=4

N\

@<, printc

Example: Reaching Definitions

 What would be a solution that our iterative
solver would produce for the reaching definitions
problem in the program below?

@ ——d;a= @®——d: a=1

l [

d2 b=2 Wllwy.is this a’Z: b=2

solution too
l conservative? l{dl’ dyf
d;: (a==b)? d;: (a==Db)?

y {d;, dzi/ \id; d2}
d4: C= =4 d cC= d C=

ok *

ld, d, d \ ‘/é d,, ds}

N rint ¢

Example: Reaching Definitions

e What would be a solution that our iterative

solver would produce for the reaching definitions
problem in the program below?

The solution is conservative because @ ——d;a=1

the branch is always false. 1{011}
Therefore, the statement c = 3 can d;b=2
never occur, and the definition d, l{df 'y
will never reach the end of the | ’
program. l‘-‘ ds: (a==b)?
(d, dzi/ N d2}
“\\ d, c= ds:c=
N {d] d, d \ ‘/é d, ds/
@< s print ¢

{d;, d, d4 dsf

More Intuition on MFP Solutions

([
([° °
([
([
([
® °
° o °
: . ()
Actual Program Behavior Constraints
@
[]
[) ° °
®
(
[]
[[]
° e °

@
MFP Solution Over-Conservative Solution

Wrong Solutions:

False Negatives

* |tis ok if we say that a program does
more than it really does.

— This excess of information is usually
called false positive

 The problem are the false negatives.

— If we say that a program does not do
something, and it does, we may end up
pruning away correct behavior

Actual Program Behavior

MFP Solution

Wrong Solution False Negative False Positive

The Ideal Solution

 The MFP solution fits the constraint system
tightly, but it is a conservative solution.
— What would be an ideal solution?

— In other words, given a block B in the program,

what would be an ideal solution of the dataflow
problem for the IN set of B? ENTRY

* The ideal solution computes dataflow ‘/ﬁ! \

information through each possible
path from ENTRY to B, and then

meets/joins this info at the IN set of
: é\
* A pathis possible if it is executable.

The Ideal Solution

* Each possible path P, e.g.: ENTRY > B, > ... > B, > B
gives us a transfer function f,, which is the composition
of the transfer functions associated with each B..

* We can then define the ideal solution as:
IDEAL [B] - /\ p is a possible path from ENTRY to B];(VENTRY) ENTRY
* Any solution that is smaller than ideal

_ AN

* Any solution that is larger is
conservative. K‘Z‘i /é'

The Meet over all Paths Solution

* Finding the ideal solution to a given dataflow
problem is undecidable in general.

— Due to loops, we may have an infinite number of
paths.

— Some of these paths may not even terminate.

 We define our meet over all paths (MOP)
solution:

MOP [B] - /\ p is a path from ENTRY to Bf];(vENTRY)

 Two natural questions:

— |Is MOP the solution that our iterative solver produces
for a dataflow problem?

— What is the difference between the ideal solution and
the MOP solution?

Distributive Frameworks

 We say that a dataflow framework is distributive
if, for all x and y in S, and every transfer function f
in F we have that:

SxAy)=1x) A fy)

* The MOP solution and the solution produced by our iterative
algorithm are the same if the dataflow framework is
distributive.

* |If the dataflow framework is not distributive, but is
monotone, we still have that IN[B] < MOP|[B] for every block B

* Note: our four examples of data-flow analyses, e.g.,
liveness, availability, reaching defs and anticipability, are
distributive. Let’s see why....

Distributive Frameworks

Our analyses use transfer functions such as f(x) = (x \ x,) U X,. For
instance, for liveness, if x="v=E" then we have that
IN[x] = OUT[x] \ {v} U vars(E). So, we only need a bit of algebra:

fix A x')=(x A x)\x)Ux, (i)
= ((x\ x, A x"\ x.)) Ux, (i)
= ((x\ %) U x) A ((X"\x) U x)) (iii)
= f(x) A f(x) (iv)

To see why (ii) and (iii) are true, just remember that in any of the
four data-flow analyses, either A is N, oritis U.

Map Lattices

e IfSisasetand L= (T, A)®isa meet
semilattice, then the structure L.=(S=> T, A))

is also a semilattice, which we call a map

semilattice.
— The domainis S & T (functions from S to T)

— The meet is defined by fAf = Ax.f(x) Af'(x)
« equivalently, (fAFf)(x) = f(x)Af'(x)
— The orderingisf<f' & Vx, f(x) < f'(x)
* Atypical example of a map lattice is used in
the constant propagation analysis.

