
Principles	of	Programming	Languages	
h"p://www.di.unipi.it/~andrea/Dida2ca/PLP-16/	

Prof.	Andrea	Corradini	
Department	of	Computer	Science,	Pisa	

•  Lexical	analysis:	implemen=ng	a	scanner	

Lesson 5!

2	

The	Reason	Why	Lexical	Analysis		
is	a	Separate	Phase	

•  Simplifies	the	design	of	the	compiler	
–  LL(1)	or	LR(1)	parsing	with	1	token	lookahead	would	
not	be	possible	(mul=ple	characters/tokens	to	match)	

•  Provides	efficient	implementa=on	
–  Systema=c	techniques	to	implement	lexical	analyzers	
by	hand	or	automa=cally	from	specifica=ons	

–  Stream	buffering	methods	to	scan	input	
•  Improves	portability	
– Non-standard	symbols	and	alternate	character	
encodings	can	be	normalized	(e.g.	UTF8,	trigraphs)	

3	

Main	goal	of	lexical	analysis:	
tokeniza=on	

Lexical	analyzer	
or	

Scanner	
y := 31 + 28*x

Parser	

<id, “y”> <assign, > <num, 31> <‘+’, > <num, 28> <‘*’, > <id, “x”>	

token�
(lookahead)	

tokenval �
(token attribute)	

source code	

4	

Addi=onal	tasks	of	the	Lexical	Analyzer	

•  Remove	comments	and	useless	white	spaces	/	
tabs	from	the	source	code	

•  Correlate	error	messages	of	the	parser	with	
source	code	(e.g.	keeping	track	of	line	
numbers)	

•  Expansion	of	macros	

5	

Interac=on	of	the	Lexical	Analyzer		
with	the	Parser	

Lexical	
Analyzer	 Parser	

Source�
Program	

Token,�
tokenval	

Symbol	Table	

Get next�
token	

error	 error	

How	are	tokens	determined?	

•  The	source	programming	language	is	defined	
by	a	CFG,	used	by	the	parser	

•  The	tokens	are	just	the	terminal	symbols	of	
the	CFG		

6	

7	

Tokens,	Pa\erns,	and	Lexemes	
•  A	token	is	a	pair	<token	name,	a"ribute>		

–  The	token	name	(e.g.	id,	num,	div,	geq,	…)	iden=fies	the	category	of	
lexical	units		

–  The	a\ribute	is	op=onal	
–  NOTE:	most	o^en,	one	refers	to	a	token	using	the	token	name	only	

•  A	lexeme	is	a	character	string	that	makes	up	a	token	
–  For	example:	abc,	123,	\,	>=	

•  	A	pa1ern	is	a	rule	describing	the	set	of	lexemes	belonging	to	
a	token	
–  For	example:	“le#er	followed	by	le#ers	and	digits”,		“non-empty	

sequence	of	digits”,	“character	‘\’”,	“character	‘>’	followed	by	‘=‘”	
•  The	scanner	reads	characters	from	the	input	=ll	when	it	

recognizes	a	lexeme	that	matches	the	pa\erns	for	a	token	

How	are	tokens	determined?	

Token name Informal description Sample lexemes

if
else

relation

id
number
literal

Characters i, f
Characters e, l, s, e

< or > or <= or >= or == or !=

Letter followed by letter and digits

Any numeric constant

Anything but " sorrounded by "

if

else
<=, !=

pi, score, D2
3.14159, 0, 6.02e23

"core dumped" 8	

•  The	source	programming	language	is	defined	by	a	
CFG,	used	by	the	parser	

•  The	tokens	are	just	the	terminal	symbols	of	the	CFG		

Examples	of	tokens	

A\ributes	of	tokens	

•  Needed	when	the	pa\ern	of	a	token	matches	different	
lexemes	

•  We	assume	single	a\ribute,	but	can	be	structured	
•  Typically	ignored	by	parsing,	but	used	in	subsequent	
compila=on	phases	(sta=c	analysis,	code	genera=on,	
op=miza=on)	

