
Principles	of	Programming	Languages	
h"p://www.di.unipi.it/~andrea/Dida2ca/PLP-16/	

Prof.	Andrea	Corradini	
Department	of	Computer	Science,	Pisa	

•  The	Dataflow	framework	for	Global	Analysis	
	

Lesson 16!

The	Dataflow	Framework	

•  We	will	present	a	simple	iteraDve	algorithm	to	
find	the	soluDon	of	a	given	dataflow	problem.	

•  Main	issues:	
– How	do	we	know	that	this	algorithm	terminates?	
– How	precise	is	the	soluDon	produced	by	this	
algorithm?	

•  We	provide	a	formal	ground	to	the	theory	
using	the	algebraic	noDon	of		semila'ce	

How	do	we	know	that	liveness	terminates?	

•  Given	a	control	flow	graph	G,	find,	for	each	edge	E	
in	G,	the	set	of	variables	alive	at	E.	

x = input x > 1

var x, y, z

y = x / 2 y > 3

x = x - y

z = x - 4

z > 0

x = x / 2

z = z - 1

output x

{ ? }

{ ? }

{ ? }

{ ? }

{ ? }

{ ? }

{ ? }

{ ? }

{ ? }

{ ? }

{ ? }

{ ? }

{ ? }

{ ? }

{ ? }

x = input x > 1

var x, y, z

y = x / 2 y > 3

x = x - y

z = x - 4

z > 0

x = x / 2

z = z - 1

output x

{ x }

{ x }

{ x, y }

{ x }

{ x, y }

{ x }

{ x, z }

{ x, z }

{ x, z }

{ x, z }

{ x }

{ x }

{ }

{ }

{ }

Example	of	Liveness	Problem	
•  SoluDon	of	the	liveness	analysis	for	the	sample	program	

Dataflow	EquaDons	for	Liveness	

•  The	algorithm	that	solves	liveness	keeps	iteraDng	the	
applicaDon	of	these	equaDons,	unDl	we	reach	a	fixed	point.	
•  If	f	is	a	funcDon,	then	p	is	a	fixed	point	of	f	if	f(p)	=	p.	

•  The	key	observaDon	is	that	none	of	these	equaDons	take	
informaDon	away	of	its	result.	
•  The	result	that	they	produce	is	always	the	same,	or	larger	

than	the	previous	result		(monotonicity)	
•  Given	this	property,	we	eventually	reach	a	fixed	point,	

because	the	INs	and	OUTs	sets	cannot	grow	forever.	

(Meet)	SemilaTces	
•  All	dataflow	analyses	map	program	points	to	elements	
of	algebraic	structures	called	semila'ces.	

•  A	(meet)	semila'ce	L	=	(S,	≤,∧,	T)	is	formed	by:	
–  A	set	S	
–  A	parDal	order	≤	between	elements	of	S.	
–  A	greatest	element	T	(top)	
–  A	binary	meet	operator	∧	

•  The	meet	has	to	saDsfy	
–  e1	∧	e2	≤		e1	 	and	 	e1	∧	e2	≤		e2	
–  For	any	e'	∈	S,	if	e'	≤	e1	and	e'	≤	e2,	then	e'	≤	e1	∧	e2	

•  It	follows	that	 	x	≤	y				if,	and	only	if					x	∧	y	=	x	
•  Thus	we	could	also	define	a	semilaTce	omiTng	≤		

ProperDes	of	Meet	
•  Meet	is	idempotent:	x	∧	x	=	x	
•  Meet	is	commutaDve:	y	∧	x	=	x	∧	y	
•  Meet	is	associaDve:	x	∧	(y	∧	z)	=	(x	∧	y)	∧	z	
•  The	top	element	T	is	the	unit:		(T	∧	x)	=	x	
By	the	above	properDes	the	meet	can	be	
extended	to	arbitrary	finite	subsets	of	S:	
•  ∧{}	=	T		
•  ∧{s1,	…,	sn+1}	=	(∧{s1,	…,	sn})	∧	sn+1	
•  ∧X		is	the	greatest	lower	bound	of	X,	for	X⊆S	
	

