
Principles	of	Programming	Languages	
h"p://www.di.unipi.it/~andrea/Dida2ca/PLP-15/	

Prof.	Andrea	Corradini	
Department	of	Computer	Science,	Pisa	

•  Towards	Genera=on	of	Lexical	Analyzers	
– Finite	state	automata	(FSA)	
– From	Regular	Expressions	to	FSA	
– The	Lex-Flex	lexical	analyzer	generator	

	

Lesson 6!



•  We	have	seen	that:	
– Tokens	are	defined	with	regular	expressions	
– RE		à		Transi=on	diagrams		à	code,	by	hand!!!	

•  Example:	

2	

9	start	 letter	 10	 11	*	other	

letter or digit	

return(gettoken(),�
             install_id())	

id → letter ( letter⏐digit )*	

 … 
     case 9: c = nextchar(); 
       if (isletter(c)) state = 10; 
       else state = fail(); 
       break; 
     case 10: c = nextchar(); 
       if (isletter(c)) state = 10; 
       else if (isdigit(c)) state = 10; 
       else state = 11; 
       break; 
     …	

We	present	a	more	
systema?c	and	
formalized	approach	
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Design	of	a	Lexical	Analyzer	Generator	
1.  From	the	RE	of	each	token	build	an	NFA	(non-

determinis=c	finite	automaton)	that	accepts	the	
same	regular	language	

2.  Combine	the	NFAs	into	a	single	one	
3.  Either	

1.  Simulate	directly	the	NFA,	or	
2.  Determinize	the	NFA	and	simulate	the	resul=ng	DFA	

(determinis=c	FA)	
4.  Solve	conflicts	

	regular	
expressions	 NFA	 DFA	

Optional	
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Non-determinis=c	Finite	Automata	

•  An NFA is a 5-tuple (S, Σ, δ, s0, F) where	
– S is a finite set of states	
– Σ is a finite set of symbols, the alphabet	
– δ is a mapping from S × (Σ∪{ε}) to a set of 

states �
	 	 	 	 	δ : S × (Σ∪{ε}) à 2S	

– s0 ∈ S is the start state	
– F ⊆ S is the set of accepting (or final) states	
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Transi=on	Graph	

•  An NFA can be diagrammatically represented 
by a labeled directed graph called a transition 
graph	

0	start	 a 1	 3	2	b b 

a 

b S	=	{0,1,2,3}	
Σ	=	{a,b}	
s0	=	0	
F	=	{3}	



6	

Transi=on	Table	

•  The mapping δ of an NFA can be represented 
in a transition table	

State	 Input�
a	

Input�
b	

0	 {0, 1}	 {0}	
1	 {2}	
2	 {3}	

δ(0,a)	=	{0,1}	
δ(0,b)	=	{0}	
δ(1,b)	=	{2}	
δ(2,b)	=	{3}	
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The	Language	Defined	by	an	NFA	

•  An	NFA	accepts	an	input	string	w	(over	Σ)	if	and	only	
if	there	is	at	least	one	path	with	edges	labeled	with	
symbols	from	w	in	sequence	from	the	start	state	to	
some	accep=ng	state	in	the	transi=on	graph	

•  Note	that	ε-transi=ons	do	not	contribute	with	
symbols	

•  A	state	transi=on	from	one	state	to	another	on	the	
path	is	called	a	move	

•  The	language	defined	by	an	NFA		A	is	the	set	of	input	
strings	it	accepts,	denoted	L(A)	

	



Examples	

•  Which	NFA,	if	any,	accepts	
– aaabb	?	
– ababb	?	
– abb	?	
– abab		?	

