Lesson 5

- Lexical analysis: implementing a scanner
The Reason Why Lexical Analysis is a Separate Phase

• Simplifies the design of the compiler
 – LL(1) or LR(1) parsing with 1 token lookahead would not be possible (multiple characters/tokens to match)

• Provides efficient implementation
 – Systematic techniques to implement lexical analyzers by hand or automatically from specifications
 – Stream buffering methods to scan input

• Improves portability
 – Non-standard symbols and alternate character encodings can be normalized (e.g. UTF8, trigraphs)
Main goal of lexical analysis: tokenization

source code
\[y := 31 + 28 \times x \]

Lexical analyzer or Scanner

Parser

Token
(lookahead)

Tokenval
(token attribute)
Additional tasks of the Lexical Analyzer

• Remove comments and useless white spaces / tabs from the source code
• Correlate error messages of the parser with source code (e.g. keeping track of line numbers)
• Expansion of macros
Interaction of the Lexical Analyzer with the Parser

Source Program

Lexical Analyzer

Token, tokenval

Parser

Get next token

error

Symbol Table

error
How are tokens determined?

• The source programming language is defined by a CFG, used by the parser

• The tokens are just the *terminal symbols* of the CFG
Tokens, Patterns, and Lexemes

• A **token** is a pair `<token name, attribute>`
 – The token name (e.g. `id`, `num`, `div`, `geq`, ...) identifies the category of lexical units
 – The attribute is optional
 – **NOTE:** most often, one refers to a **token** using the **token name** only

• A **lexeme** is a character string that makes up a token
 – For example: `abc`, `123`, `\`, `>=`

• A **pattern** is a rule describing the set of lexemes belonging to a token
 – For example: “letter followed by letters and digits”, “non-empty sequence of digits”, “character ‘\’”, “character ‘>’ followed by ‘=’”

• The scanner reads characters from the input till when it recognizes a lexeme that matches the patterns for a token
How are tokens determined?

- The source programming language is defined by a CFG, used by the parser
- The tokens are just the **terminal symbols** of the CFG

Examples of tokens

<table>
<thead>
<tr>
<th>Token name</th>
<th>Informal description</th>
<th>Sample lexemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>if</td>
<td>Characters i, f</td>
<td>if</td>
</tr>
<tr>
<td>else</td>
<td>Characters e, l, s, e</td>
<td>else</td>
</tr>
<tr>
<td>relation</td>
<td>< or > or <= or >= or == or !=</td>
<td><=, !=</td>
</tr>
<tr>
<td>id</td>
<td>Letter followed by letter and digits</td>
<td>pi, score, D2</td>
</tr>
<tr>
<td>number</td>
<td>Any numeric constant</td>
<td>3.14159, 0, 6.02e23</td>
</tr>
<tr>
<td>literal</td>
<td>Anything but " surrounded by "</td>
<td>"core dumped"</td>
</tr>
</tbody>
</table>
Attributes of tokens

• Needed when the pattern of a token matches different lexemes
• We assume single attribute, but can be structured
• Typically ignored by parsing, but used in subsequent compilation phases (static analysis, code generation, optimization)
• Kind of attribute depends on the token name
• Identifiers have several info associated (lexeme, type, position of definition,...)
 – Typically inserted as entries in a symbol table, and the attribute is a pointer to the symbol-table entry
Reading input characters

• Requires I/O operations: efficiency is crucial
• Lookahead can be necessary to identify a token
• Buffered input reduces I/O operations
• Naive implementation makes two tests for each character
 – End of buffer?
 – Multiway branch on the character itself
• Use of “sentinels” encapsulate the end-of-buffer test into the multiway branch
Buffered input to Enhance Efficiency

\[
E = M * C * * 2 \text{ eof}
\]

lexeme beginning

```
if (forward at end of first half) then begin
   reload second half ;  \text{ \textbullet\ Block I/O}
   forward := forward + 1
end
else if (forward at end of second half) then begin
   reload first half ;   \text{ \textbullet\ Block I/O}
   move forward to beginning of first half
end
else forward := forward + 1 ;
```

forward (scans ahead to find pattern match)

Executed for each input character
Algorithm: Buffered I/O with Sentinels

E = M * eof C * * 2 eof

Current token

forward (scans ahead to find pattern match)