SemilaTce	structures	on	powersets	

•  The	four	examples	of	dataflow	analysis	that	we	have	
seen	all	use	subsets	of	a	suitable	set	as	values	for	the	
INs	and	the	OUTs	of	program	points	(sets	of	variables,	
of	expressions,	or	of	definiDons)			

•  Some	dataflow	analyses,	such	as	live	variables,	use	the	
union	of	sets	for	joining	informaDon	

•  Others,	such	as	available	expressions,	use	the	
intersec:on	of	sets	for	joining	informaDon	

•  As	a	maber	of	fact,	the	powerset	of	a	set	is	a	la'ce,	
and	depending	on	our	needs	we	can	consider	it	as	a	
meet	semila'ce	in	two	different	ways	

The	SemilaTce	of	Liveness	Analysis	
•  Given	the	program	on	the	led,	we	

consider	the	semilaTce		
	L	=	(P{x,	y,	z},	⊇,	∪,	{})	

•  The	parBal	order	is	set	inclusion,	i.e.	
A	≤	B	iff	A	⊇	B	for	all	A,B	⊆	{x,	y,	z}	

•  The	meet	operator	is	union	
•  The	top	element	is	the	empty	set	
The	expected	properDes	hold:		
•  A	≤	B				if		and	only	if			A	∧	B	=	A	

–  A	⊇	B	if	and	only	if		A∪B	=	A	

•  Top	is	the	unit	of	meet:	(T	∧	A)	=	A	
–  {}	∪A	=	A	

var x,y,z;

x = input;

while (x > 1) {

 y = x / 2;

 if (y > 3)

 x = x - y;

 z = x - 4;

 if (z > 0)

 x = x / 2;

 z = z - 1;

}

output x;

The	SemilaTce	of	Available	
Expressions	

z = a + b

y = a * b

var x,y,z,a,b

y > a + b

a = a + 1

x = a + b

•  Given	the	program	on	the	led,	we	have	
the	semilaTce		
L	=	(P{a+b,	a*b,	a+1},	⊆,	∩,	{a+b,	a*b,	a+1})	

•  Let	D	=	{a+b,	a*b,	a+1}	
•  The	parBal	order	is	set	containement,	

i.e.	A	≤	B	iff	A	⊆	B	for	all	A,B	⊆	D	
•  The	meet	operator	is	intersecDon	
•  The	top	element	is	D	
The	expected	properDes	hold:		
•  A	≤	B				if		and	only	if			A	∧	B	=	A	

–  A	⊆	B	if	and	only	if		A∩B	=	A	
•  Top	is	the	unit	of	meet:	(T	∧	A)	=	A	

–  D	∩	A	=	A		for	all	A⊆D	

LaTce	Diagrams	
•  We	can	represent	the	parDal	order	between	the	
elements	of	a	(semi)laTce	as	a	Hasse	Diagram.	
–  If	there	exists	a	path	in	this	diagram,	from	an	element	
e1	to	another	element	e2,	then	we	say	that	e1	≤	e2	

–  The	greatest	element	is	at	the	top	

BRIEF ARTICLE

THE AUTHOR

{}

{x}

88

{y}

OO

{z}

ff

{x, y}

88OO

{x, z}

ff 88

{y, z}

OOff

{x, y, z}

ff OO 88

1

BRIEF ARTICLE

THE AUTHOR

{}

{x}

88

{y}

OO

{z}

ff

{x, y}

88OO

{x, z}

ff 88

{y, z}

OOff

{x, y, z}

ff OO 88

{a+ b, a ⇤ b, a+ 1}

{a+ b, a ⇤ b}

55

{a+ b, a+ 1}

OO

{a ⇤ b, a+ 1}

ii

{a+ b}

55OO

{a ⇤ b}

ii 55

{a+ 1}

OOii

{}

ii OO 55

1

{}

{a+b} {a*b} {a+1}

{a+b, a*b} {a+b, a+1} {a*b, a+1}

{a+b, a*b, a+1}

z = a + b

y = a * b

var x,y,z,a,b

y > a + b

a = a + 1

x = a + b

{a + b}

{a + b, a * b}

{a + b}

{a + b}

{}

{}

Mapping	Program	Points	to	LaTce	Points	

The	soluDon	of	a	data-flow	problem	
is	a	mapping	between	program	
points	to	laTce	points.	

