Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-15/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 6

 Towards Generation of Lexical Analyzers
— Finite state automata (FSA)
— From Regular Expressions to FSA

— The Lex-Flex lexical analyzer generator

e We have seen that:

— Tokens are defined with regular expressions
— RE = Transition diagrams -2 code, by hand!!!

 Example:

id — letter (letter | digit)" jetter or digit

tart lett O th
star >@ elier >@ other >@*return(gett0ken(),

install_id())

case 9: ¢ = nextchar();
if (isletter(c)) state = 10;

else state = fail(); We present a more
break; .

case 10: c = nextchar(); SyStemath and
if (isletter(c)) state = 10; f I. d h
else if (isdigit(c)) state = 10; ormalize approac

else state = 11;
break;

Design of a Lexical Analyzer Generator

1. From the RE of each token build an NFA (non-
deterministic finite automaton) that accepts the

same regular language
2. Combine the NFAs into a single one

3. Either
1. Simulate directly the NFA, or

2. Determinize the NFA and simulate the resulting DFA
(deterministic FA)

4. Solve conflicts ~ Optional ~

_/

.

Non-deterministic Finite Automata

* An NFA is a 5-tuple (S, X, 0, s, F)) where
— S 1s a finite set of states
—2 1s a finite set of symbols, the alphabet

—0 is a mapping from S x (ZU{e}) to a set of
states
d: S x CU{e}) =2 2°

—5, € S 18 the start state
— F C S is the set of accepting (or final) states

Transition Graph

* An NFA can be diagrammatically represented

by a labeled directed graph called a transition
graph

start)%;g}@b@b

$=1{0,1,2,3}
2 ={a,b}
So=0

F = {3}

Transition Table

* The mapping o of an NFA can be represented
In a transition table

Input Input
5(0,a) = {0,1} State | b
o(0,b)={0} __| 0 {0, 1} {0}
6(1,1)) - {2} 1 {2}
5(2,b) = {3} A o

The Language Defined by an NFA

An NFA accepts an input string w (over X) if and only
if there is at least one path with edges labeled with
symbols from w in sequence from the start state to
some accepting state in the transition graph

Note that e-transitions do not contribute with
symbols

A state transition from one state to another on the
path is called a move

The language defined by an NFA A is the set of input
strings it accepts, denoted L(A)

Examples s ,€§ -—> @2 @
A, N

@=-0

A
1 /
start €

a b b
\ a b
* Which NFA, if any, accepts : %
— aaabb ?
— ababb ?
—abb ?
— abab ?

* Which are the languages accepted by A; and A,?,

From Regular Expression to NFA:
Thompson’s Construction

* Given a RE, it builds by structural induction a
NFA that:

— Accepts exactly the language of the RE
— Has a single accepting state

— Has no transitions to the initial state

— Has no transitions from the final state

Thompson’s Construction
r:RE > N(r):NFA

start
: =@

start

start .
start
)
€
€

Complexity: linear in the size of the RE 10

An example:
RE > Syntax Tree > NFA

(a|b)*abb Son®

Combining the NFAs of a Set of
Regular Expressions

start ‘ a C
a {action, }
, start
abb { action, } ‘ —3@ 202020

a*b+ { action,} a 5
start
./ b é

Simulating the Combined NFA

Given an input string w, we look for a prefix accepted
by the NFA, i.e. that is the lexeme of a token

— We start with the set of states reachable by start with ¢-
transitions

— For each symbol we collect all states to which we can
move from the current states

Complexity: linear in
(length of w) * (hnumber of states),
using efficient representation of set of states

Conflicts: several prefixes of w can be legal lexemes

Simulating the Combined NFA
Example 1

action,

5
tart €

S
>Q—0—=— ._>._>. 2@ action,,
a b

X >,
@ b action,

N W =[O

a
> > none
action,

Must find the longest match: | Conflict resolution |

Continue until no further moves are possible
When last state 1s accepting: execute action 4

Simulating the Combined NFA
Example 2

action,
5
start €
>Q—0—=— ._>._>. 2@ action,,
a b

X >,
@ b action,

> 2> 2> 2> none
L 2 6 action,,
1 8 Q :
3 actzon3 Conflict resolution Il
7

Lex: When two or more accepting states are reached,

the first action given in the specification is executlesd

Design of a Lexical Analyzer Generator:
RE to NFA to DFA

Specification with NFA
regular expressions

p; {action, } action,
P taction, y ‘ w

an action,
Pu vaction, } \Q action,,
* Simulating the DFA is more lSubset construction

efficient, but

* The size of the DFA could be
exponential w.r.t. the NFA 16

Deterministic Finite Automata

* A deterministic finite automaton is a special case of an
NFA

— No state has an e-transition

— For each state s and input symbol a there is at most one
edge labeled a leaving s

 Each entry in the transition table is a single state
— At most one path exists to accept a string
— Simulation algorithm is simple

e Alternative definition:

— For each state s and input symbol a there is exactly one
edge labeled a leaving s

— Easily shown to be equivalent (sink state...)