•  Kind	of	a\ribute	depends	on	the	token	name	
•  Iden=fiers	have	several	info	associated	(lexeme,	type,	
posi=on	of	defini=on,…)	
–  Typically	inserted	as	entries	in	a	symbol	table,	and	the	
a\ribute	is	a	pointer	to	the	simbol-table	entry	

9	

Reading	input	characters	

•  Requires	I/O	opera=ons:	efficiency	is	crucial	
•  Lookahead	can	be	necessary	to	iden=fy	a	token	
•  Buffered	input	reduces	I/O	opera=ons	
•  Naive	implementa=on	makes	two	tests	for	each	
character	
–  End	of	buffer?	
– Mul=way	branch	on	the	character	itself	

•  Use	of	“sen=nels”	encapsulate	the	end-of-buffer	
test	into	the	mul=way	branch		

10	

Buffered	input	to	Enhance	Efficiency	

*	M	=	E	 eof	2	*	*	C	

Current	token	

lexeme	beginning	 forward	(scans	
ahead	to	find	
pa\ern	match)	

if		(forward		at	end	of	first	half)		then		begin	
										reload	second	half	;	
										forward		:	=		forward		+	1	
				end	
				else	if		(forward		at	end	of	second	half)		then		begin	
										reload	first	half	;	
										move		forward		to	beginning	of	first	half	
				end	
				else		forward	:	=		forward	+	1	;	

Block	I/O	

Block	I/O	

11	

Executed	for	each	
input	character	

Algorithm:	Buffered	I/O	with	Sen=nels	
eof	*	M	=	E	 eof	eof	2	*	*	C	

Current	token	

lexeme	beginning	 forward	(scans	
ahead	to	find	
pa\ern	match)	

forward	:	=		forward	+	1	;	
if		(forward		is	at		eof)		then		begin	
				if		(forward		at	end	of	first	half)		then		begin	
										reload	second	half	;	
										forward		:	=		forward		+	1	
				end	
				else	if		(forward		at	end	of	second	half)		then		begin	
										reload	first	half	;	
										move		forward		to	beginning	of	first	half	
				end	
				else		/	*	eof	within	buffer	signifying	end	of	input		*	/	
									terminate	lexical	analysis	
end	 2nd	eof	⇒	no	more	input	!	

Block	I/O	

Block	I/O	

12	

Executed	only	is	next	
character	is	eof	

13	

Specifica=on	of	Pa\erns	for	Tokens:	
Recalling	some	basic	defini=ons	

•  An	alphabet	Σ	is	a	finite	set	of	symbols	(characters)	
•  A	string	s	is	a	finite	sequence	of	symbols	from	Σ	

–  ⏐s⏐	denotes	the	length	of	string	s	
–  ε	denotes	the	empty	string,	thus	⏐ε⏐	=	0	
–  Σ*	denotes	the	set	of	strings	over	Σ	

•  A	language	L	over	Σ	is	a	set	of	strings	over	alphabet	Σ	
•  Thus			L	⊆Σ*	,	or	L	∈	2Σ*			

–  2X	is	the	powerset	of	X,	i.e.	the	set	of	all	subsets	of	X	
•  The	concatenaCon	of	strings	x	and	y	is	denoted	by	xy	
•  ExponenCaCon	of	a	string	s:	 	s0	=	ε				si	=	si-1s			for	i	>	0	

14	

Opera=ons	on	Languages	

•  Languages	are	sets	(of	strings)	thus	all	
opera=ons	on	sets	are	defined	over	them	
– Eg.	Union:	 	L	∪	M	=	{s	⏐	s	∈	L	or	s	∈	M}	

•  Addi=onal	opera=ons	li^	to	languages	
opera=ons	on	strings	
– ConcatenaCon	 	 	LM	=	{xy	⏐	x	∈	L	and	y	∈	M}	
– ExponenCaCon		 	 	L0	=	{ε};						Li	=	Li-1L	

