Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-16/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 10

* Syntax-Directed Translation

The Structure of the Front-End

Source
Program Token ntermediate
(Character stream presentation
stream)

\

/
, Develop \
,’ parser and code \
/
¢ generator for translator

\

Syntax-Directed Translation

Briefly introduced in the first lectures

General technique to “manipulate” programs, based
on context-free grammars
Tightly bound with parsing

Will be used for static analysis (type checking) and
(intermediate) code generation

Several other uses:

— Generation of abstract syntax trees

— Evaluation of expressions

— Implementation of Domain Specific Languages (see
example on typesetting math formulas in the book)

Partly supported by parser generators like Yacc

Syntax-Directed Translation

* We will consider:
— Syntax-Directed Definitions (Attribute Grammars)
— Syntax-Directed Translation Schemes
— Translation evaluated on the parse tree
— Translation evaluated during parsing

Syntax-Directed Definitions

A syntax-directed definition (or attribute grammar) is a

context free grammar where:
— Terminals and nonterminals have attributes holding values

— Productions have associated semantic rules, which set the
values of attributes

Each grammar symbol can have any number of
attributes
Attribute val of symbol X is denoted X.val

A semantic rule of a production A — o has the form

b := f(c,,C5,....,C4) |
where b,c,,c,,...,c, are attributes of A or of the symbols
In o

Attributes

 An annotated parse tree is a parse tree where all
attributes of nodes have the corresponding value
e Attribute values may represent
— Numbers (literal constants)
— Strings (literal constants)

— Intermediate program representations
* (pointers to) nodes of abstract syntax tree
* (pointers to) strings representing the intermediate code

— Memory locations, such as a frame index of a local variable
or function argument

— A data type for type checking of expressions
— Scoping information for local declarations

Synthesized vs. Inherited Attributes

* Given a production A — a and a semantic rule

b :=f(c,,C,,...,C)
— if bis an attribute of A then it is a synthesized attribute of A

— if b is an attribute of a symbol B in a then it is an inherited
attribute B

* Note: terminal symbols have only synthesized attributes

Production SemW inherited
D—>TL (Lin)= Ttype
T int t*

Lﬁe id = L.in synthesized

S-Attributed Definitions

A syntax-directed definition that uses synthesized
attributes exclusively is called an S-attributed
definition (or S-attributed grammar)

A parse tree of an S-attributed definition can be
annotated with a single bottom-up traversal

Given a parse tree, any postorder depth-first
traversal algorithm can be used to execute the
semantic rules and assign attribute values

n some cases attributes can be evaluated during
narsing, without building the parse tree explicitly

'Yacc/Bison only support S-attributed definitions]

8

Example: evaluating expressions with
synthesized attributes

Productions Semantic Rules
L—En L.val := E.val
E—E+T E.val := E,.val + T.val
E—T E.val :=T.val

T—T *F T.val :=T,.val * F.val
T—F T.val := F.val
F—(F) F.al := E.val

F — digit F.val := digit.lexval

A Syntax-Directed Definition (SDD) or Attribute Grammar

Example: An Annotated Parse Tree

E .val

Productions Semantic Rule
L—En L.val := E.val
E—E+T E.val := E,.val + T.val
E—T E.val :=T.val

T—T *F T.val :=T,.val * Fval
T— F T.val := F.val
F—(E) F.val := E.val

F — digit F.val := digit.lexval

N

Eval=16

=14

N\7.val =5

Fval=5

L.val=16
/ \
T.\‘/al =2
Fval=>5
+ 2 n

10

Annotating a Parse Tree with
Depth-First Post-Order Traversals

procedure visit(n : node);
begin
for each child m of n, from left to right do
visit(m);
evaluate semantic rules at node n
end

11

Depth-First Traversals (Example)

