
Principles	of	Programming	Languages	
h"p://www.di.unipi.it/~andrea/Dida2ca/PLP-16/	

Prof.	Andrea	Corradini	
Department	of	Computer	Science,	Pisa	

•  Syntax-Directed	Transla>on	
	

Lesson 10!

2	

The	Structure	of	the	Front-End	

Lexical	analyzer	

Source	
Program�

(Character�
stream)	

Token�
stream	

Intermediate	
representation	

Syntax	defini>on	
(BNF	grammar)	

Develop�
parser and code�

generator for translator	

IR	specifica>on	

Parser	
Syntax-directed	

translator	

3	

Syntax-Directed	Transla>on	
•  Briefly	introduced	in	the	first	lectures	
•  General	technique	to	“manipulate”	programs,	based	
on	context-free	grammars	

•  Tightly	bound	with	parsing	
•  Will	be	used	for	sta>c	analysis	(type	checking)	and	
(intermediate)	code	genera>on	

•  Several	other	uses:	
–  Genera>on	of	abstract	syntax	trees	
–  Evalua>on	of	expressions	
–  Implementa>on	of	Domain	Specific	Languages	(see	
example	on	typeseUng	math	formulas	in	the	book)	

–  	…	
•  Partly	supported	by	parser	generators	like	Yacc		

•  We	will	consider:	
– Syntax-Directed	Defini>ons	(A"ribute	Grammars)	
– Syntax-Directed	Transla>on	Schemes	
– Transla>on	evaluated	on	the	parse	tree	
– Transla>on	evaluated	during	parsing	

	

4	

Syntax-Directed	Transla>on	

5	

Syntax-Directed	Defini>ons	

•  A	syntax-directed	defini6on	(or	a"ribute	grammar)	is	a	
context	free	grammar	where:	
–  Terminals	and	nonterminals	have	a"ributes	holding	values	
–  Produc>ons	have	associated	seman6c	rules,	which	set	the	
values	of	aYributes	

•  Each	grammar	symbol	can	have	any	number	of	
aYributes		

•  AYribute	val	of	symbol	X	is	denoted	X.val	
•  A	seman>c	rule	of	a	produc>on	A	→	α	has	the	form	

	 	b	:=	f(c1,c2,…,ck)	
where	b,c1,c2,…,ck	are	aYributes	of	A	or	of	the	symbols	
in	α	

6	

AYributes	
•  An	annotated	parse	tree	is	a	parse	tree	where	all	
aYributes	of	nodes	have	the	corresponding	value	

•  AYribute	values	may	represent	
–  Numbers	(literal	constants)	
–  Strings	(literal	constants)	
–  Intermediate	program	representa>ons	

•  (pointers	to)	nodes	of	abstract	syntax	tree	
•  (pointers	to)	strings	represen>ng	the	intermediate	code	

– Memory	loca>ons,	such	as	a	frame	index	of	a	local	variable	
or	func>on	argument	

–  A	data	type	for	type	checking	of	expressions	
–  Scoping	informa>on	for	local	declara>ons	

7	

Synthesized	vs.	Inherited	AYributes	

•  Given	a	produc>on		A	→	α	and	a	seman>c	rule 	 		
b	:=	f(c1,c2,…,ck)	
–  if		b	is	an	aYribute	of	A	then	it	is	a	synthesized	aYribute	of	A	
–  if	b	is	an	aYribute	of	a	symbol	B	in	α	then	it	is	an		inherited	
aYribute	B	

•  Note:	terminal	symbols	have	only	synthesized	aYributes	

D → T L �
T → int �
… �
L → id	

L.in := T.type�
T.type := ‘integer’�
… �
… := L.in	

Production	 Semantic Rule	 inherited	

synthesized	

8	

S-AYributed	Defini>ons	
•  A	syntax-directed	defini>on	that	uses	synthesized	
aYributes	exclusively	is	called	an	S-a"ributed	
defini6on	(or	S-a"ributed	grammar)		

•  A	parse	tree	of	an	S-aYributed	defini>on	can	be	
annotated	with	a	single	boYom-up	traversal	

•  Given	a	parse	tree,	any	postorder	depth-first	
traversal	algorithm	can	be	used	to	execute	the	
seman>c	rules	and	assign	aYribute	values	

•  In	some	cases	aYributes	can	be	evaluated	during	
parsing,	without	building	the	parse	tree	explicitly		