•  Closure	operators	
– Kleene	closure					 	L*	=	∪i=0,…,∞	Li	
– PosiCve	closure			 	L+	=	∪i=1,…,∞	Li	

Language	Opera=ons:	Examples	
L	=	{a,	b,	ab,	ba	}										D	=	{1,	2,	ab,	b}	

15	

Assuming		
Σ	=	{a,b,1,2}	

•  L	∪	D	=	{	a,	b,	ab,	ba,	1,	2	}	
•  LD	=	{a1,	a2,	aab,	ab,	b1,	b2,	bab,	bb,	ab1,	ab2,	abab,	

abb,	ba1,	ba2,	baab,	bab	}	
•  L2	=	{	aa,	ab,	aab,	aba,	ba,	bb,	bab,	bba,	abb,	abab,	abba,	

baa,	bab,	baab,	baba}	
•  D*	=	{	ε,	1,	2,	ab,	b,	11,	12,	…,	111,	112,	…,	1111,	1112,

…	}	
•  D+	=	D*	-	{	ε	}	

16	

Regular	Expressions:		
syntax	and	seman=cs	

•  Given	an	alphabet	Σ,	a	regular	expression	over	Σ	denotes	
a	language	over	Σ	and	is	defined	as	follows:	

•  Basis	symbols:	
–  ε	 	is	a	regular	expression	deno=ng	language	{ε}	
–  a		 	is	a	regular	expression	deno=ng	{a},	for	each	a	∈	Σ	

•  If	r	and	s	are	regular	expressions	deno=ng	languages	L(r)	
and	L(s)	respec=vely,	then	
–  (r)⏐(s)	 	is	a	regular	expression	deno=ng	 	L(r)	∪	L(s)	
–  (r)(s)		 	is	a	regular	expression	deno=ng	 	L(r)L(s)	
–  (r)*	 	 	is	a	regular	expression	deno=ng	 	L(r)*	
–  (r)	 	 	is	a	regular	expression	deno=ng	 	L(r)	

•  A	language	defined	by	a	regular	expression	is	called	a	
regular	language	

17	

Regular	Expressions:		
conven=ons	and	examples	

•  Syntac=cal	conven=ons	to	avoid	too	many	brackets:	
–  Precedence	of	operators: 	(_)*	 	> 	(_)(_) 	> 	(_)|(_)	
–  Le^-associa=vity	of	all	operators	
–  Example:	 	(a)⏐((b)*(c))	 		can	be	wri\en	as 				a⏐b*c		

•  Examples	of	regular	expressions	(over	Σ	=	{a,	b}):	
–  a|b 			denotes				{	a,	b	}	
–  (a|b)(a|b)	 	denotes		{	aa,	ab,	ba,	bb	}	
–  a*		denotes			{	ε,	a,	aa,	aaa,	aaaa,	…	}	
–  (a|b)*		denotes			{	ε,	a,	b,	aa,	ab,	…,	aaa,	aab,	…	}	=		Σ*	
–  (a*b*)*		denotes		?	

•  Two	regular	expressions	are	equivalent	if	they	
denote	the	same	language.	Eg:	(a|b)*		=	(a*b*)*	

Some	Algebraic	Proper=es	of		
Regular	Expressions	

LAW	 DESCRIPTION	
r	|	s	=	s	|	r	
r	|	(s	|	t)	=		(r	|	s)	|	t	
(r		s)	t	=		r	(s	t)	

εr	=	r	
rε	=	r	

r*	=	(r	|	ε)*	

r	(s	|	t)	=	r	s	|	r	t	
(s	|	t)	r	=	s	r	|	t	r	

r**	=	r*	

|		is	commuta=ve	
|		is	associa=ve	
concatena=on		is	associa=ve	

concatena=on	distributes	over	|	

rela=on	between	*	and	ε	

ε	is	the	iden=ty	element	for	concatena=on	

*		is	idempotent	

18	

•  Equivalence	of	regular	expressions	is	decidable	
•  There	exist	complete	axioma=za=ons	

