
Principles	of	Programming	Languages	
h"p://www.di.unipi.it/~andrea/Dida2ca/PLP-16/	

Prof.	Andrea	Corradini	
Department	of	Computer	Science,	Pisa	

•  On	code	genera;on	and	local	op;miza;on	
	

Lesson 12!

2	

On	Code	Genera;on	

•  Code	produced	by	compiler	must	be	correct	
– Source-to-target	program	transforma;on	should	
be	seman&cs	preserving	

•  Code	produced	by	compiler	should	be	of	high	
quality	
– Effec;ve	use	of	target	machine	resources	
– Heuris;c	techniques	should	be	used	to	generate	
good	but	subop;mal	code,	because	genera;ng	
op;mal	code	is	undecidable	

3	

Posi;on	of	a	Code	Generator	in	the	
Compiler	Model	

Front-End	 Code	
Op;mizer	

Source�
program	

Symbol	Table	

Lexical error�
Syntax error�

Semantic error	

Intermediate�
code	 Code	

Generator	

Intermediate�
code	

Target�
program	

4	

Code	Genera;on:	tasks	

•  Code	genera;on	has	three	primary	tasks:	
–  Instruc;on	selec;on	
– Register	alloca;on	and	assignment	
–  Instruc;on	ordering	

•  The	compiler	can	include	an	op;miza;on	
phase	(mapping	IR	to	op;mized	IR)	before	the	
code	genera;on	

•  We	consider	some	simple	op;miza;ons	only		

5	

Input	of	the	Code	Generator	

•  The	input	of	code	genera;on	is	the	IR	of	the	
source	program,	with	info	in	the	symbol	table	

•  Assump;ons:	
– We	assume	that	the	IR	is	three-address	code	
–  Values	and	names	in	the	IR	can	be	manipulated	
directly	by	the	target	machine		

–  The	IR	is	free	of	syntac;c	and	sta;c	seman;c	errors		
–  Type	conversion	operators	have	been	introduced	
where	needed	

6	

Target	Program	Code	

•  The	back-end	code	generator	of	a	compiler	
may	generate	different	forms	of	code,	
depending	on	the	requirements:	
– Absolute	machine	code	(executable	code)	
– Relocatable	machine	code	(object	files	for	linker:	
allows	separate	compila;on	of	subprograms)	

– Assembly	language	(facilitates	debugging,	but	
requires	an	assembly	step)	

	

7	

Target	Machine	Architecture	
•  Defines	the	instruc;on-set,	including	addressing	modes:	

high	impact	on	the	code	generator	
•  RISC	(reduced	instruc&on	set	computer):	single-clock	

instruc;ons,	many	register,	three	address	instruc;ons,	
simple	addressing	modes	

•  CISC	(complex	instruc&on	set	computer):	mul;-clock	
instruc;ons,	complex	addressing	modes,	several	register	
classes,	variable-length	instruc;ons	opera;ng	in	memory	

•  Stack-based	machines:	operands	are	put	on	the	stack	and	
opera;ons	act	on	top	of	stack	(held	in	register).	In	general	
less	efficient.	
–  Revived	thanks	to	bytecode	forms	for	interpreters	like	the	Java	
Virtual	Machine	

8	

Our	Target	Machine	
•  We	consider	a	RISC-like	machine	with	some	CISC-like	

addressing	modes	
•  Assembly	code	as	target	language	(for	readability)	

–  Variable	names	and	constant	are	not	translated	
–  Absolute/relocatable	target	code	requires	to	translate	them	
using	info	from	symbol	table		

•  Our	(hypothe;cal)	machine:	
–  Byte-addressable	(word	=	4	bytes)	
–  Has	n	general	purpose	registers	R0,	R1,	…,	Rn-1	
–  Simplified	instruc;on-set:	all	operands	are	integer	
–  Three-address	instruc;ons	of	the	form	

	 	op		dest,	src1,	src2	

9	

The	Target	Machine:	Instruc;on	Set	

•  LD r, x (load	opera;on:	r	=	x)	
•  ST x, r (store	opera;on:	x	=	r)	
•  OP dst, src1, src2 where	OP	=	ADD,	SUB,	…:	

(apply	OP	to	src1	and	src2,	placing	the	result	in	dst).		