®: This is set "T", not the symbol of "top"

Constant Propagation

' o ilnput e How could we
Y. optimize the
1 program on the left?
c=a+ 1l Which information
1 would be necessary
" 1 e to perform this
b= x % 4 optimization?
1 « How can we obtain
OUtpft = this information?
a =a + 1

Constant Propagation

@ — X = input
{x—>NAC, a—UNDEF, b—>UNDEF, c—>UNDEF}
1

| e—

{x—>NAC, a—1, b>UNDEF, c—UNDEF}

-

c = a + 10 .
What is the
—NAC, a—1, b>UNDEF, c—11 . .
l{x) il semilattice
> a < C —>©
that we are
l {x—>NAC, a—>NAC, b—>UNDEF, c—11}) , _
.) using in this
= X a
A example?
bsN AC,, l {x—>NAC, a—>NAC, b—>NAC, c—11}
c—11} output b

| 1 {x—>NAC, a—>NAC, b—>NAC, c—11}
a =a+1

Constant Propagation

 We are using a map lattice, that maps
variables to an element in the lattice L below:

UNDEF

N\l

2
Y

A

How are the transfer functions,
assuming a meet operator?

Constant Propagation:
Transfer Functions

* The transfer function depends on the statement p that
is being evaluated. | am giving some examples, but a
different transfer function must be designed for every
possible instruction in our program representation:

OUT (p)
OUT (p)
v=t+u
OUT (p)
OUT (p)
OUT (p)
IN (p)

How is the meet

Azz=v?c: IN(p)(z) operator, e.g., A

defined?
M.x=v?IN(p)(u) : IN(p)(x)
A$$=v?IN(X)+IN@X) N(p)(x),if IN(p)(t), IN(p)(u) consts
A.x=v? NAC : IN(p)(x),if IN()(t) or IN(p)(u) not const

Ax.x=v"7 UNDEF IN(p)(z), otherwise

/\ OUT(ps))ps € pred(p)

The meet operator

A UNDEF ¢ NAC If we have two constants,
UNDEF | UNDEF c, NAC e.g., ¢, and c,, then we have
, ¢, | aAq | NAc | thatc,Ac,=c,ifc,=c,, and
NAC NAC NAC NAC NAC otherwise
v=e Are these
OUT(p) = Max=v7?c: IN(p)(x) functions
v =u monotone?
OUT(p) = Mxx=v7?IN(p)(u) : IN(p)(z)
p:v=t+u
OUT(p) = Max=v?IN(p)(t)+IN(p)(u) : IN(p)(z),if IN(p)(t),IN(p)(u) consts
OUT(p) = Mxax=wv? NAC : IN(p)(z),if IN(p)(t) or IN(p)(u) not const
OUT(p) = Max=v?UNDEF : IN(p)(x), otherwise
IN(p) = NOUT(ps),ps € pred(p)

Non-Distributivity

* The constant propagation framework is
monotone, but it is not distributive.

— As a consequence, the MOP solution is more
precise than the iterative solution.

* Consider this program: /\

Y
zZ = X Ty

Is variable z a
constant in this

program?

Non-Distributivity

* This program has only two paths, and throughout
any of them we find that z is a constant.

— Indeed, variables are constants along any path in this
program.

X = 2 X|= 3
y = 3 y|= 2
Zz = X[ty
l How is the
@ composition of

functions along
every path?

aN W
D

Non-Distributivity

What is the meet of the functions

3
Av.v=x?3:v=y?2:v=z?5:U
and
2 Av.v=x?2:v=y?3:v=z?5:U?

gkv.vx?Bzvy?Z:vz?S:UNDEF

Non-Distributivity

AV . UNDEF/\

3 The meet of the functions
AVv.v=x?3:v=y?2:v=z?5:U
and

AVv.v=x?2:v=y?3:v=z?5:U
is the function:

Av.v=x?N:v=y?N:v=z7?5:U,
which, in fact, points that neither x
nor y are constants past the join
point, but z indeed is.

How is the solution
that our iterative data-
flow solver produces
gkv.vx?Bzvy?Z:vz?S:UNDEF for this example?