Note:	the	semilaTce	is	reversed	
here….	

Data-Flow	Analysis	Framework	

•  A	Data-Flow	Analysis	Framework	(D,	S,	∧,	F)	consists	
of:	
•  A	direc:on	D	in	{FORWARDS,	BACKWARDS}	
•  A	domain	of	values	(S,∧)		which	forms	a	meet	
semila'ce	

•  A	family	F	of	transfer	func:ons	from	S	to	S,	
including	the	idenDty	funcDon	and	closed	under	
composiDon	

13	

Monotone	Transfer	FuncDons	

•  Given	family	of	funcDons	F	over	a	semilaTce	S	(i.e.	
such	that	for	all	f	∈	F,	f	:	S	→	S),	these	properDes	
are	equivalent:	
– Any	element	f	∈	F	is	monotonic,	that	is		
for	all	x	∈	S,	y	∈	S,	and	f	∈	F,	x	≤	z	y	implies		f(x)	≤	f(y)	

–  For	all	x	and	y	in	S	and	f	in	F,	 	f(x∧y)	≤	f(x)∧	f(y)	

•  A	dataflow	analysis	framework	is	monotone	if	all	
transfer	funcDons	f	in	F	are	monotonic	

•  It	is	distribuBve	if	for	all	f	in	F				f(x∧y)	=	f(x)∧	f(y)	

•  It	is	easy	to	check	that	the	transfer	funcDons	used	in	
the	liveness	analysis	problem	are	monotonic:	

	
•  And	the	same	for	those	used	for	available	expressions:	

•  Oden	basic	blocks	are	annotated	with	values	instead	of	
individual	statements:		OUT[B]	and	IN[B]	

Monotone	Transfer	FuncDons	

Data-Flow	IteraDve	Algorithm	[Forward]		

•  Given:	
–  a	data-flow	graph	with	ENTRY	and	EXIT	nodes	
–  one	transfer	funcDon	fB	for	each	basic	block	B	
– A	“boundary	condiDon”		vENTRY		

•  Computes	values	IN[B]	and	OUT[B]	for	all	blocks	

16	

1)  OUT[ENTRY]	=	vENTRY;	
2)  for	each	block	B,	but	ENTRY	{	
3)  	 	OUT[B]	=	T	}	
4)  while	(changes	to	any	OUT	occur)	{	
5)  	 		for	(each	basic	block	B	other	than	ENTRY){		
6) 		 	 	IN[B]	=	∧P	a	predecessor	of	B	OUT[P];	
7) 	 	 	OUT[B]	=	fB(IN[B]);			}	}		

Example:	Dataflow	analysis	for	
Reaching	DefiniDons	

•  Each	point	in	the	program	is	associated	with	the	
set	of	definiDons	that	are	acDve	at	that	point	

•  SemilaTce:		
–  Powerset	of	definiDons	(assignments)	
– Meet	operator:	union.	Top	element:	empty	set		

•  The	transfer	func:on	for	a	block	kills	definiDons	
of	variables	that	are	redefined	in	the	block	and	
adds	definiDons	of	variables	that	occur	in	the	
block:							fB(x)	=	genB	U	(x	–	killB)		

•  The	confluence	operator	is	union.	

17	

TerminaDon	

The	algorithm	is	ensured	to	terminate	if	
•  The	framework	is	monotonic	
•  The	semilaTce	S	has	finite	height	
–  It	is	not	possible	to	have	an	infinite	chain	of	
elements	in	S,	e.g.,	l0	≤	l1	≤	l2	≤	…	such	that	every	
element	in	this	chain	is	different	

– NoDce	that	the	semilaTce	can	sDll	have	an	
infinite	number	of	elements.	