•  [Yacc/Bison	only	support	S-aYributed	defini>ons]	

9	

Example:	evalua>ng	expressions	with	
synthesized	aYributes	

L → E n �
E → E1 + T �
E → T �
T → T1 * F�
T → F�
F → (E)	
F → digit	

L.val := E.val�
E.val := E1.val + T.val�
E.val := T.val�
T.val := T1.val * F.val�
T.val := F.val�
F.val := E.val�
F.val := digit.lexval	

Productions	 Semantic Rules	

A	Syntax-Directed	Defini6on	(SDD)	or	A"ribute	Grammar	

10	

Example:	An	Annotated	Parse	Tree	

E.val = 16	

T.val = 2	

9	 +	 5	 +	 2	

E.val = 14	

E.val = 9	 T.val = 5	

F.val = 9	

L.val = 16	

n	

T.val = 9	 F.val = 5	

F.val = 5	

L → E n �
E → E1 + T �
E → T �
T → T1 * F�
T → F�
F → (E)	
F → digit	

Productions	
L.val := E.val�
E.val := E1.val + T.val�
E.val := T.val�
T.val := T1.val * F.val�
T.val := F.val�
F.val := E.val�
F.val := digit.lexval	

Semantic Rule	

11	

Annota>ng	a	Parse	Tree	with		
Depth-First	Post-Order	Traversals	

procedure visit(n : node);�
begin �
 for each child m of n, from left to right do�
 	visit(m);�
 evaluate semantic rules at node n�
end	

12	

Depth-First	Traversals	(Example)	

E.val = 16	

T.val = 2	

9	 +	 5	 +	 2	

E.val = 14	

E.val = 9	 T.val = 5	

F.val = 9	

L.val = 16	

n	

T.val = 9	 F.val = 5	

F.val = 5	 L.val := E.val�
E.val := E1.val + T.val�
E.val := T.val�
T.val := T1.val * F.val�
T.val := F.val�
F.val := E.val�
F.val := digit.lexval	

Semantic Rules	

Note:	right-to-leb		
traversal	works	as	well		

13	

Example:	genera>on	of		
Abstract	Syntax	Trees	

•  A	parse	tree	is	called	a	concrete	syntax	tree	
•  An	abstract	syntax	tree	(AST)	is	defined	by	the	
compiler	writer	as	a	more	convenient	
intermediate	representa>on	

E	

+	E	 T	

id	

id	

id	

*	

Concrete syntax tree	

+	

*	id	

id	 id	

Abstract syntax tree	

T	 T	

14	

S-AYributed	Defini>ons	for	Genera>ng	
Abstract	Syntax	Trees	

Production	
E → E1 + T �
E → E1 - T �
E → T �
T → T1 * id �
T → T1 / id�
T → id	

Semantic Rule�
E.nptr := mknode(‘+’, E1.nptr, T.nptr)	
E.nptr := mknode(‘-’, E1.nptr, T.nptr)	
E.nptr := T.nptr	
T.nptr := mknode(‘*’, T1.nptr, mkleaf(id, id.entry))	
T.nptr := mknode(‘/’, T1.nptr, mkleaf(id, id.entry))	
T.nptr := mkleaf(id, id.entry)	

15	

Genera>ng	Abstract	Syntax	Trees	

E.nptr	

+	E.nptr	 T.nptr	

id	

id	

id	

*	T.nptr	 T.nptr	

+	

id	 *	

id	 id	

Synthesize�
AST	

16	

Example	AYribute	Grammar	with	
Synthesized	+	Inherited	AYributes	

D → T L �
T → int �
T → real�
L → L1 , id �
L → id	

L.in := T.type�
T.type := ‘integer’ �
T.type := ‘real’ �
L1.in := L.in; addtype(id.entry, L.in)�
addtype(id.entry, L.in)	

Production	 Semantic Rule	
Synthesized:	T.type, id.entry �
Inherited: 	L.in	

•  Grammar	genera>ng	declara>on	of	typed	variables	
•  Limited	side-effect:	The	aYributes	add	typing	informa>on	to	

the	symbol	table	via	side	effects	
•  Inherited	aYributes	allow	to	handle	informa>on	that	does	not	

respect	the	tree	structure	

Evalua>on	order	of	aYributes	

•  In	presence	of	inherited	aYributes,	it	is	not	obvious	in	
what	order	the	aYributes	should	be	evaluated	