•  Which	are	the	languages	accepted	by	A1	and	A2?	8	

2	a 1	

6	a 3	 4	 5	b b 

8	b 7	

a b 
0	

start	

ε	

ε	
ε	

A1	

0	start	 a 1	 3	2	b b 

a 

b 
A2	



•  Given	a	RE,	it	builds	by	structural	induc;on	a	
NFA	that:	
– Accepts	exactly	the	language	of	the	RE	
– Has	a	single	accep=ng	state	
– Has	no	transi=ons	to	the	ini=al	state	
– Has	no	transi=ons	from	the	final	state	

9	

From	Regular	Expression	to	NFA:	
Thompson’s	Construc=on	
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Thompson’s	Construc=on	
r	:	RE			à			N(r)	:	NFA	

f	i	 ε	start	ε	

f	a i	
start	a 

N(r2)	N(r1)	 f	i	
start	r1r2	

ε	

N(r)	 f	i	
start	

ε	

r*	 ε	 ε	

ε	 ε	
f	i	

N(r1)	

N(r2)	

start	

ε	 ε	
r1⏐r2	

Complexity:	linear	in	the	size	of	the	RE	
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start	

(a⏐b)*abb	

An	example:	
RE	à	Syntax	Tree	à	NFA	

|	
a!

*	

b!

a!

.	 b!

.	 b!

.	

2	 a 3	

b 4	 5	

1	 6	
ε	

ε	
ε	

ε	

ε	

0	 7	
ε	 ε	

ε	

a 8	 b 9	 10	b 
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Combining	the	NFAs	of	a	Set	of	
Regular	Expressions	

2	a 1	
start	

6	a 3	
start	

4	 5	b b 

8	b 7	
start	

a b 

a  { action1 } 
abb  { action2 }  
a*b+ 	{ action3 }	

2	a 1	

6	a 3	 4	 5	b b 

8	b 7	

a b 
0	

start	

ε	

ε	
ε	



•  Given	an	input	string	w,	we	look	for	a	prefix	accepted	
by	the	NFA,	i.e.	that	is	the	lexeme	of	a	token	
– We	start	with	the	set	of	states	reachable	by	start	with	ε-
transi=ons	

–  For	each	symbol	we	collect	all	states	to	which	we	can	
move	from	the	current	states	

•  Complexity:	linear	in		
	 	 	(length	of	w)	*	(number	of	states),		
using	efficient	representa=on	of	set	of	states	

•  Conflicts:	several	prefixes	of	w	can	be	legal	lexemes	

Simula=ng	the	Combined	NFA		



14	

Simula=ng	the	Combined	NFA		
Example	1	

2	a 1	

6	a 3	 4	 5	b b 

8	b 7	

a b 
0	

start	

ε	

ε	
ε	

0	
1	
3	
7	

2	
4	
7	

7	 8	

Must find the longest match:�
Continue until no further moves are possible�
When last state is accepting: execute action	

action1	

action2	

action3	

a b a a none	
action3	

Conflict	resolu?on	I	
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Simula=ng	the	Combined	NFA		
Example	2	

2	a 1	

6	a 3	 4	 5	b b 

8	b 7	

a b 
0	

start	

ε	

ε	
ε	

0	
1	
3	
7	

2	
4	
7	

5	
8	

6	
8	

Lex: When two or more accepting states are reached, 	
the first action given in the specification is executed	

action1	

action2	

action3	

a b b a none	
action2�
action3	 Conflict	resolu?on	II	



Design	of	a	Lexical	Analyzer	Generator:	
RE	to	NFA	to	DFA	

•  Simula=ng	the	DFA	is	more	
efficient,	but	

•  The	size	of	the	DFA	could	be	
exponen=al	w.r.t.	the	NFA		 16	

s0	

N(p1)	

N(p2)	
start	

ε	

ε	
N(pn)	

ε	
…	

p1 	{ action1 }�
p2 	{ action2 }�
…�
pn 	{ actionn }	

action1	
action2	

actionn	

Specification with�
regular expressions	

NFA	

DFA	

Subset construction	
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Determinis=c	Finite	Automata	
•  A	determinis=c	finite	automaton	is	a	special	case	of	an	
NFA	
–  No	state	has	an	ε-transi=on	
–  For	each	state	s	and	input	symbol	a	there	is	at	most	one	
edge	labeled	a	leaving	s	

•  Each	entry	in	the	transi=on	table	is	a	single	state	
–  At	most	one	path	exists	to	accept	a	string	
–  Simula=on	algorithm	is	simple	

•  Alterna=ve	defini=on:	
–  For	each	state	s	and	input	symbol	a	there	is	exactly	one	
edge	labeled	a	leaving	s	

–  Easily	shown	to	be	equivalent	(sink	state…)	
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Example	DFA	