18	

AsymptoDc	Complexity	of	the	Solver	
AssumpDon:	a	laTce	of	height	H,	and	a	
program	with	B	blocks.	
1.  The	IN/OUT	set	associated	with	a	

block	can	change	at	most	H	Dmes;	
hence,	the	loop	at	line	4	iterates	H*B	
Dmes	

2.  The	loop	at	line	5	iterates	B	Dmes	
3.  Each	applicaDon	of	the	meet	

operator,	at	line	6,		can	be	done	in	
O(H)	

4.  A	block	can	have	B	predecessors;	
thus,	line	6	is	O(H*B)	

5.  By	combining	(1),	(2)	and	(4),	we	have	
O(H*B*B*H*B)	=	O(H2*B3)	

1:	OUT[ENTRY]	=	vENTRY	

2:	for	each	block	B,	but	ENTRY	

3:					OUT[B]	=	T	

4:	while	(any	OUT	set	changes)	

5:					for	each	block	B,	but	ENTRY	

6:									IN[B]	=	∧p	∈pred(B)OUT[P]	

7:									OUT[B]	=	fb(IN[B])	

This	is	a	preby	high	complexity,	yet	
most	real-world	implementaDons	of	
dataflow	analyses	tend	to	be	linear	on	
the	program	size,	in	pracDce.	

Constraint	System	and	Fixed	Point	
•  The	applicaDon	of	a	dataflow	analysis	framework	to	a	

Control	Flow	Graph	determines	a	constraint	system		
	F(x1, …, xn) = (F1(x1, …, xn), …, Fn(x1, …, xn)) 	

where	the	unknowns	are	the	sets	INs	and	OUTs	
•  The	soluDon	is	a	fixed	point	of	F.	i.e,	a	tuple	of	

elements	such	that	
	 	 	F(x1, …, xn) = (x1, …, xn)	

•  The	soluDon	that	we	find	with	the	iteraDve	solver	is	
the	maximum	fixed	point	of	the	constraint	system,	
assuming	monotone	transfer	funcDons,	and	a	
semilaTce	with	meet	operator	of	finite	height	

•  Such	a	soluDon	is	conserva:ve	

21	

Accuracy,	Safeness,	and		
ConservaDve	EsDmaDons	

In	the	framework	of	staDc	analysis:	
•  Conserva:ve:	refers	to	making	safe	assumpDons	
when	insufficient	informaDon	is	available	at	compile	
Dme,	i.e.	the	compiler	has	to	guarantee	not	to	
change	the	meaning	of	the	opDmized	code	

•  Safe:	(similar)	the	values	computed	by	the	analysis	
approximate	the	exact	ones	in	a	way	that		does	not	
affect	the	meaning	of	the	opDmized	code	

•  Accuracy:	refers	to	the	fact	that	more	and	beber	
informaDon	enables	more	code	opDmizaDons	

•  What	would	be	a	soluDon	that	our	iteraDve	
solver	would	produce	for	the	reaching	definiDons	
problem	in	the	program	below?		

d1: a = 1

d2: b = 2

d3: (a == b)?

d4: c = 3 d5: c = 4

d6: print c

Example:	Reaching	DefiniDons	

d1: a = 1

d2: b = 2

d3: (a == b)?

d4: c = 3 d5: c = 4

d6: print c

{d1}

{d1, d2}

{d1, d2} {d1, d2}

{d1, d2, d4} {d1, d2, d5}

{d1, d2, d4, d5}

Example:	Reaching	DefiniDons	
•  What	would	be	a	soluDon	that	our	iteraDve	
solver	would	produce	for	the	reaching	definiDons	
problem	in	the	program	below?		

Why	is	this	
soluDon	too	
conservaDve?	

T F

d1: a = 1

d2: b = 2

d3: (a == b)?

d4: c = 3 d5: c = 4

d6: print c

Example:	Reaching	DefiniDons	
•  What	would	be	a	soluDon	that	our	iteraDve	
solver	would	produce	for	the	reaching	definiDons	
problem	in	the	program	below?		