Note: right-to-left
traversal works as well __Lval=i6

-
-
-
-

/ \ AR . ‘ “; Semantic Rules
- _ Fval=5/ L.val := E.val
‘ Eval=9 P T'val =5 ': B g E.val := E,.val + T.val
. i E.val := T.val
Tval =9 \F. val = 5 T.al :=T,.val * Fval
! S - T.val := F.val

F.al := E.val
F val = 9 F.val := digit.lexval

9 + S + 2 n 12

Example: generation of
Abstract Syntax Trees

* A parse tree is called a concrete syntax tree

* An abstract syntax tree (AST) is defined by the
compiler writer as a more convenient
intermediate representation

E

N O

T T * id ¢ / *\
| id id

id id

Concrete syntax tree Abstract syntax tree

S-Attributed Definitions for Generating
Abstract Syntax Trees

Production Semantic Rule

E—E +T | Enptr:=mknode('+ ,E, nptr, T.nptr)

E—E -T E.nptr := mknode(-", E,.nptr, T.nptr)

E—=T Enptr ;= Taptr

T— T, *id T.nptr := mknode(“*’ , T, .nptr, mkleaf(id, id.entry))
T—T,/id T.nptr := mknode('/° , T, nptr, mkleaf(id, id .entry))
T—id T nptr := mkleaf(id, id.entry)

14

Generating Abstract Syntax Trees

Synthesize
AST

tr ~~~~~
§~~
—~—
\

E. nFtr\ +

-}
: /f\

/

\
L\
\ ~
1
T'nptr, T.nptr, * id ! \‘
¥ \ ! \
‘|\\ : ! ‘l
ld " ld || \'(I
\‘\ 1 :
\\\ |‘ + |
\a \ 1
\\\ - “ w
~IIITId *
\\\
- id id

15

Example Attribute Grammar with
Synthesized + Inherited Attributes

 Grammar generating declaration of typed variables

* Limited side-effect: The attributes add typing information to
the symbol table via side effects

 |nherited attributes allow to handle information that does not
respect the tree structure

Production

D—TL
T — int
T — real
L—L,,id
L—id

Semantic Rule
Synthesized: T.type, id.entry

L.in ;= T.t‘}.fpﬁ ’ Inherited: L.in
Ttype := ‘integer
Ttype := ‘real’

L,.n := L.in; addtype(id .entry, L.in)
addtype(id .entry, L.in)

16

Evaluation order of attributes

In presence of inherited attributes, it is not obvious in
what order the attributes should be evaluated

Attributes of a nonterminal in a production may
depend in an arbitrary way on attributes of other
symbols

The evaluation order must be consistent with such
dependencies

If the dependencies are circular, there is no way to
evaluate the attributes

Side-effect rules are interpreted as definition of
dummy synthesized attributes of the head symbol

Dependency Graphs for
Attributed Parse Trees

* Given a parse tree, consider as nodes all its attributes

* Represent graphically the dependencies induced by semantic
rules

Ay / /Aa\\ Aa:=fiXx,Yy)
XX Yy

synthesized
Direction of Aa
t
D //A Xx:=f(Aa,Yy)
value dependence Xx Ty inherited
Aa

AN Yy i Xx)

inherited 18

Dependency Graphs with Cycles?

* Edges in the dependency graph determine the
evaluation order for attribute values

* Dependency graphs cannot be cyclic: no
evaluation order is possible

/%\\ A.a I=]}((X.X;
XX :=f(Yy
Xx Yy Yy :=f(A.a)

Error: cyclic dependence

19

Example Annotated Parse Tree

D—-TL L.n := Ttype

T — int Ttype := ‘integer’ o
T — real Ttype := ‘real’ real Id, Id, id
L—L,,id L,.in:=L.in;addiype(id.entry, L.in)
L—id addtype(id.entry, L.in)
D
T, type = ‘real’ L, .in= ‘real’ O
real L,.in= ‘real’ O id,.entry
L,.in= ‘real’ O id, .entry
id, .entry