•  BR L (uncondi;onal	jump:	goto	L)	

•  Bcond r, L (condi;onal	jump:	if	cond(r)	goto	L)	
es: BLTZ r, L (if	(r	<	0)	goto	L)	

	

10	

The	Target	Machine:	Addressing	Modes	

•  Addressing modes and corresponding costs (c is an
integer, x is a variable name, R is a register):	

	

Mode	 Form	 Address (l-value)	 Added
Cost	

Absolute	 M M 1	
Variable name	 x location of x in memory 1	

Register	 R R 0	
Indexed address	 c(R)	 c+contents(R)	 1	
Indexed integer	 x(R)	 l-value of x +contents(R)	 1	
Indirect register	 *R	 contents(R)	 0	
Indirect indexed	 *c(R)	 contents(c+contents(R))	 1	

Literal	 #c	 N/A	 1	

11	

Instruc;on	Costs	
•  Machine	is	a	simple,	non-super-scalar	processor	with	

fixed	instruc;on	costs	
•  Realis;c	machines	have	deep	pipelines,	various	kinds	of	

caches,	parallel	instruc;ons,	etc.	
•  Define:	
cost	(OP dst, src1, src2)	=			1	 		
	 	 	 	 	 	 	 	 	 	 	 	+	cost(dst-mode)		
	 	 	 	 	 	 	 	 	 	 	 	+	cost(src1-mode)		
	 	 	 	 	 	 	 	 	 	 	 	+	cost(src2-mode)	
•  Cost	corresponds	to	length	of	instruc;ons	in	memory	

12	

Instruction 	 	Operation 	 	 	 	 	 	 	 	 	 	 Cost

LD R0,R1 	 	Load content(R1) into register R0 1

LD R0,M 	 	Load content(M) into register R0 	 	 	 	 	 	2�
	
ST M,R0 	 	Store content(R0) into memory location R0 2�
	
BR 20(R0) 	Jump to address 20+contents(R0) 	 	 	 2

ADD R0 R0 #1 Increment R0 by 1 2	

MUL R0,M,*12(R1) 	Multiply contents(M) by contents(12+contents(R1) 	

	 	 	 	 	 	and store the result in R0 3	

Examples	

13	

Instruc;on	Selec;on	

•  Instruc;on	selec;on	depends	on	(1)	the	level	of	the	
IR,	(2)	the	instruc;on-set	architecture,	(3)	the	
desired	quality	(e.g.	efficiency)	of	the	generated	code	

•  Suppose	we	translate	three-address	code�
	x:=y+z 	to:	

•  Then 		
a:=a+1

Befer	 Best	

LD R0,a
ADD R0,R0,#1
ST a,R0 Cost	=	6	

ADD a,a,#1 Cost = 4 INC a Cost	=	2�
(if	available)	

LD R0,y \\ R0=y
ADD R0,R0,z 	\\ R0=R0+z
ST x,R0 \\ x=R0

14	

Need	for	Global	Machine-Specific	
Code	Op;miza;ons	

•  Suppose	we	translate	three-address	code�
	 	x:=y+z 	to:�
	

•  Then,	we	translate�
	a:=b+c
 d:=a+e 	to:	

•  We	can	choose	among	several	equivalent	instruc;on	
sequences	à	Dynamic	programming	algorithms		

Redundant	

LD R0,y \\ R0=y
ADD R0,R0,z 	\\ R0=R0+z
ST x,R0 \\ x=R0

LD R0,b
ADD R0,R0,c
ST a,R0
LD R0,a
ADD R0,R0,e
ST d,R0

15	

Register	Alloca;on	and	Assignment	

•  Efficient	u;liza;on	of	the	limited	set	of	registers	is	
important	to	generate	good	code	

•  Registers	are	assigned	by	
–  Register	alloca&on	to	select	the	set	of	variables	that	will	
reside	in	registers	at	a	point	in	the	code	

