Lesson 14

• More on code generation
Summary

• Next-use information in basic blocks
• A Code Generator
 – Register allocation and assignment
 • Graph coloring
 – Instruction selection
 • Tree transducer
• An overview on Dataflow Analysis and some Global Optimization techniques
A Simple Code Generator

• Algorithm for generating target code for a basic block (sequence of three-address statements) using (local) next-use information

• Critical issue: how to use registers. Several competing uses:
 – To store operands of a target code operation
 – Registers make good temporaries
 – To hold (global) values computed in a block and used in another (e.g., loop indexes)
 – To help runtime storage management (stack pointer, ...)

• The algorithm will check if operands of three-address code are available in registers to avoid unnecessary stores and loads.
(Local) Next-Use Information

• *Next-use information* is needed for dead-code elimination and register assignment

• Next-use is computed by a backward scan of a basic block and performing the following actions on statement $L: \ x := y \ op \ z$
 – Add liveness/next-use info on x, y, and z to statement L
 • This info can be stored in the symbol table
 – Before going up to the previous statement (scan up):
 • Set x info to “not live” and “no next use”
 • Set y and z info to “live” and the “next uses” of y and z to L
Next-Use (Step 1)

\[i: \ b \ := \ b + 1 \]

\[j: \ a \ := \ b + c \]

\[k: \ t \ := \ a + b \ [\ \text{live}(a) = \text{true}, \ \text{live}(b) = \text{true}, \ \text{live}(t) = \text{true}, \ \ \text{nextuse}(a) = \text{none}, \ \text{nextuse}(b) = \text{none}, \ \text{nextuse}(t) = \text{none}] \]

- Attach current live/next-use information (from symbol table)
- Since the is no info, assume variables are live
- [Data-flow analysis can provide accurate (global) information]
Next-Use (Step 2)

\[j: \quad a := b + c \]

\[
\begin{align*}
\text{live}(a) &= \text{true} & \text{nextuse}(a) &= k \\
\text{live}(b) &= \text{true} & \text{nextuse}(b) &= k \\
\text{live}(t) &= \text{false} & \text{nextuse}(t) &= \text{none} \\
\end{align*}
\]

\[k: \quad t := a + b \quad [\text{live}(a) = \text{true}, \text{live}(b) = \text{true}, \text{live}(t) = \text{true}, \text{nextuse}(a) = \text{none}, \text{nextuse}(b) = \text{none}, \text{nextuse}(t) = \text{none}] \]

- Compute live/next-use information at \(k \) and store in the symbol table

\[i: \quad b := b + 1 \]
Next-Use (Step 3)

\[i: \ b := b + 1 \]

\[j: \ a := b + c \ [\ live(a) = \text{true}, \ live(b) = \text{true}, \ live(c) = \text{true}, \nextuse(a) = k, \nextuse(b) = k, \nextuse(c) = \text{none} \] \]

\[k: \ t := a + b \ [\ live(a) = \text{true}, \ live(b) = \text{true}, \ live(t) = \text{true}, \nextuse(a) = \text{none}, \nextuse(b) = \text{none}, \nextuse(t) = \text{none} \] \]

- Attach current live/next-use information from the symbol table to \(j \)
Next-Use (Step 4)

\[i: \quad b := b + 1 \]

\[
\begin{align*}
& \text{live}(a) = \text{false} \quad \text{nextuse}(a) = \text{none} \\
& \text{live}(b) = \text{true} \quad \text{nextuse}(b) = j \\
& \text{live}(c) = \text{true} \quad \text{nextuse}(c) = j \\
& \text{live}(t) = \text{false} \quad \text{nextuse}(t) = \text{none}
\end{align*}
\]

\[j: \quad a := b + c \quad [\text{live}(a) = \text{true}, \text{live}(b) = \text{true}, \text{live}(c) = \text{true}, \text{nextuse}(a) = k, \text{nextuse}(b) = k, \text{nextuse}(c) = \text{none}] \]

\[k: \quad t := a + b \quad [\text{live}(a) = \text{true}, \text{live}(b) = \text{true}, \text{live}(t) = \text{true}, \text{nextuse}(a) = \text{none}, \text{nextuse}(b) = \text{none}, \text{nextuse}(t) = \text{none}] \]