O Dummy synthesized attribute of L induced by side-effect actions

Example Annotated Parse Tree with
Dependency Graph

D—TL L.in := T'type

T — int Ttype := ‘integer’
T — real T'type := ‘real’ real id, id, id
L—L,,id L,.in:=L.in;addiype(id.entry, L.in)
L—id addtype(id .entry, L.in)
D
T, type = ‘real’ L, .in= ‘real’ O

| T
%alg— ‘real’ O O id,.entry

T
OL in = ‘real’ O Old entry

Dependencies induced by side-effect actions +—

21

Evaluation Order

* Atopological sort of a directed acyclic graph
(DAG) is any ordering m,, m,, ..., m, of the
nodes of the graph, such that it m;—m;is an
edge, then m; appears before m,

* Any topological sort of a dependency graph
gives a valid evaluation order of the semantic
rules

22

Example Parse Tree with
Topologically Sorted Actions

D Topological sort:
/ 1. Getid, .entry
T)type= real’ (&) (5)L,in= "real’ (&) 2. Getid,.entry
' ' 3. Getid,.entry
%ﬂlg— % id;entry 4. T, type=‘real
5. L,in=T,.type
@L in= ‘real’ ‘ @ld entry 6. aclldtypel(i(}ilientry, L, .in)
@ﬁ/ 7. L,in=L,.in
id, .entry 8. addtype(id,.entry, L,.in)
9. L;in=L,.in
10. addtype(ld entry, L,.in)

23

Evaluation Methods

* Parse-tree methods: for each input, build the parse
tree and the dependency graph, and determine an
evaluation order from a topological sort

* Rule-base methods the evaluation order is pre-
determined from the semantic rules

e Oblivious methods the evaluation order is fixed and

semantic rules must be (re)written to support the
evaluation order (for example S-attributed
definitions)

24

L-Attributed Definitions

* A syntax-directed definition is L-attributed if each
inherited attribute of X; on the right side of A — X X,
... X depends only on

1. the attributes of the symbols X;, X;, ..., X
2. theinherited attributes of A
3. the attributes of X, in a non-circular way

A.a
Possible dependences
of inherited attributes /X{S'z\x

25

L-Attributed Definitions (cont’d)

e |-attributed definitions allow for a natural order of
evaluating attributes: depth-first and left to right

X1:=A1

A xy A AN A o
— X.i: fy/x& I's Yi:=Xs
//4X Y.i:=X.sY‘§* As= s

* Note: every S-attributed syntax-directed definition is
also L-attributed (since it doesn’t have any inherited
attribute)

26

Syntax-Directed Translation Schemes

Translation Schemes provide an alternative notation for
Syntax-Directed Definitions and are more expressive in
general

The semantic rules include arbitrary side-effects and can be
suitably embedded into productions

SDD’s can be evaluated in any order compatible with the
dependencies, SDT’s should be evaluated left-to-right

SDT’s can always be implemented by building the parse tree
first, and then performing the actions in left-to-right depth-first
order

In several cases they can be implemented during parsing,
without building the whole parse tree first

27

Syntax-Directed Translation Schemes

* A production of a translation scheme and corresponding
node in a parse tree:

. “ res
rest — + term { print(+) } rest
N J
Y \\\\
Embedded A
semantic action + term {print(" +") } rest

* Possible implementation:
— Build the parse tree ignoring semantic actions

— Add semantic actions in the right place below non-
terminals

— Visit the tree in depth-first, pre-order left-to-right

traversal executing all actions s

Postfix Translation Schemes

If the grammar is LR (thus can be parsed
bottom-up) and the SDD is S-attributed
(synthesized attributes only), semantic actions
can be placed at the end of the productions

They are executed when the body is reduced
to the head

SDTs where all actions are at the end of
productions are called postfix SDTs

Example Translation Scheme
for Postfix Notation

expr — expr + term { print("+") }
expr — expr - term { print("-") }
expr — term

term — () { print(“07) }
term — 1 { print(“17) }

term — 9 { print(“97) }

30

Example Translation Scheme (cont’d)

expr/ \ term._
! S AR . “ ~ 97
f \ {print("' 5") }
_term,. S

T { print(“97) }
9

Translates 9-5+2 into postfix 95-2+31

Implementation of Postfix SDTs

Postfix SDTs can be implemented during LR
parsing
The actions are executed when reductions occur