17

start

Example DFA

18

Conversion of an NFA into a DFA

* The subset construction algorithm converts an NFA
into a DFA using:

— e-closure(s) = {s} U {1 | §—>. ... > 1}
— e-closure(T) = U o, e-closure(s)
— move(T, a) = {t | s— tand sE T}

* The algorithm produces:

— Dstates 1s the set of states of the new DFA consisting of
sets of states of the NFA

— Dtran 1s the transition table of the new DFA

19

start

e-closure and move Examples

e

e-closure({0}) ={0,1,3,7}
move({0,1,3,7},a) ={2,4,7}

e-closure({2,4,7}) = {2,4,7)

move({2,4,7},a) = {7}

>@——0@—=2->@L->@-> e-closure({7}) = {7}
a b

move({7},b) = {8}

& ’ e-closure({8}) = {8}
@ b move({8},a) = I
a b a
0 5 > - > 2 > none
1 4
3 7
7

Also used to simulate NFAs (!) 20

Simulating an NFA using
e-closure and move

S :=e-closure({s,})

Sprev = @

a = nextchar()

while S = & do
Sprev :: S
S := e-closure(move(S,a))
a := nextchar()

end do

if S, N F = then
execute action in S,
return “yes”

else return “no”

The Subset Construction Algorithm:
from a NFA to an equivalent DFA

* Initially, e-closure(s) 1s the only state in Dstates and it i1s unmarked

while there 1s an unmarked state T in Dstates do
mark T

for each input symbol ¢ € 2 do
U .= e-closure(move(T,a))
if U is not in Dstates then

add U as an unmarked state to Dstates

end if
Dtran|T,al .=U

end do

end do

22

Subset Construction Example 1

.

O Dstates

A={0,124,7}
B={1,234,6,78}
C={12456,7}
D={124,5,6,79}
E={1245,6,7,10} 23

Subset Construction Example 2

v
start

—@ >0 -0>-0>-0 .,

N

12>
ay

a b b
a b
./bé%

Dstates
A={0,1,3,7}
B={24,7}
C={8}
D={7}

E = {58}
F={68}xu

Minimizing the Number of
States of a DFA

* Given a DFA, let us show how to get a DFA
which accepts the same regular language with
a minimal number of states

b
) el e p o
¢ é !'O

25

On the Minimization Algorithm

Two statesgand g'ina DFA M =(Q, %, 9, q,, F) are
equivalent (or indistinguishable) if for all strings w &
2*, the states on which w ends on when read from g
and g'are both accept, or both non-accept.

An automaton is irreducible if
— it contains no useless (unreachable) states, and
— no two distinct states are equivalent

The Minimization Algorithm creates an irreducible
automaton accepting the same language

Partition-refinement: starts with partition of states
{Accepting, Non-accepting} and refines it till done

Minimization Algorithm
(Partition Refinement) Code

DFA minimize(DFA (Q, 2, d, g, F))
remove any state g unreachable from g,
Partition P={F, Q- F}
boolean Consistent = false
while (Consistent == false) Consistent = true
for(every SetS €P,chara €2, Set T &P)
// collect states of T that reach S using a
Set temp={g &T | d(g,a) €S}
if (tlemp =@ && temp !I=T)
Consistent = false
P = (P\{T} JU{temp, T-temp}
return defineMinimizor((Q, 2, d, q, F), P)

Minimization Algorithm.

(Partition Refinement) Code
DFA defineMinimizor (DFA (Q, 2, 9, q, F), Partition P)
* SetQ'=P
* State g',=the set in P which contains q,
e F'={SEP |SCF}
 for(eachSEP,aEX)

define 0'(S,a) = the set T & P which contains
the states o(s,a) foreachs & S

* return (Q), 2, 6,9, F')

- P,={{A, B, C, D}, {E}}
* P,={{A, B, C}, {D}, {E}}

« P,={{A, C}, {B}, {D}, {E}}

Minimization Algorithm: Example

— ({A,B,C,D}, b) not consistent

— ({A,B,C}, b) not consistent

b
' startﬂ‘a i b E b b
b a a
29

— Consistent!