- Compute live/next-use information \(j \)
Next-Use (Step 5)

\[i: \quad b := b + 1 \quad [\text{live}(b) = \text{true}, \text{nextuse}(b) = j] \]

\[j: \quad a := b + c \quad [\text{live}(a) = \text{true}, \text{live}(b) = \text{true}, \text{live}(c) = \text{true}, \text{nextuse}(a) = k, \text{nextuse}(b) = k, \text{nextuse}(c) = \text{none}] \]

\[k: \quad t := a + b \quad [\text{live}(a) = \text{true}, \text{live}(b) = \text{true}, \text{live}(t) = \text{true}, \text{nextuse}(a) = \text{none}, \text{nextuse}(b) = \text{none}, \text{nextuse}(t) = \text{none}] \]

- Attach current live/next-use information to \(i \)
Code Generator: assumptions

• We assume that
 – A set of register can be used for values used within the block
 – The order of statements in the block is fixed
 – Each three-address operator corresponds to a single machine instruction
 – Machine instructions take operands in registers and leave the result in a register

• Allowed machine instructions:
 – LD reg, mem
 – ST mem, reg
 – OP reg, reg, reg
Code Generator: sketch

• For each three-address instructions, the algorithm
 – checks which operands are not in register, and emits corresponding loads
 – emits the operation
 – emits the store of the result, if needed

• The algorithm makes use of address descriptors and register descriptors, and of function getreg() such that getreg(x = y OP z) returns the three registers to be used for x, y and z (denoted Rx, Ry and Rz).
Register and Address Descriptors

• For each available register, a register descriptor (RD) keeps track of the vars whose current value is in that register
 – Initially empty
• For each variable, an address descriptor (AD) keeps track of the locations where the current value of the var can be found
 – Location can be a register, a stack location, a memory address, etc.
 – Can be stored in the symbol table
Managing Register and Address Descriptors

• For LD R,x
 – Change RD for R so it holds only x
 – Change AD for x by adding R as an additional location

• For ST x,R
 – Change AD for x to include its own memory location

• For OP Rx,Ry,Rz
 – Change RD for Rx so it holds only x
 – Change AD for x so its only location is Rx
 – Remove Rx from the AD of any variable other than x
The Code Generation Algorithm

• For a three-address instruction, e.g. $x=y \text{ } OP \text{ } z$
 – Use $\text{getReg}(x=y \text{ } OP \text{ } z)$ to select registers Rx, Ry, Rz for x, y, z
 – If y is not in Ry, emit an instruction $\text{LD} \text{ } Ry, \text{ } y'$ where $y' \subseteq AD(y)$, preferably a register
 – Similarly for z
 – Issue the instruction $\text{OP} \text{ } Rx, Ry, Rz$

• Copy statement $x=y$
 – If y is not already in register, emit $\text{LD} \text{ } Ry, \text{ } y'$
 – Adjust RD for Ry so it includes x
 – Change AD for x so its only location is Ry

• Ending the basic block
 – If x is used at other blocks, issue $\text{ST} \text{ } x, Rx$
Example of code generation (1)

\[
\begin{align*}
t &= a - b \\
u &= a - c \\
v &= t + u \\
a &= d \\
d &= v + u
\end{align*}
\]

- \(t,u \) and \(v \) are temporaries, while \(a, b, c, d \) are global variables
- Assume that registers are enough
 - Reuse registers whenever possible
Example of code generation (2)

\[t = a - b \]

LD R1, a; LD R2, b; SUB R2, R1, R2

\[u = a - c \]

LD R3, c; SUB R1, R1, R3
Example of code generation (3)

\[v = t + u \]

ADD R3, R2, R1

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>t</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>t</td>
<td>v</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>R2</td>
<td>R1</td>
<td>R3</td>
</tr>
</tbody>
</table>

LD R2, d

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>t</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>a,d</td>
<td>v</td>
<td>R2</td>
<td>b</td>
<td>c</td>
<td>d,R2</td>
<td>R1</td>
<td>R3</td>
<td></td>
</tr>
</tbody>
</table>

Consider Example of code generation (3)
Example of code generation (4)

\[d = v + u \]

\[
\begin{array}{ccc}
R1 & R2 & R3 \\
d & a & v \\
\end{array}
\]

ADD R1, R3, R1

\[
\begin{array}{cccccccc}
a & b & c & d & t & u & v \\
R2 & b & c & R1 & & & R3 \\
\end{array}
\]

ST a, R2; ST d, R1

\[
\begin{array}{ccc}
R1 & R2 & R3 \\
d & a & v \\
\end{array}
\]

\[
\begin{array}{cccccccc}
a & b & c & d & t & u & v \\
a,R2 & b & c & d,R1 & & & R3 \\
\end{array}
\]
The *getreg* algorithm

To compute \(\text{getreg}(x := y \text{ OP } z) \)