19	

Regular	Defini=ons	
•  Provide	a	convenient	syntax,	similar	to	BNF,	introducing	

names	to	denote	regular	expressions.	
•  A	regular	definiCon	has	the	form		

	 	d1	→	r1	
		 	d2	→	r2	
		 	…	
		 	dn	→	rn		
where	each	ri	is	a	regular	expression	over	Σ	∪	{d1,	…,	di-1	}	

•  Recursion	is	forbidden!		digits	!	digit	|	digit	digits		wrong!	
•  Itera=vely	replacing	names	with	the	corresponding	

defini=on	yields	a	single	regular	expression	for	dn	

letter 	→ 	A⏐B⏐…⏐Z⏐a⏐b⏐…⏐z
 digit 	→ 	0⏐1⏐…⏐9 �
 id 	→ 	letter (letter⏐digit)*�

	

id 	→ 	(A⏐B⏐…⏐Z⏐a⏐b⏐…⏐z)(A⏐B⏐…⏐Z⏐a⏐b⏐…⏐z⏐0⏐1⏐…⏐9)*�

	

Extensions	of	Regular	Expressions	

•  Several	operators	on	regular	expressions	have	been	
proposed,	improving	expressivity	and	conciseness	

•  Modern	scrip=ng	languages	are	very	rich	
•  Clearly,	each	new	operator	must	be	definable	with	a	
regular	expression	

•  Here	are	some	common	conven=ons	
	

20	

[xyz] match one character x, y, or z
[^xyz] match any character except x, y, and z
[a-z] match one of a to z
r+ positive closure (match one or more occurrences)
r? optional (match zero or one occurrence)	

Recognizing	Tokens	
•  Tokens	are	specified	using	regular	expressions/
defini=ons	

•  From	the	regular	defini=on	we	can	generate	the	
code	for	recognizing	tokens			

•  Running	example	CFG:	

•  The	tokens	are:	
if, then, else,  
relop, id, num"

	
21	

stmt → if expr then stmt�
 ⏐ if expr then stmt else stmt�
 ⏐ ε �
expr → term relop term�
 ⏐ term�
term → id�
 ⏐ num	

Pattern of
lexeme

Token Attribute-Value

Any	ws	
if
then
else	
Any	id	
Any	num	
<	
<=	
=	
<	>	
>	
>=	

-	
if	
then	
else	
id	
num	
relop	
relop		
relop	
relop	
relop	
relop	

-	
-	
-	
-	
pointer	to	table	entry	
pointer	to	table	entry	
LT	
LE	
EQ	
NE	
GT	
GE	

22	

Running	example:	Informal	specifica=on	
of	tokens	and	their	a\ributes	

Regular	Defini=ons	for	tokens	

•  The	specifica=on	of	the	pa\erns	for	the	
tokens	is	provided	with	regular	defini=ons	

23	

letter → [A-Za-z] 	
digit → [0-9] 	
digits → digit+	

	if → if
 then → then
 else → else
relop → < ⏐ <= ⏐ <> ⏐ > ⏐ >= ⏐ =
 id → letter (letter | digit)*
 num → digits (. digits)? (E (+⏐-)? digits)?	

From	Regular	Defini=ons	to	code	

•  From	the	regular	defini=ons	we	first	extract	a	
transiCon	diagram,	and	next	the	code	of	the	
scanner.	

•  In	the	example	the	lexemes	are	recognized	
either	when	they	are	completed,	or	at	the	
next	character.	In	real	situa=ons	a	longer	
lookahead	might	be	necessary.	

•  The	diagrams	guarantee	that	the	longest	
lexeme	is	iden=fied.		

24	

25	

Coding	Regular	Defini=ons	in	
TransiCon	Diagrams	

0	 2	1	

6	

3	

4	

5	

7	

8	

return(relop, LE)	

return(relop, NE)	

return(relop, LT)	

return(relop, EQ)	

return(relop, GE)	

return(relop, GT)	

start	 <

=

>

=

>

=

other	

other	

*	

*	

9	start	 letter	 10	 11	*	other	

letter or digit	

return(gettoken(),�
 install_id())	

relop → <⏐<=⏐<>⏐>⏐>=⏐=

id → letter (letter⏐digit)*	

Transi=on	diagram	for	unsigned	numbers	
num	→	digit+	(.	digit+)?	(E	(+⏐-)?	digit+)?	