The	soluDon	is	conservaDve	because	
the	branch	is	always	false.	
Therefore,	the	statement	c	=	3	can	
never	occur,	and	the	definiDon	d4	
will	never	reach	the	end	of	the	
program.	

d1: a = 1

d2: b = 2

d3: (a == b)?

d4: c = 3 d5: c = 4

d6: print c

{d1}

{d1, d2}

{d1, d2} {d1, d2}

{d1, d2, d4} {d1, d2, d5}

{d1, d2, d4, d5}

!"#$%&'()*+)%,'-./%01*) 2*34#)%13#4

56('7*&$8*3 90.):2*34.)0%80.'7*&$8*3

More	IntuiDon	on	MFP	SoluDons	

Wrong	SoluDons:		
False	NegaDves	

•  It	is	ok	if	we	say	that	a	program	does	
more	than	it	really	does.	
–  This	excess	of	informaDon	is	usually	
called	false	posiDve	

•  The	problem	are	the	false	negaDves.	
–  If	we	say	that	a	program	does	not	do	
something,	and	it	does,	we	may	end	up	
pruning	away	correct	behavior	

!"#$%&'()*+)%,'-./%01*)

23('4*&$5*6

7)*6+'4*&$5*6 !"#$%&'%(")*% !"#$%&+,$-)*%

The	Ideal	SoluDon	
•  The	MFP	soluDon	fits	the	constraint	system	
Dghtly,	but	it	is	a	conservaDve	soluDon.	
– What	would	be	an	ideal	soluDon?	
–  In	other	words,	given	a	block	B	in	the	program,	
what	would	be	an	ideal	soluDon	of	the	dataflow	
problem	for	the	IN	set	of	B?	 ENTRY

B

...

...

...

•  The	ideal	soluDon	computes	dataflow	
informaDon	through	each	possible	
path	from	ENTRY	to	B,	and	then	
meets/joins	this	info	at	the	IN	set	of	
B.	
•  A	path	is	possible	if	it	is	executable.	

The	Ideal	SoluDon	
•  Each	possible	path	P,	e.g.:	ENTRY	→	B1	→	…	→	BK	→	B	
gives	us	a	transfer	funcDon	fp,	which	is	the	composiDon	
of	the	transfer	funcDons	associated	with	each	Bi.	

•  We	can	then	define	the	ideal	soluDon	as:	

ENTRY

B

...

...

...

•  Any	soluDon	that	is	smaller	than	ideal	
is	wrong.	

•  Any	soluDon	that	is	larger	is	
conservaDve.	

IDEAL[B] = ∧p is a possible path from ENTRY to B fp(vENTRY)

The	Meet	over	all	Paths	SoluDon	
•  Finding	the	ideal	soluDon	to	a	given	dataflow	
problem	is	undecidable	in	general.	
– Due	to	loops,	we	may	have	an	infinite	number	of	
paths.	

–  Some	of	these	paths	may	not	even	terminate.	
•  We	define	our	meet	over	all	paths	(MOP)	
soluDon:	

•  Two	natural	quesDons:	
–  Is	MOP	the	soluDon	that	our	iteraDve	solver	produces	
for	a	dataflow	problem? 		

– What	is	the	difference	between	the	ideal	soluDon	and	
the	MOP	soluDon?	

MOP[B] = ∧p is a path from ENTRY to B fp(vENTRY)

DistribuDve	Frameworks	
•  We	say	that	a	dataflow	framework	is	distribuBve	
if,	for	all	x	and	y	in	S,	and	every	transfer	funcDon	f	
in	F	we	have	that:	

f(x∧y) = f(x) ∧ f(y)

•  The	MOP	soluDon	and	the	soluDon	produced	by	our	iteraDve	
algorithm	are	the	same	if	the	dataflow	framework	is	
distribu:ve.	

•  If	the	dataflow	framework	is	not	distribuDve,	but	is	
monotone,	we	sDll	have	that	IN[B]	≤	MOP[B]	for	every	block	B	

•  Note:	our	four	examples	of	data-flow	analyses,	e.g.,	
liveness,	availability,	reaching	defs	and	anDcipability,	are	
distribuDve.	Let’s	see	why….	