•  AYributes	of	a	nonterminal	in	a	produc>on	may	
depend	in	an	arbitrary	way	on	aYributes	of	other	
symbols	

•  The	evalua>on	order	must	be	consistent	with	such	
dependencies	

•  If	the	dependencies	are	circular,	there	is	no	way	to	
evaluate	the	aYributes	

•  Side-effect	rules	are	interpreted	as	defini>on	of	
dummy	synthesized	aYributes	of	the	head	symbol	

17	

18	

Dependency	Graphs	for		
AYributed	Parse	Trees	

A	→	X	Y	
A.a := f(X.x, Y.y)	
 synthesized	

A.a	

X.x	 Y.y	

X.x := f(A.a, Y.y)	
 inherited	

A.a	

X.x	 Y.y	

Y.y := f(A.a, X.x)	
 inherited	

A.a	

X.x	 Y.y	

Direction of�
�

value dependence	

•  Given	a	parse	tree,	consider	as	nodes	all	its	aYributes	
•  Represent	graphically	the	dependencies	induced	by	seman>c	

rules	

19	

Dependency	Graphs	with	Cycles?	

•  Edges	in	the	dependency	graph	determine	the	
evalua>on	order	for	aYribute	values	

•  Dependency	graphs	cannot	be	cyclic:	no	
evalua>on	order	is	possible	

A.a := f(X.x) �
X.x := f(Y.y)�
Y.y := f(A.a)	

A.a	

X.x	 Y.y	

Error: cyclic dependence	

20	

Example	Annotated	Parse	Tree	
L.in := T.type�
T.type := ‘integer’ �
T.type := ‘real’ �
L1.in := L.in; addtype(id.entry, L.in)�
addtype(id.entry, L.in)	

D → T L �
T → int �
T → real�
L → L1 , id �
L → id	

real	id,	id,	id	

D	

T1.type = ‘real’	 L1.in = ‘real’	

L2.in = ‘real’	

L3.in = ‘real’	 id2.entry	

id1.entry	

id3.entry	real	

,	

,	

Dummy	synthesized	aYribute	of	L	induced	by	side-effect	ac>ons	

21	

Example	Annotated	Parse	Tree	with	
Dependency	Graph	

L.in := T.type�
T.type := ‘integer’ �
T.type := ‘real’ �
L1.in := L.in; addtype(id.entry, L.in)�
addtype(id.entry, L.in)	

D → T L �
T → int �
T → real�
L → L1 , id �
L → id	

real	id,	id,	id	

Dependencies	induced	by	side-effect	ac>ons	

D	

T1.type = ‘real’	 L1.in = ‘real’	

L2.in = ‘real’	

L3.in = ‘real’	 id2.entry	

id1.entry	

id3.entry	real	

,	

,	

22	

Evalua>on	Order	

•  A	topological	sort	of	a	directed	acyclic	graph	
(DAG)	is	any	ordering	m1,	m2,	…,	mn	of	the	
nodes	of	the	graph,	such	that	if	mi→mj	is	an	
edge,	then	mi	appears	before	mj	

•  Any	topological	sort	of	a	dependency	graph	
gives	a	valid	evalua>on	order	of	the	seman>c	
rules	

23	

Example Parse Tree with �
Topologically Sorted Actions	

D	

T1.type = ‘real’	 L1.in = ‘real’	

L2.in = ‘real’	

L3.in = ‘real’	 id2.entry	

id1.entry	

id3.entry	real	

,	

,	

1	

2	

3	

4	 5	 6	

7	 8	

9	 10	

Topological sort:�
1. Get id1.entry�
2. Get id2.entry�
3. Get id3.entry	
4. T1.type=‘real’�
5. L1.in=T1.type�
6. addtype(id3.entry, L1.in)�
7. L2.in=L1.in�
8. addtype(id2.entry, L2.in)�
9. L3.in=L2.in�
10. addtype(id1.entry, L3.in)	

24	

Evalua>on	Methods	

•  Parse-tree	methods:	for	each	input,	build	the	parse	
tree	and	the	dependency	graph,	and	determine	an	
evalua>on	order	from	a	topological	sort	

•  Rule-base	methods	the	evalua>on	order	is	pre-
determined	from	the	seman>c	rules	

•  Oblivious	methods	the	evalua>on	order	is	fixed	and	
seman>c	rules	must	be	(re)wriYen	to	support	the	
evalua>on	order	(for	example	S-aYributed	
defini>ons)	