0	start	 a 1	 3	2	b b 

b 
b 

a 

a 

a 

0	start	 a 1	 3	2	b b 

a 

b 
A2	

A	DFA	that	accepts	the	same	language	of	A2,		(a⏐b)*abb 
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Conversion	of	an	NFA	into	a	DFA	

•  The subset construction algorithm converts an NFA 
into a DFA using:	
–  ε-closure(s) = {s} ∪ {t ⏐ s →ε … →ε t}	
–  ε-closure(T) = ∪s∈T ε-closure(s)	
–  move(T, a) = {t ⏐ s →a t and s ∈ T}	

•  The algorithm produces:	
–  Dstates is the set of states of the new DFA consisting of 

sets of states of the NFA	
–  Dtran is the transition table of the new DFA	
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ε-closure	and	move	Examples	

2	a 1	

6	a 3	 4	 5	b b 

8	b 7	

a b 
0	

start	

ε	

ε	
ε	

ε-closure({0})	=	{0,1,3,7}	
move({0,1,3,7},a)	=	{2,4,7}	
ε-closure({2,4,7})	=	{2,4,7}	
move({2,4,7},a)	=	{7}	
ε-closure({7})	=	{7}	
move({7},b)	=	{8}	
ε-closure({8})	=	{8}	
move({8},a)	=	∅	

0	
1	
3	
7	

2	
4	
7	

7	 8	
a b a a none	

Also used to simulate NFAs (!)	
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Simula=ng	an	NFA	using	
ε-closure	and	move	

S := ε-closure({s0})�
Sprev := ∅ �
a := nextchar()�
while S ≠ ∅ do�
	Sprev := S�
	S := ε-closure(move(S,a))�
	a := nextchar()�

end do�
if Sprev ∩ F ≠ ∅ then �
	execute action in Sprev�
	return “yes” �

else 	return “no”	
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The	Subset	Construc=on	Algorithm:	
from	a	NFA	to	an	equivalent	DFA	

•  Initially, ε-closure(s0) is the only state in Dstates and it is unmarked	
�
while there is an unmarked state T in Dstates do�
	mark T �
	for each input symbol a ∈ Σ do�
	 	U := ε-closure(move(T,a))�
	 	if U is not in Dstates then �
	 	 	add U as an unmarked state to Dstates �
	 	end if�
	 	Dtran[T, a] := U �
	end do�

end do	
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Subset	Construc=on	Example	1	

0	
start	 a 1	 10	

2	

b 

b 

a 

b 

3	

4	 5	

6	 7	 8	 9	ε	 ε	
ε	

ε	

ε	
ε	

ε	

ε	

A	
start	

B	

C	

D	 E	

b 

b 

b 

b 

b 

a 
a 

a 

a 

Dstates �
A = {0,1,2,4,7}�
B = {1,2,3,4,6,7,8}�
C = {1,2,4,5,6,7}�
D = {1,2,4,5,6,7,9}�
E = {1,2,4,5,6,7,10}	

a 
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Subset	Construc=on	Example	2	

2	a 1	

6	a 3	 4	 5	b b 

8	b 7	

a b 
0	

start	

ε	

ε	
ε	

a1	

a2	

a3	

Dstates �
A = {0,1,3,7}�
B = {2,4,7}�
C = {8}�
D = {7}�
E = {5,8}�
F = {6,8}	

A	
start	

a 

D	

b 

b 

b 

a 
b 

b B	

C	

E	 F	
a 

b 

a1	

a3	

a3	 a2 a3	
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Minimizing	the	Number	of		
States	of	a	DFA	

A	
start	

B	

C	

D	 E	

b 

b 

b 

b 

b 

a 
a 

a 

a 

a 

AC	
start	

B	 D	 E	b b 

b 

a 

b 

a 

a a 

•  Given	a	DFA,	let	us	show	how	to	get	a	DFA	
which	accepts	the	same	regular	language	with	
a	minimal	number	of	states	



On	the	Minimiza=on	Algorithm	

•  Two	states	q	and	q' in	a	DFA		M	=	(Q,	Σ,	δ,	q0,	F	)	are	
equivalent	(or	indis-nguishable)	if	for	all	strings	w	∈	
Σ*,	the	states	on	which	w	ends	on	when	read	from	q	
and	q'	are	both	accept,	or	both	non-accept.	