–  Register	assignment	to	pick	the	specific	register	that	a	
variable	will	reside	in	

•  Finding	an	op;mal	register	assignment	in	general	is	
NP-complete	

16	

Choice	of	Instruc;on	Ordering	

•  When	instruc;ons	are	independent,	their	evalua;on	
order	can	be	changed	

	
	
•  The	reordered	sequence	could	lead	to	a	befer	target	
code	

t1:=a+b
t2:=c+d
t3:=e*t2
t4:=t1-t3

a+b-(c+d)*e

t2:=c+d
t3:=e*t2
t1:=a+b
t4:=t1-t3

reorder	

Towards	Flow	Graphs	

•  In	order	to	improve	instruc&on	selec&on,	register	
alloca&on	and	selec&on,	and	instruc&on	ordering,	we	
structure	the	input	three-address	code	as	a	flow	graph	

•  This	allows	to	make	explicit	certain	dependencies	
among	instruc;ons	of	the	IR	

•  Simple	op;miza;on	techniques	are	based	on	the	
analysis	of	such	dependencies	
–  Befer	register	alloca;on	knowing	how	variables	are	
defined	and	used	

–  Befer	instruc;on	selec;on	looking	at	sequences	of	three-
address	code	statements		

17	

18	

Flow	Graphs	

•  A	flow	graph	is	a	graphical	representa;on	of	a	
sequence	of	instruc;ons	with	control	flow	
edges	

•  A	flow	graph	can	be	defined	at	the	
intermediate	code	level	or	target	code	level	

•  Nodes	are	basic	blocks,	sequences	of	
instruc;ons	that	are	always	executed	together	

•  Arcs	are	execu;on	order	dependencies		
	

2) ! !j=1 !
!
3) ! !t1=10*i !
4) ! !t2=t1+j  
5) ! !t3=8*t2 !
6) ! !t4=t3-88 !
7) ! !a[t4]=0.0 !
8)   ! !j=j+1 !
9)   ! !if j<=10 goto (3)!
!
10) !i=i+1 !
11) !if i<=10 goto(2)!
 !
12) !i=1! 19	

Basic	Blocks	
•  A	basic	block	is	a	sequence	of	instruc;ons	s.t.:	
– Control	enters	through	the	first	instruc;on	only	
– Control	leaves	the	block	without	branching,	
except	possibly	at	the	last	instruc;on	

2) ! !j=1 !
3) ! !t1=10*i !
4) ! !t2=t1+j  
5) ! !t3=8*t2 !
6) ! !t4=t3-88 !
7) ! !a[t4]=0.0 !
8)   ! !j=j+1 !
9)   ! !if j<=10 goto (3) !
10) !i=i+1 !
11) !if i<=10 goto(2) !
12) !i=1!

20	

Basic	Blocks	and	Control	Flow	Graphs	
•  A	control	flow	graph	(CFG)	is	a	directed	graph	with	
basic	blocks	Bi	as	ver;ces	and	with	edges	Bi	→	Bj	iff	Bj	
can	be	executed	immediately	aier	Bi		

•  Then	Bi	is	a	predecessor	of	Bj,	Bj	is	a	successor	of	Bi	
2) ! !j=1 !
!
3) ! !t1=10*i !
4) ! !t2=t1+j  
5) ! !t3=8*t2 !
6) ! !t4=t3-88 !
7) ! !a[t4]=0.0 !
8)   ! !j=j+1 !
9)   ! !if j<=10 goto (3)!
!
10) !i=i+1 !
11) !if i<=10 goto(2)!
 !
12) !i=1! 20	

2) ! !j=1 !
3) ! !t1=10*i !
4) ! !t2=t1+j  
5) ! !t3=8*t2 !
6) ! !t4=t3-88 !
7) ! !a[t4]=0.0 !
8)   ! !j=j+1 !
9)   ! !if j<=10 goto (3) !
10) !i=i+1 !
11) !if i<=10 goto(2) !
12) !i=1!