25	

L-AYributed	Defini>ons	

•  A	syntax-directed	defini>on	is	L-a"ributed	if	each	
inherited	aYribute	of	Xj	on	the	right	side	of	A	→	X1	X2	
…	Xn	depends	only	on	
1.  the	aYributes	of	the	symbols	X1,	X2,	…,	Xj-1	
2.  the	inherited	aYributes	of	A	
3.  the	aYributes	of	Xj,	in	a	non-circular	way				

A.a	

X1.x	 X2.x	
Possible	dependences	
of	inherited	aYributes	

26	

L-AYributed	Defini>ons	(cont’d)	

•  L-aYributed	defini>ons	allow	for	a	natural	order	of	
evalua>ng	aYributes:	depth-first	and	leb	to	right	

	

	
•  Note:	every	S-aYributed	syntax-directed	defini>on	is	
also	L-aYributed	(since	it	doesn’t	have	any	inherited	
aYribute)	

A	→	X	Y	 X.i := A.i�
Y.i := X.s �
A.s := Y.s	

A	

X	 Y	
Y.i:=X.s	

X.i:=A.i	 A.s:=Y.s	

Syntax-Directed	Transla>on	Schemes	

•  Translation Schemes provide an alternative notation for
Syntax-Directed Definitions and are more expressive in
general	

•  The semantic rules include arbitrary side-effects and can be
suitably embedded into productions	

•  SDD’s can be evaluated in any order compatible with the
dependencies, SDT’s should be evaluated left-to-right 	

•  SDT’s can always be implemented by building the parse tree
first, and then performing the actions in left-to-right depth-first
order	

•  In several cases they can be implemented during parsing,
without building the whole parse tree first	

	
27	

28	

Syntax-Directed	Transla>on	Schemes	

•  A production of a translation scheme and corresponding
node in a parse tree:	

•  Possible implementation:	
– Build the parse tree ignoring semantic actions	
– Add semantic actions in the right place below non-

terminals	
– Visit the tree in depth-first, pre-order left-to-right

traversal executing all actions	

rest → + term { print(“+”) } rest	

Embedded�
semantic action	

rest	

term	 rest	+	 { print(“+”) }	

Posnix	Transla>on	Schemes	

•  If	the	grammar	is	LR	(thus	can	be	parsed	
boYom-up)	and	the	SDD	is	S-aYributed	
(synthesized	aYributes	only),	seman>c	ac>ons	
can	be	placed	at	the	end	of	the	produc>ons	

•  They	are	executed	when	the	body	is	reduced	
to	the	head	

•  SDTs	where	all	ac>ons	are	at	the	end	of	
produc>ons	are	called	posNix	SDTs	

29	

30	

Example	Transla>on	Scheme	
for	Posnix	Nota>on	

expr → expr + term�
expr → expr - term�
expr → term �
term → 0�
term → 1�
…�
term → 9	

{ print(“+”) }�
{ print(“-”) }�
�
{ print(“0”) }�
{ print(“1”) }�
…�
{ print(“9”) }	

31	

Example	Transla>on	Scheme	(cont’d)	

expr	

term	

9	

-	

5	

+	

2	

expr	

expr	 term	

term	

{ print(“-”) }	

{ print(“+”) }	

{ print(“9”) }	

{ print(“5”) }	

{ print(“2”) }	

Translates 9-5+2 into postfix 95-2+	

Implementa>on	of	Posnix	SDTs	

•  Posnix	SDTs	can	be	implemented	during	LR	
parsing	

•  The	ac>ons	are	executed	when	reduc>ons	occur	
•  The	aYributes	of	grammar	symbols	can	be	put	on	
the	stack,	together	with	the	symbol	or	the	state	
corresponding	to	it	

•  Since	all	aYributes	are	synthesized,	the	aYribute	
for	the	head	can	be	computed	when	the	
reduc>on	occurs,	because	all	aYributes	of	
symbols	in	the	body	are	already	computed	

32	

Using	Transla>on	Schemes	for		
L-AYributed	Defini>ons	

•  An	L-aYributed	SDD	for	a	grammar	that	can	be	parsed	
top-down	(LL)	can	be	implemented	using	Transla>on	
Schemes	