DistribuDve	Frameworks	
Our	analyses	use	transfer	funcDons	such	as	f(x)	=	(x	\	xk)	∪	xg.	For	
instance,	for	liveness,	if					x	=	"v	=	E",	then	we	have	that																	
IN[x]	=	OUT[x]	\	{v}	∪	vars(E).	So,	we	only	need	a	bit	of	algebra:	
	
f(x	∧	x')	=	((x	∧	x')	\	xk)∪xg																																										 	(i)	

																=		((x	\	xk	∧	x'	\	xk))∪xg																																				(ii)	

																=		((x	\	xk)	∪	xg)	∧	((x'	\	xk)	∪	xg)																			(iii)	

																=		f(x)	∧	f(x')																																														 	 	(iv)	

	
To	see	why	(ii)	and	(iii)	are	true,	just	remember	that	in	any	of	the	
four	data-flow	analyses,	either	∧	is	∩,	or	it	is	∪.		

Map	LaTces	
•  If	S	is	a	set	and	L	=	(T,	∧)♤	is	a	meet	
semilaTce,	then	the	structure	Ls	=	(S	→	T,	∧s)	
is	also	a	semilaTce,	which	we	call	a	map	
semila'ce.	
– The	domain	is	S	→	T	(funcDons	from	S	to	T)	
– The	meet	is	defined	by		f∧f'			=				λx.f(x)∧f'(x)	

•  equivalently,	(f∧f’)(x)			=			f(x)∧f'(x)	
– The	ordering	is	f	≤	f'	⇔	∀x,	f(x)	≤	f'(x)	

•  A	typical	example	of	a	map	laTce	is	used	in	
the	constant	propagaDon	analysis.	

♤:	This	is	set	"T",	not	the	symbol	of	"top"	

Constant	PropagaDon	
•  How	could	we	
opDmize	the	
program	on	the	led?	

•  Which	informaDon	
would	be	necessary	
to	perform	this	
opDmizaDon?	

•  How	can	we	obtain	
this	informaDon?	

x = input

a = 1

a < c

output b

a = a + 1

c = a + 10

b = x * a

x = input

a = 1

a < c

output b

a = a + 1

c = a + 10

b = x * a

{x!NAC, a!UNDEF, b!UNDEF, c!UNDEF}

{x!NAC, a!1, b!UNDEF, c!UNDEF}

{x!NAC, a!1, b!UNDEF, c!11}

{x!NAC, a!NAC, b!UNDEF, c!11}

{x!NAC, a!NAC, b!NAC, c!11}

{x!NAC, a!NAC, b!NAC, c!11}

{x!NAC,
 a!NAC,
 b!NAC,
 c!11}

Constant	PropagaDon	

What	is	the	
semilaTce	
that	we	are	
using	in	this	
example?	

Constant	PropagaDon	
•  We	are	using	a	map	laTce,	that	maps	
variables	to	an	element	in	the	laTce	L	below:	

UNDEF

NAC

... -3 -2 -1 0 1 2 3 ...

How	are	the	transfer	funcDons,	
assuming	a	meet	operator?	

Constant	PropagaDon:		
Transfer	FuncDons	

•  The	transfer	funcDon	depends	on	the	statement	p	that	
is	being	evaluated.	I	am	giving	some	examples,	but	a	
different	transfer	funcDon	must	be	designed	for	every	
possible	instrucDon	in	our	program	representaDon:	

How	is	the	meet	
operator,	e.g.,	∧,	
defined?	

The	meet	operator	
∧	 UNDEF	 c1	 NAC	

UNDEF	 UNDEF	 c1	 NAC	

c2	 c2	 c1∧c2	 NAC	

NAC	 NAC	 NAC	 NAC	

If	we	have	two	constants,	
e.g.,	c1	and	c2,	then	we	have	
that	c1∧c2	=	c1	if	c1	=	c2,	and	
NAC	otherwise	

Are	these	
funcDons	
monotone?	

Non-DistribuDvity	
•  The	constant	propagaDon	framework	is	
monotone,	but	it	is	not	distribuDve.	
– As	a	consequence,	the	MOP	soluDon	is	more	
precise	than	the	iteraDve	soluDon.	

•  Consider	this	program:	
x = 2

y = 3

x = 3

y = 2

z = x + y

Is	variable	z	a	
constant	in	this	
program?	

Non-DistribuDvity	
•  This	program	has	only	two	paths,	and	throughout	
any	of	them	we	find	that	z	is	a	constant.	
–  Indeed,	variables	are	constants	along	any	path	in	this	
program.	