Non-Distributivity

* The iterative algorithm applies the meet operator
too early, before computations would take place.

— This early evaluation is necessary to avoid infinite
program paths, but it may generate imprecision

{x—UNDEF, y—»UNDEF} ____ A ____{x—>UNDEF, y—»UNDEF}

X = 2 X = 3
y = 3 y = 2
(x—2,y—31 7 \ / ‘‘‘‘‘‘ (x—3,y—2}
T‘ """""" {x—2A3, y—>2A3} = {x—>NAC, y—>NAC}
z = X 1ty
€--mmmmmmae- {x—>NAC, y—>NAC, z—>NAC}

Product Lattices

 If (A, A,)and (B, A;) are lattices, then a product
lattice AxB has the following characteristics:
— The domainis Ax B

— The meet is defined by
(a, b) A(a',b')=(a A a',b Agb")
— The orderingis (a, b) < (a', b') @ a<a'and b<b'
* The system of data-flow equations ranges over a
product lattice:
Fx, ..., x)=UE(x;, ... x), ..., F(x;, ..., X))

* If every x, is a point in a lattice L, then the tuple

(X4, ..., X,,) is @ point in the product of n instances
of the lattice L, e.g,. (L' x ... x L")

Product Lattices

Let's show how this product
lattice surfaces using the
example on the right. What
are the IN and OUT sets for
liveness analysis for this
example?

dya = e
d:b = e
d,ya > b?

IN[d,] = OUT]
OUT[d,] = IN[d,
IN[d,] = OUT][
OUT[d,] = IN[d,
IN[d,] = OUT]
OUTI[d,] = IN[
IN[d,] = OUT][

OUT[d;] = {}

Product Lattices

1\ {aj

1\ {bj

] U {a, b}

] U IN[d,]
] U {a}

IN[d,] = OUT[d,] U {b}

OUT[d,] = {}

In order to reduce the
equations, Let just work
with OUT sets.

dyya = e
d:b = e
d,ya > b?

OUT[d,] =OUT
OUT[d,] =0UT
OUT[d,] =OUT
OUT[d;] = i}
OUT[d,] = {}

Xg = X1\ b}

X; =X, U {a, b}

Product Lattices

CIARLE
d,] U 1a, bj
d;] U {a} U OUT[d,] U {b}

But, given that now we
only have out sets, let's
just call each
constraint variable x;

P

X, =x; Ux, U{a b}

X3 = {}
Xy =1}

dyya = e
d:b = e
d,ya > b?

Product Lattices

Xy = X; \ {b} X3 = {} X, =x; Ux, U{a b}
X;=x, U {a,bj Xy = U

%

(X09 X1 Xpy X3, X4) - (Xl \ {b}a X2 U {aa b}a X3 U X4 U {aa b}9 {}9 {})

Dataflow analysis as solution of a constraint system

Which product lattice do we have in this equation?

Product Lattices

Xy = X; \ {b} X3 = {} X, =x; Ux, U{a b}
X;=x, U {a,bj Xy = U

How many elements will
our product lattice have?

.

....

. N

. .

. .y

. .

.....

. LN

. .

. "

.....

.......
., .

‘e
0
.....
......
..........
..............
..............
............
..................
.................

..................
.................

...............
................
.....

1 A ..
{a’ b} {a, b} B8 {a, b} 7’ b}\ 7, b}\
1aj {b} X {a} b} X Haj b} X & {b} X {3} {b}

VooV N Y

On Partial-Redundancy Elimination

e Partial Redundancy Elimination is one of the most
complex classic compiler optimizations.

— Includes many dataflow analyses

— Subsumes several compiler optimizations:
 Common subexpression elimination
* Loop invariant code motion

* Four steps “Lazy Code Motion” algorithm

— Find blocks where evaluation of an expression can be
anticipated (backwards) (Very Busy Expressions)

— Check availability of expressions along all paths leading to
a block needing it (forwards) (Available Expressions)

— Postpone the expression as much as possible (forwards)

— Eliminate assignments to temporaries that are used only
once (backwards)

Properties of Lazy Code Motion

* Lazy Code Motion has the following properties:

1. All redundant computations of expressions that can
be eliminated without code duplication are
eliminated.

2. The optimized program does not perform any
computation that is not in the original program
execution.

3. Expressions are computed at the latest possible
time.
« Thatis why itis called lazy.