Coding	Regular	Defini=ons	in	
TransiCon	Diagrams	(cont.)	

26	

From	Individual	Transi=on		Diagrams	
to	Code	

•  Easy	to	convert	each	Transi=on	Diagram	into	code	
•  Loop	with	mul=way	branch	(switch/case)	based	on	
the	current	state	to	reach	the	instruc=ons	for	that	
state	

•  Each	state	is	a	mul=way	branch	based	on	the	next	
input	character	

27	

Coding	the	Transi=on	Diagrams	for	Rela=onal	Operators	

TOKEN getRelop() "
{ "TOKEN retToken = new(RELOP);  

"while(1) { /* repeat character processing "
" "until a return or failure occurs */"
" "switch(state) { "
" " "case 0: "c = nextChar();  
" " " " "if(c == '<') state = 1;  
" " " " "else if (c == '=') state = 5;  
" " " " "else if (c == '>’) state = 6;  
" " " " "else fail() ; /* lexeme is not a relop */ "
" " " " "break; "
" " "case 1: ... "
" " "..."
" " "case 8: "retract();"
" " " " "retToken.attribute = GT; "
" " " " "return(retToken);"

} } }

0	 2	1	

6	

3	

4	

5	

7	

8	

return(relop, LE)	

return(relop, NE)	

return(relop, LT)	

return(relop, EQ)	

return(relop, GE)	

return(relop, GT)	

start	 <

=

>

=

>

=

other	

other	

*	

*	

28	

Puxng	the	code	together	
The	transi=on	diagrams	
for	the	various	tokens	
can	be	tried	sequen=ally:	
on	failure,	we	re-scan	
the	input	trying	another	
diagram.	
	

29	

int fail()
{ forward = token_beginning;
 switch (state) {
 case 0: start = 9; break;
 case 9: start = 12; break;
 case 12: start = 20; break;
 case 20: start = 25; break;
 case 25: recover(); break;
 default: /* error */
 }
 return start;
}

token nexttoken()
{ while (1) {
 switch (state) {
 case 0: c = nextchar();
 if (c==blank || c==tab || c==newline) {
 state = 0;
 lexeme_beginning++;
 }
 else if (c==‘<’) state = 1;
 else if (c==‘=’) state = 5;
 else if (c==‘>’) state = 6;
 else state = fail();
 break;
 case 1:
 …
 case 9: c = nextchar();
 if (isletter(c)) state = 10;
 else state = fail();
 break;
 case 10: c = nextchar();
 if (isletter(c)) state = 10;
 else if (isdigit(c)) state = 10;
 else state = 11;
 break;
 …

Puxng	the	code	together:		
Alterna=ve	solu=ons	

	
•  The	diagrams	can	be	checked	in	parallel	
•  The	diagrams	can	be	merged	into	a	single	
one,	typically		non-determinisCc:	this	is	the	
approach	we	will	study	in	depth.	

30	

Lexical	errors	
•  Some	errors	are	out	of	power	of	lexical	
analyzer	to	recognize:	
	 	fi (a == f(x)) …"

• However,	it	may	be	able	to	recognize	errors	
like:	
	 	d = 2r"

•  Such	errors	are	recognized	when	no	pa\ern	
for	tokens	matches	a	character	sequence	

31	

Error	recovery	

•  Panic	mode:	successive	characters	are	ignored	
un=l	we	reach	to	a	well	formed	token	
•  Delete	one	character	from	the	remaining	input	
•  Insert	a	missing	character	into	the	remaining	
input	
•  Replace	a	character	by	another	character	
•  Transpose	two	adjacent	characters	
• Minimal	Distance	

32	