The attributes of grammar symbols can be put on
the stack, together with the symbol or the state
corresponding to it

Since all attributes are synthesized, the attribute
for the head can be computed when the
reduction occurs, because all attributes of
symbols in the body are already computed

Using Translation Schemes for
L-Attributed Definitions

e An L-attributed SDD for a grammar that can be parsed
top-down (LL) can be implemented using Translation
Schemes

1. Embed actions that compute inherited attributes for
nonterminal A immediately before A

— Note that in left-to-right parsing, all attributes on which the
inherited attribute may depend are evaluated already
2. Place actions that compute a synthesized attribute for
the head of a production at the end of the body of that
production

 We consider some ways of implementing the resulting
SDTs during parsing, both top-down and bottom-up

Using Translation Schemes for
L-Attributed Definitions

Production Semantic Rule

D—TL L.an := Ttype

T — Int Ttype := ‘integer’

T — real Ttype := ‘real’

L—L,,id L,.in := L.in; addtype(id .entry, L.in)
L—id addlype(ld entry, L.in)

Translation Scheme

D—T{Lin:=Ttype} L

T — int { T'.type := ‘integer’ }

T — real { T'.type := ‘real’ }

L—{L,an:=Lin } L, ,id { addtype(id.entry, L.in) }

L —id { addtype(id .entry, L.in) } 34

Implementing L-Attributed Definitions

In Recursive-Descent Parsers

Recap of Recursive Descent Parsing
e Grammar must be LL(1)
* Every nonterminal has one (recursive) procedure

* When a nonterminal has multiple productions, the input look-
ahead is used to choose one

* Note: the procedures have no parameters and no result

procedure rest();
/ begin
expr — term rest if lookahead in FIRST(+ term rest) then

rest — + term rest match(‘+"); term(); resi()
else if lookahead in FIRST(- term rest) then

match(‘="); term(); rest()
| e else if lookahead in FOLLOW(rest) then

term — id return
else error()
end; 35

| - term rest

Implementing L-Attributed Definitions
In Recursive-Descent Parsers

* Attributes are passed as void D ()
arguments to procedures { Type Ttype = T();
. . Type Lin = Ttype;
(inherited) or returned L(Lin) ;
(synthesized) }

* Procedures store computed ~~¥Pe T0)
{ Type Ttype;

attributes in local variables if (lookahead == INT)
{ Ttype = TYPE INT;
o , match (INT) ;
?:.T{L"T” =Ttypell } else if (lookahead == REAL)
int { T.type := |‘nteg?r } { Ttype = TYPE REAL; Output:
T — real { T.type := ‘real } tch (REAL) : P.-
match () i synthesized
} else error(); attribute
return-
} Input:

void L(Type @igye— inherited

{ ..} attribute

Implementing L-Attributed Definitions
in Top-Down Table-Driven Parsers

The stack will contain, besides grammar symbols,
action-records and synthesize-records

Inherited attributes of A are placed in A’s record
— The code computing them is in a record above A

Synthesized attributes of A are
placed in a record just below A input al+|b|$

It may be necessary to make
copies of attributes to avoid "
that they are popped when still v
needed z

output

Implementing L-Attributed Definitions
for LL grammars in Bottom-Up Parsers

* Remove any embedded action with marking
nonterminal: A — a{act}6 becomes
A—aNBé6
N — ¢ { act’}
where act’:

— Copies as inherited attributes of N any attribute of A, o
needed by act

— Computes attributes like act, making them synthesized for N
Fact: if the start grammar was LL, the new one is LR

 Note: act’ accesses attributes out of its production!
This works, as they are (deeper) in the LR stack

38