21	

Par;;on	Algorithm	for	Basic	Blocks	

Input: 	A	sequence	of	three-address	statements	
Output:	A	list	of	basic	blocks	with	each	three-address	statement	

	in	exactly	one	block	
	
1.  Determine	the	set	of	leaders,	the	first	statements	in	basic	blocks	

a)  The	first	statement	is	the	leader	
b)  Any	statement	that	is	the	target	of	a	goto	is	a	leader	
c)  Any	statement	that	immediately	follows	a	goto	is	a	leader	

2.  For	each	leader,	its	basic	block	consist	of	the	leader	and	all	
statements	up	to	but	not	including	the	next	leader	or	the	end	
of	the	program		

Par;;on	Algorithm	for	Basic	Blocks:	
Example	

22	

1) ! !i=1 ! ! ! !(a)  
2) ! !j=1! ! ! ! !(b) !
3) ! !t1=10*i ! ! !(b)!
4) ! !t2=t1+j  
5) ! !t3=8*t2 !
6) ! !t4=t3-88 !
7) ! !a[t4]=0.0 !
8)  !j=j+1 !
9)  !if j<=10 goto(3) !
10) !i=i+1 ! ! ! !(c)!
11) !if i<=10 goto(2) !
12) !i=1 ! ! ! !(c)!
13)   !t5=i-1! ! ! !(b) !
14)  !t6=88*t5 !
15) !a[t6] = 1.0  
16) !i=i+1  
17) !if i<=10 goto(13) !
 !Leaders!
!

1) ! !i=1 ! ! ! !(a)  
 
2) ! !j=1! ! ! ! !(b) !
 
3) ! !t1=10*i! ! ! !(b) !
4) ! !t2=t1+j  
5) ! !t3=8*t2 !
6) ! !t4=t3-88 !
7) ! !a[t4]=0.0 !
8)  !j=j+1 !
9)  !if j<=10 goto(3)!
 !
10) !i=i+1 ! ! ! !(c)!
11) !if i<=10 goto(2) !
!
12) !i=1 ! ! ! !(c)!
!
13)  !t5=i-1 ! ! ! !(b) !
14)  !t6=88*t5 !
15) !a[t6] = 1.0  
16) !i=i+1  
17) !if i<=10 goto(13) !

23	

Loops	

•  Programs	spend	most	of	the	;me	execu;ng	
loops	

•  Iden;fying	and	op;mizing	loops	is	important	
during	code	genera;on	

•  A	loop	is	a	collec;on	of	basic	blocks,	such	that	
– All	blocks	in	the	collec;on	are	strongly	connected	
– The	collec;on	has	a	unique	entry,	and	the	only	
way	to	reach	a	block	in	the	loop	is	through	the	
entry	

Loops	(Example)	

Strongly	connected	
components:	
	
SCC={ 	{B2,B3,B4},	

	{B3},	{B6}	}	

Entries:	
B2,	B3,	B6	

1) ! !i=1 ! ! ! !(a)  
 
2) ! !j=1! ! ! ! !(b) !
 
3) ! !t1=10*i! ! ! !(b) !
4) ! !t2=t1+j  
5) ! !t3=8*t2 !
6) ! !t4=t3-88 !
7) ! !a[t4]=0.0 !
8)  !j=j+1 !
9)  !if j<=10 goto(3)!
 !
10) !i=i+1 ! ! ! !(c)!
11) !if i<=10 goto(2) !
!
12) !i=1 ! ! ! !(c)!
!
13)  !t5=i-1 ! ! ! !(b) !
14)  !t6=88*t5 !
15) !a[t6] = 1.0  
16) !i=i+1  
17) !if i<=10 goto(13) !