1. If \(y \) is stored in a register \(R \), return it as \(R_y \)
2. If \(y \) is not in a register, but exists \(R \) empty, return it as \(R_y \)
3. If \(y \) is not in a register and no register is empty, consider \(R \) and check any variable \(v \in RD(R) \)
 a. If \(AD(v) \) does not contain only \(R \), OK.
 b. If \(v = x \) and \(x \) is not an operand in this instruction, OK.
 c. If \(v \) is not used later, then OK.
 d. Otherwise emit \(\text{ST} \ v, R \) this is a *spill*

Choose \(R \) that minimizes the number of *spills* and return it as \(R_y \)

4. Same algorithm for determining \(R_z \)

5. For \(Rx \), similar algorithm, but
 a. Any register containing \(x \) only is OK
 b. It is possible to return \(R_y \) for \(Rx \) if \(y \) is no more used and if \(RD(R_y) = \{y\} \). Similarly for \(R_z \).

To compute \(\text{getreg}(x := y) \)

1. Choose \(R_y \) as above
2. Choose \(Rx = R_y \)
Register Allocation and Assignment

• The code generation algorithm based on `getreg()` is not optimal
 – All live variables in registers are stored (flushed) at the end of a block: this could be not necessary

• *Global register allocation* assigns variables to limited number of available registers and attempts to keep these registers consistent across basic block boundaries
 – Keeping variables in registers in looping code can result in big savings

• Groups of registers can be dedicated to certain values (base addresses, arithmetics, stack pointer)
 – Simpler code generator, but less efficient use of registers
Allocating Registers in Loops: Usage Counts

• Suppose
 – not storing a variable x has a benefit of 2
 – accessing a variable in register instead of in memory has benefit 1

• Let
 – $use(x, B) =$ number of uses of x in B before assignment
 – $live(x, B) =$ 1 if x is assigned in B and live on exit from B

• Then the (approximate) benefit of allocating a register to a variable x within a loop L is

\[
\sum_{B \in L} \left(use(x, B) + 2 \cdot live(x, B) \right)
\]
Global Register Allocation with Graph Coloring

• When a register is needed but all available registers are in use, the content of one of the used registers must be stored (spilled) to free a register.

• Graph coloring allocates registers and attempts to minimize the cost of spills.

• Build a conflict graph (interference graph): two variables have an edge if one is live where the other is defined.

• Find a k-coloring for the graph, with k the number of registers.
Register Allocation with Graph Coloring: Example

```
a := read();
b := read();
c := read();
a := a + b + c;
if (a < 10) {
    d := c + 8;
    write(c);
} else if (a < 20) {
    e := 10;
    d := e + a;
    write(e);
} else {
    f := 12;
    d := f + a;
    write(f);
}
write(d);
```
Register Allocation with Graph Coloring: Live Ranges

Live range of \(b \)

Interference graph: connected vars have overlapping ranges
Register Allocation with Graph Coloring: Solution

Interference graph

Solve

Three registers:

\[\begin{align*}
a &= r2 \\
b &= r3 \\
c &= r1 \\
d &= r2 \\
e &= r1 \\
f &= r1
\end{align*}\]
On Instruction Selection by Tree Rewriting

• Our simple algorithm uses a trivial Instruction Selection
• In practice it is a difficult problem, mainly for CISC machines with rich addressing mode
• Tree-rewriting rules can be used effectively for specifying the translation from IR to target code
• Tree-translation schemes can be handled with techniques similar to syntax-directed definitions: can be the basis of code-generator generators
• Start with a tree representing the IR code, and reduce it using the rules, producing the target code as associated actions
Code generation using a Tree Translation Scheme

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>$R_i \leftarrow C_a$</td>
<td>{ LD R_i, #a }</td>
</tr>
<tr>
<td>2)</td>
<td>$R_i \leftarrow M_x$</td>
<td>{ LD R_i, x }</td>
</tr>
<tr>
<td>3)</td>
<td>$M \leftarrow = \noindent$</td>
<td>{ ST x, R_i }</td>
</tr>
<tr>
<td></td>
<td>M_x R_i</td>
<td></td>
</tr>
<tr>
<td>4)</td>
<td>$M \leftarrow = \noindent$</td>
<td>{ ST *R_i, R_j }</td>
</tr>
<tr>
<td></td>
<td>R_j R_i</td>
<td></td>
</tr>
<tr>
<td>5)</td>
<td>$R_i \leftarrow \text{ind}$</td>
<td>{ LD R_i, a(R_j) }</td>
</tr>
<tr>
<td></td>
<td>C_a R_j</td>
<td></td>
</tr>
<tr>
<td>6)</td>
<td>$R_i \leftarrow + \noindent$</td>
<td>{ ADD R_i, R_i, a(R_j) }</td>
</tr>
<tr>
<td></td>
<td>R_i \text{ind}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_a R_j</td>
<td></td>
</tr>
<tr>
<td>7)</td>
<td>$R_i \leftarrow + \noindent$</td>
<td>{ ADD R_i, R_i, R_j }</td>
</tr>
<tr>
<td></td>
<td>R_i R_j</td>
<td></td>
</tr>
<tr>
<td>8)</td>
<td>$R_i \leftarrow + \noindent$</td>
<td>{ INC R_i }</td>
</tr>
<tr>
<td></td>
<td>R_i C_1</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 8.19: Intermediate-code tree for $a[i] = b + 1$](image)