•  An	automaton	is	irreducible	if		
–  it	contains	no	useless	(unreachable)	states,	and	
– no	two	dis=nct	states	are	equivalent	

•  The	Minimiza?on	Algorithm	creates	an	irreducible	
automaton	accep=ng	the	same	language	

•  Par==on-refinement:	starts	with	par==on	of	states	
{Accep=ng,	Non-accep=ng}	and	refines	it	=ll	done	

26	
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Minimiza=on	Algorithm	
(Par==on	Refinement)	Code	

DFA	minimize(DFA	(Q,	Σ,	d,	q0,	F	)	)	
		remove	any	state	q	unreachable	from	q0		
		Par==on	P	=	{F,	Q	-	F	}		
		boolean	Consistent	=	false	
		while	(	Consistent	==	false	)	Consistent	=	true	
							for(every	Set	S	∈	P,	char	a	∈	Σ,	Set	T	∈	P	)	
	 	 	 	//	collect	states	of	T	that	reach	S	using	a	
										Set		temp	=	{q	∈	T	|	d(q,a)	∈	S	}		
										if	(temp	!=	Ø		&&	temp	!=	T	)		
													 	Consistent	=	false	
												 	P	=	(P\{T}	)∪{temp,T-temp}	
		return	defineMinimizor(	(Q,	Σ,	d,	q0,	F	),	P	)	
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Minimiza=on	Algorithm.	
(Par==on	Refinement)	Code	

DFA	defineMinimizor	(DFA	(Q,	Σ,	δ,	q0,	F	),	Par==on	P	)	
•  Set	Q'	=P		
•  State	q'0	=	the	set	in	P		which	contains	q0	
•  F'	=	{	S	∈	P		|	S	⊆	F	}	
•  for	(each	S	∈	P,	a	∈	Σ)	

       define	δ'	(S,a)	=	the	set	T	∈	P		which	contains		 	
	 	the	states	δ(s,a)	for	each	s	∈	S	

•  return	(Q',	Σ,	δ',	q'0,	F'	)	



Minimiza=on	Algorithm:	Example	
	

•  P1	=	{{A,	B,	C,	D},	{E}}	
–  ({A,B,C,D},	b)	not	consistent	

•  P2	=	{{A,	B,	C},	{D},	{E}}	
–  ({A,B,C},	b)	not	consistent	

•  P3	=	{{A,	C},	{B},	{D},	{E}}	
– Consistent!	

29	

A	
start	

B	

C	

D	 E	

b 

b 

b 

b 

b 

a 
a 

a 

a 

a 

AC	
start	

B	 D	 E	b b 

b 

a 

b 

a 

a a 
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Is	the	constructed	automaton	
minimal?	

•  The	previous	algorithm	guaranteed	to	
produce	an	irreducible	DFA.		Why	should	that	
FA	be	the	smallest	possible	FA	for	its	accepted	
language?	

•  THM	(Myhill-Nerode):		The	minimiza;on	
algorithm	produces	the	smallest	possible	
automaton	for	its	accepted	language.	
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Proof	of	Myhill-Nerode	theorem	
Proof.		Show	that	any	irreducible	automaton	is	the	smallest	

for	its	accepted	language	L:	
•  Two	strings	u,v	∈	Σ*	are	indis-nguishable	if	for	all	

strings	w,				uw	∈	L		ó		vw	∈	L.	
•  Thus	if	u		and	v		are	dis?nguishable,	their	paths	from	the	

start	state	must	have	different	endpoints.	
•  Therefore	the	number	of	states	in	any	DFA	for	L	must	be	

larger	than	or	equal	to	the	number	of	mutually	
dis=nguishable	strings	for	L.	

•  But	in	an	irreducible	DFA	every	state	gives	rise	to	another	
mutually	dis=nguishable	string!	