How	is	the	
composiDon	of	
funcDons	along	
every	path?	

x = 2

y = 3

x = 3

y = 2

z = x + y

x = 2,

y = 3,

z = 5

x = 2

y = 3

x = 3

y = 2

z = x + y

x = 3,

y = 2,

z = 5

Non-DistribuDvity	

What	is	the	meet	of	the	funcDons	
		λv	.	v	=	x	?	3	:	v	=	y	?	2	:	v	=	z	?	5	:	U	
and	
		λv	.	v	=	x	?	2	:	v	=	y	?	3	:	v	=	z	?	5	:	U?	y = 3 y = 2

z = x + y

x = 2 x = 3

y = 3 y = 2

z = x + y

x = 2 x = 3

!v . v = x ? 2 : UNDEF

!v . UNDEF

!v . v = x ? 2 : v = y ? 3 : UNDEF

!v . v = x ? 2 : v = y ? 3 : v = z ? 5 : UNDEF

!v . v = x ? 3 : UNDEF

!v . UNDEF

!v . v = x ? 3 : v = y ? 2 : UNDEF

!v . v = x ? 3 : v = y ? 2 : v = z ? 5 : UNDEF

Non-DistribuDvity	

The	meet	of	the	funcDons	
		λv	.	v	=	x	?	3	:	v	=	y	?	2	:	v	=	z	?	5	:	U	

and	
		λv	.	v	=	x	?	2	:	v	=	y	?	3	:	v	=	z	?	5	:	U	
is	the	funcDon:	
		λv	.	v	=	x	?	N	:	v	=	y	?	N	:	v	=	z	?	5	:	U,	
which,	in	fact,	points	that	neither	x	
nor	y	are	constants	past	the	join	
point,	but	z	indeed	is.	

y = 3 y = 2

z = x + y

x = 2 x = 3

y = 3 y = 2

z = x + y

x = 2 x = 3

!v . v = x ? 2 : UNDEF

!v . UNDEF

!v . v = x ? 2 : v = y ? 3 : UNDEF

!v . v = x ? 2 : v = y ? 3 : v = z ? 5 : UNDEF

!v . v = x ? 3 : UNDEF

!v . UNDEF

!v . v = x ? 3 : v = y ? 2 : UNDEF

!v . v = x ? 3 : v = y ? 2 : v = z ? 5 : UNDEF

How	is	the	soluDon	
that	our	iteraDve	data-
flow	solver	produces	
for	this	example?	

Non-DistribuDvity	
•  The	iteraDve	algorithm	applies	the	meet	operator	
too	early,	before	computaDons	would	take	place.	
–  This	early	evaluaDon	is	necessary	to	avoid	infinite	
program	paths,	but	it	may	generate	imprecision	

x = 2

y = 3

x = 3

y = 2

z = x + y

{x!UNDEF, y!UNDEF} {x!UNDEF, y!UNDEF}

{x!2, y!3} {x!3, y!2}

{x!2!3, y!2!3} = {x!NAC, y!NAC}

{x!NAC, y!NAC, z!NAC}

Product	LaTces	
•  If	(A,	∧A)	and	(B,	∧B)	are	laTces,	then	a	product	
laTce	A×B	has	the	following	characterisDcs:	
–  The	domain	is	A	×	B	
–  The	meet	is	defined	by		

	 	 	(a,	b)	∧(a',	b')	=	(a	∧A	a',	b	∧B	b')	
–  The	ordering	is	(a,	b)	≤	(a',	b')	⇔	a	≤	a'	and	b	≤	b'	

•  The	system	of	data-flow	equaDons	ranges	over	a	
product	laTce:	

•  If	every	xi	is	a	point	in	a	laTce	L,	then	the	tuple	
(x1,	…,	xn)	is	a	point	in	the	product	of	n	instances	
of	the	laTce	L,	e.g,.	(L1	×	…	×	Ln)	

F(x1, …, xn) = (F1(x1, …, xn), …, Fn(x1, …, xn))

Product	LaTces	

d
2
: a > b?

d
0
: a = !

d
1
: b = !

d
3
: ! = a d

4
: ! = b

Let's	show	how	this	product	
laTce	surfaces	using	the	
example	on	the	right.	What	
are	the	IN	and	OUT	sets	for	
liveness	analysis	for	this	
example?	