Executable only is next character is eof

forward := forward + 1;
if (forward is at eof) then begin
 if (forward at end of first half) then begin
 reload second half;
 forward := forward + 1
 end
else if (forward at end of second half) then begin
 reload first half;
 move forward to beginning of first half
end
else /* eof within buffer signifying end of input */
 terminate lexical analysis
 2nd eof ⇒ no more input!
Specication of Patterns for Tokens: Recalling some basic definitions

• An alphabet Σ is a finite set of symbols (characters)
• A string s is a finite sequence of symbols from Σ
 – $|s|$ denotes the length of string s
 – ε denotes the empty string, thus $|\varepsilon| = 0$
 – Σ^* denotes the set of strings over Σ
• A language L over Σ is a set of strings over alphabet Σ
• Thus $L \subseteq \Sigma^*$, or $L \in 2^{\Sigma^*}$
 – 2^X is the powerset of X, i.e. the set of all subsets of X
• The concatenation of strings x and y is denoted by xy
• Exponentiation of a string s: $s^0 = \varepsilon$ $s^i = s^{i-1}s$ for $i > 0$
Operations on Languages

- Languages are sets (of strings) thus all operations on sets are defined over them
 - *Eg. Union:* \(L \cup M = \{ s \mid s \in L \text{ or } s \in M \} \)
- Additional operations lift to languages operations on strings
 - *Concatenation:* \(LM = \{ xy \mid x \in L \text{ and } y \in M \} \)
 - *Exponentiation:* \(L^0 = \{ \varepsilon \}; \quad L^i = L^{i-1}L \)
- Closure operators
 - *Kleene closure:* \(L^* = \bigcup_{i=0,...,\infty} L^i \)
 - *Positive closure:* \(L^+ = \bigcup_{i=1,...,\infty} L^i \)
Language Operations: Examples

L = \{a, b, ab, ba\} \quad D = \{1, 2, ab, b\} \quad \text{Assuming} \quad \Sigma = \{a,b,1,2\}

- L \cup D = \{a, b, ab, ba, 1, 2\}
- LD = \{a1, a2, aab, ab, b1, b2, bab, bb, ab1, ab2, abab, abb, ba1, ba2, baab, babb\}
- L^2 = \{aa, ab, aab, aba, ba, bb, bab, bba, abb, abab, abba, baa, bab, baab, baba\}
- D^* = \{\varepsilon, 1, 2, ab, b, 11, 12, \ldots, 111, 112, \ldots, 1111, 1112, \ldots\}
- D^+ = D^* - \{\varepsilon\}
Regular Expressions: syntax and semantics

• Given an alphabet Σ, a regular expression over Σ denotes a language over Σ and is defined as follows:

• Basis symbols:
 – ε is a regular expression denoting language $\{\varepsilon\}$
 – a is a regular expression denoting $\{a\}$, for each $a \in \Sigma$

• If r and s are regular expressions denoting languages $L(r)$ and $L(s)$ respectively, then
 – $(r) \mid (s)$ is a regular expression denoting $L(r) \cup L(s)$
 – $(r)(s)$ is a regular expression denoting $L(r)L(s)$
 – $(r)^*$ is a regular expression denoting $L(r)^*$
 – (r) is a regular expression denoting $L(r)$

• A language defined by a regular expression is called a regular language
Regular Expressions: conventions and examples

• Syntactical conventions to avoid too many brackets:
 – Precedence of operators: $(__)^* > (_)(__) > (_)|(_)$
 – Left-associativity of all operators
 – Example: $(a)|(b^*(c))$ can be written as $a|b^*c$

• Examples of regular expressions (over $\Sigma = \{a, b\}$):
 – $a|b$ denotes $\{a, b\}$
 – $(a|b)(a|b)$ denotes $\{aa, ab, ba, bb\}$
 – a^* denotes $\{\varepsilon, a, aa, aaaa, aaaaa, ...\}$
 – $(a|b)^*$ denotes $\{\varepsilon, a, b, aa, ab, ..., aaaa, aab, ...\} = \Sigma^*$
 – $(a^*b^*)^*$ denotes ε

• Two regular expressions are equivalent if they denote the same language. Eg: $(a|b)^* = (a^*b^*)^*$
Some Algebraic Properties of Regular Expressions