B1	

B2	

B3	

B4	

B5	

B6	

24	

Local	vs	Global	Op;miza;on	
•  Code	op;miza;on	techniques	that	work	in	the	
scope	of	a	basic	block	are	called	local	
op&miza&ons.	
– DAG	based	op;miza;ons	
–  Peephole	op;miza;ons	
–  Local	register	alloca;on	

•  Code	op;miza;on	techniques	that	need	to	
analyze	the	en;re	control	flow	graph	of	a	
program	are	called	global	op&miza&ons.	
– Dataflow-analysis	based	op;miza;ons	
–  (Global)	register	alloca;on	

25	

26	

Equivalence	of	Basic	Blocks	

•  Local	op;miza;on	must	ensure	that	the	
op;mized	block	is	equivalent	to	the	original	one	

•  Two	basic	blocks	are	(seman;cally)	equivalent	if	
they	compute	the	same	set	of	expressions	

b := 0
t1 := a + b
t2 := c * t1
a := t2

a := c * a
b := 0

a := c*a
b := 0

a := c*a
b := 0

Blocks	are	equivalent,	assuming	t1	and	t2	are	dead:	no	longer	used	(no	longer	live)	

DAG-Based	Op;miza;ons	
•  Some	local	op;miza;ons	relies	on	a	directed	
acyclic	representa;on	of	the	instruc;ons	in	the	
basic	block.	These	DAGS	are	constructed	as	
follows:	
–  There	is	a	node	in	the	DAG	for	each	input	value	
appearing	in	the	basic	block.	

–  There	is	a	node	associated	with	each	instruc;on	in	the	
basic	block.	

–  If	instruc;on	S	uses	variables	defined	in	statements	
S1,	…,	Sn,	then	we	have	edges	from	each	Si	to	S.	

–  If	a	variable	is	defined	in	the	basic	block,	but	is	not	
used	inside	it,	then	we	mark	it	as	an	output	value.	

27	

Example	of	DAG	Representa;on	

•  In	the	basic	block,	the	first	occurrences	of	b,	c	and	d	are	
input	values,	because	they	are	used	in	the	block,	but	are	
not	defined	before	the	first	use.	

•  The	defini;ons	of	c	and	d,	at	lines	3	and	4,	are	output	
values,	because	they	are	not	used	in	the	basic	block.	

1:		a	=	b	+	c	
2:		b	=	a	–	d	
3:		c	=	b	+	c	
4:		d	=	a	–	d	

c

+,a

b

-,b

+,c

d

-,d

28	

c

+,a

b

-,b

+,c

d

-,d

Algorithm	for	DAG	Representa;on	
•  For	each	input	value	vi:	

–  create	a	node	vi	in	the	DAG	
–  label	this	node	with	the	tag	in	

•  For	each	statement	v	=	f	(v1,	...,	vn),	in	
the	basic	block:	
–  create	a	node	v	in	the	DAG	
–  create	an	edge	(v1,	v)	for	each	i,	1	≤	i	≤	n	
–  label	this	node	with	the	tag	f	

1:		a	=	b	+	c	
2:		b	=	a	-	d	
3:		c	=	b	+	c	
4:		d	=	a	-	d	

How	could	we	adapt	our	algorithm	to	reuse	
expressions	that	have	already	been	created?	

29	

Finding	Local	Common	Subexpressions	
1.  For	each	input	value	vi:	

1.  create	a	node	vi	in	the	DAG	
2.  label	this	node	with	the	tag	in!

2.  For	each	statement	v	=	f(v1,	...,	vn),	in	
the	sequence	defined	by	the	basic	
block:	
1.  If	the	DAG	already	contains	a	node	v'	

labeled	f,	with	all	the	children	(v1,	...,	vn)	
in	the	order	given	by	i,	1	≤	i	≤	n	
1.  Let	v'	be	an	alias	of	v	in	the	DAG	

2.  else:	
1.  create	a	node	v	in	the	DAG	
2.  create	an	edge	(v1,	v)	for	each	i,	1	≤	i	≤	n	
3.  label	this	node	with	the	tag	f	

c

+,a

b

-,b

+,c

d

-,d

1:		a	=	b	+	c	
2:		b	=	a	-	d	
3:		c	=	b	+	c	
4:		d	=	a	-	d	

30	

Value	Numbers	
•  We	associate	each	
node	with	a	signature	
(lb,	v1,	….,	vn),	where	lb	
is	the	label,	and	each	vi,	
1	≤	i	≤	n	is	a	child	
– We	use	this	signature	as	
the	key	of	a	hash-
func&on	

–  The	value	produced	by	
the	hash-func;on	is	
called	the	value-number	
of	that	node	

•  Whenever	we	build	a	new	
node	to	our	DAG,	e.g.,	step	
2.1	of	our	algorithm,	we	
perform	a	search	in	the	
hash-table.	If	the	node	is	
already	there,	we	simply	
return	a	reference	to	it.	

c

+,a

b

-,b

+,c

d

-,d

What	is	the	
result	of	
op;mizing	this	
DAG?	