Is the constructed automaton
minimal?

* The previous algorithm guaranteed to
produce an irreducible DFA. Why should that
FA be the smallest possible FA for its accepted

language?

e THM (Mvyhill-Nerode): The minimization
algorithm produces the smallest possible
automaton for its accepted language.

Proof of Myhill-Nerode theorem

Proof. Show that any irreducible automaton is the smallest
for its accepted language L:

 Two strings u,v € 2* are indistinguishable if for all
stringsw, uweEl <& vwelL

 Thusif u and v are distinguishable, their paths from the
start state must have different endpoints.

* Therefore the number of states in any DFA for L must be
larger than or equal to the number of mutually
distinguishable strings for L.

 Butinanirreducible DFA every state gives rise to another
mutually distinguishable string!

* Therefore, any other DFA for the same language must
have at least as many states as the irreducible DFA

The Lex and Flex Scanner Generators

* Lex/ flex are scanner generators

* Scanner generators translate regular definitions into
C source code for efficient scanning

* Typically used with parser generators like Yacc /
Bison

* Generated code is easy to integrate in C applications
 Several others: JavaCC, JFlex in Java, etc.
* See

https://en.wikipedia.org/wiki/Comparison of parser generators

32

Creating a Lexical Analyzer
with Lex and Flex

lex
Source > lex.yy.cC
program
lex.1
lex.yy.c > a.out
input sequence
stream of tokens

33

Lex Specification

* A lex specification consists of three parts:
regular definitions, C declarations in ${ %}

o O
%%

translation rules
S o
OO

user-defined auxiliary procedures

e The translation rules are of the form:

p, 1 action, }
p, { action, }

p, 1 action, }

34

Regular Expressions in Lex

x match the character x
\ . match the character .
“string” match contents of string of characters
match any character except newline
~ match beginning of a line
$ match the end of a line
[xyz] match one character x, y, or z (use \ to escape —)
[*xyz] match any character except x, y, and z
[a-z] matchoneofato z
r* closure (match zero or more occurrences)
r+ positive closure (match one or more occurrences)
r? optional (match zero or one occurrence)
r,r, match r, then r, (concatenation)
ry|r, match r, or r, (union)
(r) grouping
r,\r, match r, when followed by r,
{d} match the regular expression defined by d

35

Example Lex Specification 1

Contains
% { the matching

Translation finclude <stdio.h> lexeme
rules \ . l

[0-9]1+ { printf(“%s\n”, yytext); }

g;gl\n] Invokes

int main () — the lexical
{ yylex(); < analyzer

}

lex spec.1
gce lex.yy.c -11
./a.out < spec.l

[UAV)

Translation

Example Lex Specification 2

51

#include <stdio.h> Regular

int ch =0, wd =0, nl = 0;

%}

rules \ delim [\el+

\n { ch++; wd++; nl++; }

~*{delim} { ch+=yyleng; }

{delim} { ch+=yyleng; wd++; }
{

ch++; }

o®
o®

Int main|()

{ yylex();
printf ("%$8d%8d%8d\n", nl, wd, ch);

}

definition

37

Example Lex Specification 3

Translation

rules \

51

#include <stdio.h> Regular

5}

digit
letter
id

%%

{digit}+

[0-9] / definitions

[A-Za-2z]
{letter} ({letter} | {digit}) *

{ printf (“number: %s\n’, yytext); }

{ printf (“ident: %s\n”, yytext); }
{ printf (“other: %s\n”, yytext); }

38

Example Lex Specification 4

%${ /* definitions of manifest constants */
#define LT (256)

)

delim [\t\n]

WS {delim}+

letter [A-Za-z] Return
digit [0-9]

id {letter} ({letter} | {digit})* t(ﬂierltC)
ggmber {digit}+(\.{digit}+)?(E[+\-]1?{digit}+)? I)arser
{ws} {1}

if {return IF;} TOken

then {return THEN;} attribute

else {return ELSE.

{id} {yylval = install id(); return ID;}

{number} {yylval = install:num(x return NUMBER; }

“< {yylval = LT; return RELOR;

“<=" {yylval = LE; return RELOP)

“= {yylval = EQ; return RELOP;}

“<> {yylval = NE; return RELOP;}

“s“« {yylval = GT; return RELOP;}

“>=" {yylval = GE; return RELOP;}

% Install yytext (of length yyleng)
int i i < . . .
nt install idO 573 as identifier in symbol table