<table>
<thead>
<tr>
<th>LAW</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r \mid s = s \mid r$</td>
<td>\mid is commutative</td>
</tr>
<tr>
<td>$r \mid (s \mid t) = (r \mid s) \mid t$</td>
<td>\mid is associative</td>
</tr>
<tr>
<td>$(r \mid s) \mid t = r \mid (s \mid t)$</td>
<td>concatenation is associative</td>
</tr>
<tr>
<td>$r \mid (s \mid t) = rs \mid rt$</td>
<td>concatenation distributes over \mid</td>
</tr>
<tr>
<td>$(s \mid t) \mid r = sr \mid tr$</td>
<td>ϵ is the identity element for concatenation</td>
</tr>
<tr>
<td>$\epsilon r = r$</td>
<td>ϵ is the identity element for concatenation</td>
</tr>
<tr>
<td>$r \epsilon = r$</td>
<td>ϵ is the identity element for concatenation</td>
</tr>
<tr>
<td>$r^* = (r \mid \epsilon)^*$</td>
<td>relation between \ast and ϵ</td>
</tr>
<tr>
<td>$r^{**} = r^*$</td>
<td>\ast is idempotent</td>
</tr>
</tbody>
</table>

- Equivalence of regular expressions is decidable
- There exist complete axiomatizations
Regular Definitions

• Provide a convenient syntax, similar to BNF, introducing names to denote regular expressions.

• A regular definition has the form

\[
\begin{align*}
 d_1 & \rightarrow r_1 \\
 d_2 & \rightarrow r_2 \\
 \vdots \\
 d_n & \rightarrow r_n \\
\end{align*}
\]

where each \(r_i \) is a regular expression over \(\Sigma \cup \{d_1, ..., d_{i-1}\} \)

• **Recursion is forbidden!** \(digits \rightarrow digit \mid digit \ digits \) wrong!

• Iteratively replacing names with the corresponding definition yields a single regular expression for \(d_n \)

\[
\begin{align*}
id & \rightarrow (A \mid B \mid \ldots \mid Z \mid a \mid b \mid \ldots \mid z) (A \mid B \mid \ldots \mid Z \mid a \mid b \mid \ldots \mid z \mid 0 \mid 1 \mid \ldots \mid 9)^* \\
\end{align*}
\]
Extensions of Regular Expressions

• Several operators on regular expressions have been proposed, improving expressivity and conciseness
• Modern scripting languages are very rich
• Clearly, each new operator must be definable with a regular expression
• Here are some common conventions

 \[\text{[xyz]}\] match one character \(x, y,\) or \(z\)
 \[\text{[^xyz]}\] match any character except \(x, y,\) and \(z\)
 \[\text{[a–z]}\] match one of \(a\) to \(z\)
 \(r^+\) positive closure (match one or more occurrences)
 \(r^?\) optional (match zero or one occurrence)
Recognizing Tokens

• Tokens are specified using regular expressions/definitions
• From the regular definition we can generate the code for recognizing tokens
• Running example CFG:

The tokens are:
if, then, else, relop, id, num

\[
\begin{align*}
stmt & \rightarrow \text{if expr then stmt} \\
& \quad | \text{if expr then stmt else stmt} \\
& \quad | \varepsilon \\
expr & \rightarrow \text{term relop term} \\
& \quad | \text{term} \\
term & \rightarrow \text{id} \\
& \quad | \text{num}
\end{align*}
\]
Running example: Informal specification of tokens and their attributes

<table>
<thead>
<tr>
<th>Pattern of lexeme</th>
<th>Token</th>
<th>Attribute-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any ws</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>if</td>
<td>if</td>
<td>-</td>
</tr>
<tr>
<td>then</td>
<td>then</td>
<td>-</td>
</tr>
<tr>
<td>else</td>
<td>else</td>
<td>-</td>
</tr>
<tr>
<td>Any id</td>
<td>id</td>
<td>pointer to table entry</td>
</tr>
<tr>
<td>Any num</td>
<td>num</td>
<td>pointer to table entry</td>
</tr>
<tr>
<td><</td>
<td>relop</td>
<td>LT</td>
</tr>
<tr>
<td><=</td>
<td>relop</td>
<td>LE</td>
</tr>
<tr>
<td>=</td>
<td>relop</td>
<td>EQ</td>
</tr>
<tr>
<td><></td>
<td>relop</td>
<td>NE</td>
</tr>
<tr>
<td>></td>
<td>relop</td>
<td>GT</td>
</tr>
<tr>
<td>>=</td>
<td>relop</td>
<td>GE</td>
</tr>
</tbody>
</table>
Regular Definitions for tokens