31	

Value	Numbers	
•  Value	numbers	allows	us	to	refer	to	nodes	in	our	
DAG	by	their	seman;cs,	instead	of	by	their	
textual	program	representa;on.	

c

+,a

b

-,b

+,c

d

-,d (in, _)

(in, _)

(in, _)

(+, 1, 2)

(-, 3, 4)

(+, 5, 2)

(-, 3, 4)

Original DAG Value-Number Table

1 (b)

2 (c)

3 (d)

4 (a = b + c)

5 (b = d - a)

6 (c = b + c)

7 (d = d - a) c

+,a

b

-,b

+,c

d

-,d

Optimized DAG

1 2

3 4

5

6

7

1 2

3 4

5

6

5

32	

Finding	more	iden;;es	
•  We	can	use	several	tricks	to	find	common	
subexpressions	in	DAGs	
–  Commuta;vity:	the	value	number	of	x	+	y	and	y	+	x	
should	be	the	same.	

–  Iden;;es:	the	comparison	x	<	y	can	oien	be	
implemented	by	t	=	x	–	y;	t	<	0	

– Associa;vity:	a	=	b	+	c	
t	=	c	+	d	
e	=	t	+	b	

a	=	b	+	c	
e	=	a	+	d	

33	

Dead	Code	Elimina;on	
•  We	can	eliminate	any	node	if:	
–  This	node	has	no	descendants,	e.g.,	it	is	a	root	node.	
–  This	node	is	not	marked	as	an	output	node.	

•  We	can	iterate	this	pafern	of	elimina;ons	un;l	we	
have	no	more	nodes	that	we	can	remove.	

•  Examples	if	(-,	d)	(or	(+,c))	were	not	an	output	node	

c

+,a

b

-,b

+,c

d

-,d

1 2

3 4

5

6

5

c

+,a

b

-,b

+,c

d

-,d

1 2

3 4

5

6

5

c

+,a

b

-,b

+,c

d

-,d

1 2

3 4

5

6

5

34	

Algebraic	Iden;;es	

•  We	can	exploit	algebraic	iden;;es	to	op;mize	
DAGs	
– Arithme;c	Iden;;es:	

•  x	+	0	=	0	+	x	=	x;			x	*	1	=	1	*	x	=	x;				x	–	0	=	x;					x/1	=	x	
– Reduc;on	in	strength:	

•  x2	=	x	*	x;					2	*	x	=	x	+	x;			x	/	2	=	x	*	0.5;			4	*	x	=	x	<<	2	
Reduc&on	in	strength	op;mizes	code	by	replacing	some	
sequences	of	instruc;ons	by	others,	which	can	be	
computed	more	efficiently.	

– Constant	folding:	
•  evaluate	expressions	at	compila;on	;me,	replacing	
each	expression	by	its	value	

35	

Peephole	Op;miza;ons	
•  Peephole	op;miza;ons	are	a	
category	of	local	code	
op;miza;ons	

•  The	principle	is	simple:	
–  the	op;mizer	analyzes	
sequences	of	instruc;ons.	

–  only	code	that	is	within	a	small	
window	of	instruc;ons	is	
analyzed	each	;me.	

–  this	window	slides	over	the	
code.	

–  once	paferns	are	discovered	
inside	this	window,	
op;miza;ons	are	applied.	