1.  Embed	ac>ons	that	compute	inherited	a"ributes	for	
nonterminal	A	immediately	before	A	
–  Note	that	in	leb-to-right	parsing,	all	aYributes	on	which	the	

inherited	aYribute	may	depend	are	evaluated	already	
2.  Place	ac>ons	that	compute	a	synthesized	a"ribute	for	

the	head	of	a	produc>on	at	the	end	of	the	body	of	that	
produc>on		

•  We	consider	some	ways	of	implemen>ng	the	resul>ng	
SDTs	during	parsing,	both	top-down	and	boYom-up	

33	

34	

Using	Transla>on	Schemes	for		
L-AYributed	Defini>ons	

D → T L �
T → int �
T → real�
L → L1 , id �
L → id	

L.in := T.type�
T.type := ‘integer’ �
T.type := ‘real’ �
L1.in := L.in; addtype(id.entry, L.in)�
addtype(id.entry, L.in)	

Production	 Semantic Rule	

D → T { L.in := T.type } L �
T → int { T.type := ‘integer’ } �
T → real { T.type := ‘real’ } �
L → { L1.in := L.in } L1 , id { addtype(id.entry, L.in) }�
L → id { addtype(id.entry, L.in) }	

Translation Scheme	

35	

Implemen>ng	L-AYributed	Defini>ons	
in	Recursive-Descent	Parsers	

expr → term rest�
 rest → + term rest�
 | - term rest�
 | ε�
term → id	

procedure rest();�
begin �
 if lookahead in FIRST(+ term rest) then �
 match(‘+’); term(); rest()�
 else if lookahead in FIRST(- term rest) then �
 match(‘-’); term(); rest()�
 else if lookahead in FOLLOW(rest) then �
 return �
 else error()�
end;	

Recap	of	Recursive	Descent	Parsing	
•  Grammar	must	be	LL(1)	
•  Every	nonterminal	has	one	(recursive)	procedure		
•  When	a	nonterminal	has	mul>ple	produc>ons,	the	input	look-

ahead	is	used	to	choose	one	
•  Note:	the	procedures	have	no	parameters	and	no	result	

36	

Implemen>ng	L-AYributed	Defini>ons	
in	Recursive-Descent	Parsers	

D	→	T	{	L.in	:=	T.type	}	L	
T	→	int	{	T.type	:=	‘integer’	}	
T	→	real	{	T.type	:=	‘real’	}	

void D()
{ Type Ttype = T();
 Type Lin = Ttype;
 L(Lin);
}
Type T()
{ Type Ttype;
 if (lookahead == INT)
 { Ttype = TYPE_INT;
 match(INT);
 } else if (lookahead == REAL)
 { Ttype = TYPE_REAL;
 match(REAL);
 } else error();
 return Ttype;
}
void L(Type Lin)
{ … }

•  Attributes are passed as
arguments to procedures
(inherited) or returned
(synthesized)	

•  Procedures store computed
attributes in local variables	

Input:�
inherited�
attribute	

Output:	
synthesized�

attribute	

37	

Implemen>ng	L-AYributed	Defini>ons	
in	Top-Down	Table-Driven	Parsers	

•  The	stack	will	contain,	besides	grammar	symbols,	
ac6on-records	and	synthesize-records	

•  Inherited	aYributes	of	A	are	placed	in	A’s	record		
–  The	code	compu>ng	them	is	in	a	record	above	A	

Predic>ve	parsing	
program	(driver)	

Parsing	table		M	

a	 +	 b	 $	

X	
Y	
Z	
$	

stack	

input	

output	

•  Synthesized	aYributes	of	A	are	
placed	in	a	record	just	below	A	

•  It	may	be	necessary	to	make	
copies	of	aYributes	to	avoid	
that	they	are	popped	when	s>ll	
needed	

38	

Implemen>ng	L-AYributed	Defini>ons	
for	LL	grammars	in	BoYom-Up	Parsers	
•  Remove	any	embedded	ac>on	with	marking	
nonterminal:	 	A	→	α	{	act	}	β			 	becomes	
	 	A	→	α	N	β	
	 	N	→	ε	{	act’}	
where	act’: 		
–  Copies	as	inherited	aYributes	of	N	any	aYribute	of	A,	α	
needed	by	act	

–  Computes	aYributes	like	act,	making	them	synthesized	for	N	
•  Fact:	if	the	start	grammar	was	LL,	the	new	one	is	LR	
•  Note:	act’	accesses	aYributes		out	of	its	produc>on!	
This	works,	as	they	are	(deeper)	in	the	LR	stack	