- \rightarrow LD R0, #a
- \rightarrow ADD R0, R0, SP
- \rightarrow ADD R0, R0, i(SP)
- \rightarrow LD R1, b
- \rightarrow INC R1
- ST *R0, R1
Tree matching

• Various algorithms for pattern matching and general tree matching
• LR parsing on a string (prefix) representation of trees
 – Uses a syntax-directed translation scheme encoding the tree-translation scheme
 – Highly ambiguous. In absence of costs, reduce-reduce conflicts choose the longer reduction, shift-reduce prefer shift
• General tree matching transforming templates into sets of strings, and by matching multiple strings in parallel
• We can associate costs with the tree-rewriting rules and apply dynamic programming to obtain an optimal instruction selection
Optimal Code Generation for Expressions

• We can choose registers optimally
 – If a basic block consists of a single expression, or
 – It is sufficient to generate code for a block one expression at a time
Ershov Numbers

• Assign the nodes of an expression tree a number that tells how many registers needed
 – Label leaf 1
 – The label of an interior node with one child is the label of its child
 – The label of an interior node with two children
 • the larger one if the labels are different
 • One plus the label if the labels are the same
Ershov Numbers

(a-b)+e*(c+d)

\[
\begin{align*}
t1 &= a - b \\
t2 &= c + d \\
t3 &= e \times t2 \\
t4 &= t1 + t3
\end{align*}
\]
Generating Code From Labeled Expression Tree

• Recursive algorithm starting at the root
 – Label k means k registers will be used
 – $R_b, R_{b+1},...,R_{b+k-1}$, where $b>=1$ is a base

• To generate machine code for a node with label k and two children with equal labels
 – Recursively generate code for the right child, using base $b+1$: $R_{b+1}, R_{b+2},...,Result \ in \ R_{b+k-1}$
 – Recursively generate code for the left child, using base b: $R_b, R_{b+1},...,Result \ in \ R_{b+k-2}$
 – Generate instruction OP $R_{b+k-1}, R_{b+k-2}, R_{b+k-1}$
Generating Code From Labeled Expression Tree

• To generate machine code for a node with label k and two children with unequal labels
 – Recursively generate code for the child with label k, using base b: R_b, R_{b+1}, \ldots, Result in R_{b+k-1}
 – Recursively generate code for the child with label m, using base b: R_b, R_{b+1}, \ldots, Result in R_{b+m-1}
 – Generate instruction OP $R_{b+k-1}, R_{b+m-1}, R_b+1$.
• For a leaf x, if base is b generate LD R_b, x
Ershov Numbers

LD R3, d
LD R2, c
ADD R3, R2, R3
LD R2, e
MUL R3, R2, R3

LD R2, b
LD R1, a
SUB R2, R1, R2
ADD R3, R2, R3
Insufficient Supply of Registers

• Input: a labeled tree and a number \(r \) of registers
• For a node \(N \) with at least one child labeled \(r \) or greater
 – recursively generate code for the big child with \(b=1 \).
 The result will appear in \(R_r \)
 – Generate machine instruction \(ST \ t_k, R_r \)
 – If the little child has label \(r \) or greater, \(b=1 \). If the label is \(j<r \), then \(b=r-j \). The result in \(R_r \)
 – Generate the instruction \(LD \ R_{r-1}, t_k \)
 – Generate \(OP \ R_r, R_r, R_{r-1} \) or \(OP \ R_r, R_{r-1}, R_r \)
Insufficient Supply of Registers

```
LD R2, d
LD R1, c
ADD R2, R1, R2
LD R1, e
MUL R2, R1, R2
ST t3, R2
```

```
LD R2, b
LD R1, a
SUB R2, R1, R2
LD R1, t3
ADD R2, R2, R1
```