•  May	go	across	the	border	of	
basic	blocks	

 %8 = load i32* %2, align 4

 store i32 %8, i32* %sum, align 4

 %9 = load i32* %sum, align 4

 %10 = add nsw i32 %9, 1

 store i32 %10, i32* %sum, align 4

 %11 = load i32* %3, align 4

 %12 = load i32* %2, align 4

 %13 = mul nsw i32 %11, %12

 %14 = load i32* %1, align 4

 %15 = sub nsw i32 %13, %14

 %16 = load i32* %2, align 4

 %17 = load i32* %2, align 4

 %18 = mul nsw i32 %16, %17

 %19 = add nsw i32 %15, %18

 %20 = load i32* %sum, align 4

 %21 = add nsw i32 %20, %19

 store i32 %21, i32* %sum, align 4

 %22 = load i32* %sum, align 4

 %23 = add nsw i32 %22, -1

 store i32 %23, i32* %sum, align 4

 br label %24

36	

Redundant	Loads	and	Stores	
•  Some	memory	access	paferns	are	clearly	redundant:	

load R0, m!
store m, RO!

•  Paferns	like	this	can	be	easily	eliminated	by	a	peephole	
op;mizer.	
•  	Why	is	this	op;miza;on	only	safe	inside	a	basic	

block?	

37	

Branch	Transforma;ons	
•  Some	branches	can	be	rewrifen	into	faster	code.	
For	instance:	

if debug == 1 goto L1!
goto L2!
L1: …!
L2: …!

if debug != 1 goto L2!
L1: …!
L2: …!

•  This	op;miza;on	crosses	the	boundaries	of	basic	blocks,	
but	it	is	s;ll	performed	on	a	small	sliding	window.	

38	

Jumps	to	Jumps	
•  How	could	we	op;mize	this	code	sequence?	
 goto L1!
 ...!
L1: goto L2!

39	

•  How	could	we	op;mize	this	code	sequence?	
 goto L1!
 ...!
L1: goto L2!

 goto L2!
 ...!
L1: goto L2!

Could	we	remove	
the	third	line	
altogether?	

40	

Jumps	to	Jumps	

Jumps	to	Jumps	
•  How	could	we	op;mize	this	code	sequence?	

 goto L1!
 ...!
L1: goto L2!

 goto L2!
 ...!
L1: goto L2!

 goto L2!
 ...!

•  We	can	eliminate	the	second	jump,	provided	that	we	
know	that	there	is	no	jump	to	L1	in	the	rest	of	the	
program.	

•  No;ce	that	this	peephole	op;miza;on	requires	some	
previous	informa;on	gathering:	we	must	know	which	
instruc;ons	are	targets	of	jumps.	

41	

Jumps	to	Jumps	
•  How	could	we	op;mize	this	code	sequence?	

 if a < b goto L1!
 ...!
L1: goto L2!

We	saw	how	to	op;mize	
the	sequence	on	the	
right.	Does	the	same	
op;miza;on	applies	on	
the	code	below?	

 goto L1!
 ...!
L1: goto L2!

42	

Jumps	to	Jumps	
•  How	could	we	op;mize	this	code	sequence?	

 if a < b goto L1!
 ...!
L1: goto L2! if a < b goto L2!

 ...!
L1: goto L2!

The	op;miza;on	is	the	same	as	in	the	previous	case.	and	if	there	
is	no	jump	to	L1,	we	can	remove	it	from	the	code,	as	it	becomes	
dead-code	aier	our	transforma;on.	

43	

44	

Renaming	Temporary	Variables	

•  Temporary	variables	that	are	dead	at	the	end	
of	a	block	can	be	safely	renamed	

t1 := b + c
t2 := a - t1
t1 := t1 * d
d := t2 + t1

t1 := b + c
t2 := a - t1
t3 := t1 * d
d := t2 + t3

Normal-form block	

45	

Interchange	of	Statements	

•  Independent statements can be reordered	

t1 := b + c
t2 := a - t1
t3 := t1 * d
d := t2 + t3

t1 := b + c
t3 := t1 * d
t2 := a - t1
d := t2 + t3

Note	that	normal-form	blocks	permit	all	
statement	interchanges	that	are	possible	