• The specification of the patterns for the tokens is provided with regular definitions

\[
\begin{align*}
\text{letter} & \rightarrow [A-Za-z] \\
\text{digit} & \rightarrow [0-9] \\
\text{digits} & \rightarrow \text{digit}^+ \\
\text{if} & \rightarrow \text{if} \\
\text{then} & \rightarrow \text{then} \\
\text{else} & \rightarrow \text{else} \\
\text{relop} & \rightarrow < | \leq | \geq | > | \geq | = \\
\text{id} & \rightarrow \text{letter} (\text{letter} \mid \text{digit})^* \\
\text{num} & \rightarrow \text{digits} (. \text{digits})? (\text{E} (\text{+} \mid \text{-})? \text{digits})?
\end{align*}
\]
From Regular Definitions to code

• From the regular definitions we first extract a transition diagram, and next the code of the scanner.
• In the example the lexemes are recognized either when they are completed, or at the next character. In real situations a longer lookahead might be necessary.
• The diagrams guarantee that the longest lexeme is identified.
Coding Regular Definitions in Transition Diagrams

relop → \(< | \leq | \leq | > | \geq | =\)

id → letter (letter | digit)*

return(relop, LE)
return(relop, NE)
return(relop, LT)
return(relop, EQ)
return(relop, GE)
return(relop, GT)

gettoken(), install_id()
Coding Regular Definitions in *Transition Diagrams* (cont.)

Transition diagram for unsigned numbers

\[\text{num} \rightarrow \text{digit}^+ (\cdot \text{digit}^+)? (\text{E} (+ | -)? \text{digit}^+)? \]
From Individual Transition Diagrams to Code

• Easy to convert each Transition Diagram into code
• Loop with multiway branch (switch/case) based on the current state to reach the instructions for that state
• Each state is a multiway branch based on the next input character
Coding the Transition Diagrams for Relational Operators

```
TOKEN getRelop()
{    TOKEN retToken = new(RELOP);
    while(1) { /* repeat character processing
                   until a return or failure occurs */
        switch(state) {
            case 0:  c = nextChar();
                if(c == '<') state = 1;
                else if (c == '=') state = 5;
                else if (c == '>') state = 6;
                else fail(); /* lexeme is not a relop */
                break;
            case 1: ...
            ...
            case 8: retract();
                retToken.attribute = GT;
                return(retToken);
        }
    }
    return(relop, LE);
}
return(relop, NE);
return(relop, LT);
return(relop, EQ);
return(relop, GE);
return(relop, GT);
```
Putting the code together

token nexttoken()
{ while (1) {
 switch (state) {
 case 0: c = nextchar();
 if (c==blank || c==tab || c==newline) {
 state = 0;
 lexeme_beginning++;
 }
 else if (c=='<') state = 1;
 else if (c=='=' || c=='>') state = 5;
 else state = fail();
 break;
 case 1:
 ...
 case 9: c = nextchar();
 if (isletter(c)) state = 10;
 else state = fail();
 break;
 case 10: c = nextchar();
 if (isletter(c)) state = 10;
 else if (isdigit(c)) state = 10;
 else state = 11;
 break;
 ...
 }
 return forward;
}

int fail()
{ forward = token_beginning;
 switch (state) {
 case 0: start = 9; break;
 case 9: start = 12; break;
 case 12: start = 20; break;
 case 20: start = 25; break;
 case 25: recover(); break;
 default: /* error */
 }
 return start;
}

The transition diagrams for the various tokens can be tried sequentially: on failure, we re-scan the input trying another diagram.
Putting the code together: Alternative solutions

• The diagrams can be checked in parallel
• The diagrams can be merged into a single one, typically non-deterministic: this is the approach we will study in depth.
Lexical errors

• Some errors are out of power of lexical analyzer to recognize:

\[f_i (a == f(x)) \ldots \]

• However, it may be able to recognize errors like:

\[d = 2r \]

• Such errors are recognized when no pattern for tokens matches a character sequence
Error recovery

- Panic mode: successive characters are ignored until we reach to a well formed token
- Delete one character from the remaining input
- Insert a missing character into the remaining input
- Replace a character by another character
- Transpose two adjacent characters
- Minimal Distance