Product	LaTces	

d
2
: a > b?

d
0
: a = !

d
1
: b = !

d
3
: ! = a d

4
: ! = b

IN[d0] = OUT[d0] \ {a}

OUT[d0] = IN[d1]

IN[d1] = OUT[d1] \ {b}

OUT[d1] = IN[d2]

IN[d2] = OUT[d2] ∪ {a, b}

OUT[d2] = IN[d3] ∪ IN[d4]

IN[d3] = OUT[d3] ∪ {a}

OUT[d3] = {}

IN[d4] = OUT[d4] ∪ {b}

OUT[d4] = {}

In	order	to	reduce	the	
equaDons,	Let	just	work	
with	OUT	sets.		

Product	LaTces	

d
2
: a > b?

d
0
: a = !

d
1
: b = !

d
3
: ! = a d

4
: ! = b

OUT[d0] = OUT[d1] \ {b}

OUT[d1] = OUT[d2] ∪ {a, b}

OUT[d2] = OUT[d3] ∪ {a} ∪ OUT[d4] ∪ {b}

OUT[d3] = {}

OUT[d4] = {}
But,	given	that	now	we	
only	have	out	sets,	let's	
just	call	each	
constraint	variable	xi	

x0 = x1 \ {b}

x1 = x2 ∪ {a, b}

x2 = x3 ∪ x4 ∪ {a, b}

x3 = {}

x4 = {}

Product	LaTces	

x0 = x1 \ {b} x3 = {} x2 = x3 ∪ x4 ∪ {a, b}

x1 = x2 ∪ {a, b} x4 = {}

(x0, x1, x2, x3, x4) = (x1 \ {b}, x2 ∪ {a, b}, x3 ∪ x4 ∪ {a, b}, {}, {})

Dataflow	analysis	as	soluDon	of	a	constraint	system	
	
Which	product	laTce	do	we	have	in	this	equaDon?	

Product	LaTces	

x0 = x1 \ {b} x3 = {} x2 = x3 ∪ x4 ∪ {a, b}

x1 = x2 ∪ {a, b} x4 = {}

(x0, x2, x3, x4, x5) = (x1 \ {b}, x2 ∪ {a, b}, x3 ∪ x4 ∪ {a, b}, {}, {})

{}

{a} {b}

{a, b}

!

{}

{a} {b}

{a, b}

!

{}

{a} {b}

{a, b}

!

{}

{a} {b}

{a, b}

!

{}

{a} {b}

{a, b}

How	many	elements	will	
our	product	laTce	have?	

On	ParDal-Redundancy	EliminaDon	

49	

•  ParDal	Redundancy	EliminaDon	is	one	of	the	most	
complex	classic	compiler	opDmizaDons.	
–  Includes	many	dataflow	analyses	
–  Subsumes	several	compiler	opDmizaDons:	

•  Common	subexpression	eliminaDon	
•  Loop	invariant	code	moDon	

•  Four	steps	“Lazy	Code	MoDon”	algorithm	
–  Find	blocks	where	evaluaDon	of	an	expression	can	be	
anDcipated	(backwards)	(Very	Busy	Expressions)	

–  Check	availability	of	expressions	along	all	paths	leading	to	
a	block	needing	it	(forwards)	(Available	Expressions)	

–  Postpone	the	expression	as	much	as	possible	(forwards)	
–  Eliminate	assignments	to	temporaries	that	are	used	only	
once	(backwards)	

ProperDes	of	Lazy	Code	MoDon	

•  Lazy	Code	MoDon	has	the	following	properDes:	
1.  All	redundant	computaDons	of	expressions	that	can	

be	eliminated	without	code	duplicaDon	are	
eliminated.	

2.  The	opDmized	program	does	not	perform	any	
computaDon	that	is	not	in	the	original	program	
execuDon.	

3.  Expressions	are	computed	at	the	latest	possible	
Dme.	
•  That	is	why	it	is	called	lazy.	