•  Therefore,	any	other	DFA	for	the	same	language	must	
have	at	least	as	many	states	as	the	irreducible	DFA 			
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The	Lex	and	Flex	Scanner	Generators	

•  Lex	/	flex	are	scanner	generators	
•  Scanner	generators	translate	regular	defini=ons	into	
C	source	code	for	efficient	scanning	

•  Typically	used	with	parser	generators	like	Yacc	/	
Bison	

•  Generated	code	is	easy	to	integrate	in	C	applica=ons	
•  Several	others:	JavaCC,	JFlex	in	Java,	etc.	
•  See		
https://en.wikipedia.org/wiki/Comparison_of_parser_generators 
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Crea=ng	a	Lexical	Analyzer		
with	Lex	and	Flex	

lex	(or	flex)	

lex�
source�

program�
lex.l	

lex.yy.c	

input�
stream	

C	
compiler	

a.out	
sequence�
of tokens	

lex.yy.c	

a.out	
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Lex	Specifica=on	

•  A lex specification consists of three parts:�
	regular definitions, C declarations in %{ %} �
	%% �
	translation rules �
	%% �
	user-defined auxiliary procedures	

•  The translation rules are of the form:�
	p1 	{ action1 }�
	p2 	{ action2 }�
	…�
	pn 	{ actionn }	
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Regular	Expressions	in	Lex	
x  match the character x  
\. match the character .  
“string” match contents of string of characters  
.  match any character except newline 
^  match beginning of a line 
$  match the end of a line 
[xyz] match one character x, y, or z (use \ to escape -)  
[^xyz]match any character except x, y, and z  
[a-z] match one of a to z 
r*  closure (match zero or more occurrences) 
r+  positive closure (match one or more occurrences) 
r?  optional (match zero or one occurrence) 
r1r2 match r1 then r2 (concatenation) 
r1|r2  match r1 or r2 (union) 
( r )  grouping 
r1\r2  match r1 when followed by r2 
{d} match the regular expression defined by d	
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Example	Lex	Specifica=on	1	

%{ 
#include <stdio.h> 
%} 
%% 
[0-9]+  { printf(“%s\n”, yytext); } 
.|\n    { } 
%% 
int main() 
{ yylex(); 
} 

Contains �
the matching�

lexeme	

Invokes �
the lexical�
analyzer	

lex spec.l 
gcc lex.yy.c -ll 
./a.out < spec.l 

Translation�
rules	
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Example	Lex	Specifica=on	2	

%{ 
#include <stdio.h> 
int ch = 0, wd = 0, nl = 0; 
%} 
delim     [ \t]+ 
%% 
\n        { ch++; wd++; nl++; } 
^{delim}  { ch+=yyleng; } 
{delim}   { ch+=yyleng; wd++; } 
.         { ch++; } 
%% 
Int main() 
{ yylex(); 
  printf("%8d%8d%8d\n", nl, wd, ch); 
} 

Regular�
definition	Translation�

rules	
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Example	Lex	Specifica=on	3	

%{ 
#include <stdio.h> 
%} 
digit     [0-9] 
letter    [A-Za-z] 
id        {letter}({letter}|{digit})* 
%% 
{digit}+  { printf(“number: %s\n”, yytext); } 
{id}      { printf(“ident: %s\n”, yytext); } 
.         { printf(“other: %s\n”, yytext); } 
%% 
Int main() 
{ yylex();  
} 

Regular�
definitions	Translation�

rules	
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Example	Lex	Specifica=on	4	
%{ /* definitions of manifest constants */ 
#define LT (256) 
… 
%} 
delim     [ \t\n] 
ws        {delim}+ 
letter    [A-Za-z] 
digit     [0-9] 
id        {letter}({letter}|{digit})* 
number    {digit}+(\.{digit}+)?(E[+\-]?{digit}+)? 
%% 
{ws}      { } 
if        {return IF;} 
then      {return THEN;} 
else      {return ELSE;} 
{id}      {yylval = install_id(); return ID;} 
{number}  {yylval = install_num(); return NUMBER;} 
“<“       {yylval = LT; return RELOP;} 
“<=“      {yylval = LE; return RELOP;} 
“=“       {yylval = EQ; return RELOP;} 
“<>“      {yylval = NE; return RELOP;} 
“>“       {yylval = GT; return RELOP;} 
“>=“      {yylval = GE; return RELOP;} 
%% 
int install_id() { … } 

Return�
token to�
parser	

Token�
attribute	

Install yytext (of length yyleng)	
 as identifier in symbol table	


