603AA - Principles of Programming
Languages [PLP-2016]

Andrea Corradini
andrea@di.unipi.it
Department of Computer Science, Pisa
Academic Year 2016/17

Admins...

e Office hours: Wednesday, 3-6 pm
— or by appointment <andrea@di.unipi.it>

 Page on Moodle platform:
https://elearning.di.unipi.it/enrol/index.php?id=52

— Contains PDFs of relevant chapter
 Tutor: Lillo Galletta galletta@di.unipi.it

— Contact by email, indicating the topics you would like to
discuss

— Based on the requests, Lillo can meet you individually or in
group
* No lesson tomorrow, September 23
— Other possible slot?

Programming languages and Abstract
Machines

Compilation and interpretation schemes
Cross compilation
Bootstrapping

Compilers

Definition of Programming Languages

 APLis defined via syntax, semantics and pragmatics

 The syntax is concerned with the form of programs:
how expressions, commands, declarations, and other
constructs must be arranged to make a well-formed
program.

 The semantics is concerned with the meaning of (well-
formed) programs: how a program may be expected to
behave when executed on a computer.

* The pragmatics is concerned with the way in which the
PL is intended to be used in practice. Pragmatics

include the paradigm(s) supported by the PL.

Paradigms

A paradigm is a style of programming, characterized by a
particular selection of key concepts

Imperative programming: variables, commands,
procedures.

Object-oriented (OO0) programming: objects, methods,
classes.

Concurrent programming: processes, communication.

Functional programming: values, expressions,
functions.

Logic programming: assertions, relations.

In general, classification of languages according to
paradigms is misleading

Implementation of a
Programming Language L

* Programs written in L must be executable

* Language L implicitly defines an Abstract
Machine M, having L as machine language

* Implementing M, on an existing host machine
M, (via compilation, interpretation or both)
makes programs written in L executable

Abstract Machine for a Language L

* Given a programming language L, an Abstract Machine
M, for L is a collection of data structures and algorithms
which can perform the storage and execution of programs
written in L

* An abstraction of the concept of hardware machine
e Structure of an abstract machine:

Memory Interpreter

Operations and Data Structures for:
< > ¢ Primitive Data processing
Sequence control

Data Transfer control

Memory management

Programs

Data

General structure of
the Interpreter @

Sequence control Fetch next instruction <
Decode
Data control Fetch operands
— '
Operations Execute op, Execute op, Execute op, Execute HALT

.

Data control Store the result @

The Machine Language of an AM

Given and Abstract machine M, the machine language L,, of M
— includes all programs which can be executed by the interpreter of M

Programs are particular data on which the interpreter can act

The components of M correspond to components of L,,, eg:
— Primitive data types
— Control structures
— Parameter passing and value return
— Memory management

Every Abstract Machine has a unique Machine Language
A programming language can have several Abstact Machines

An example the Hardware Machine

e e e e e e e e e e e e e e e e e e e -

The language Main memory
The memory
The interpreter
Operations and Data Structures for:

* Primitive Data processing

* Sequence control

* Data Transfer control

* Memory management 10

The core of a JVM interpreter is basicatly this:

do { class
The Java e
. switch (opcode Supsystem
Vl rt u a I promonmmneoos Gase---@pC@de.l---,ﬁ_Q"_"_w_"__________1

M adC h i ne Maen ;fiiit S1s :j-QéiierlEDrrg:f : odelé;

The language

fetch |operands fpr epdodel;

J_Lfetch operajds for opCodeZ-
V¥ exdbute actlon for opGedel:
execution brieaks 7ativemethod 404
engine~~ | /. interface libraries

} while (more to do)

The memory
The interpreter
Operations and Data Structures for:

Primitive Data processing
Sequence control

Data Transfer control
Memory management 11

~ 160 opcodes

Implementing an Abstract Machine

Each abstract machine can be implemented in hardware or in
firmware, but if it is high-level this is not convenient in general

An abstract machine M can be implemented over a host
machine Mg, which we assume is already implemented

The components of M are realized using data structures and
algorithms implemented in the machine language of M,

Two main cases:
— The interpreter of M coincides with the interpreter of Mg
* M is an extension of M,
e other components of the machines can differ
— The interpreter of M is different from the interpreter of M,
* Mis interpreted over M,
e other components of the machines may coincide

Hierarchies of Abstract Machines

* |Implementation of an AM with another can be
iterated, leading to a hierarchy (onion skin model)

e Example:

E-Business machine (on-line commerce applications)

Web Service machine (languages for web services)

Web machine (browser etc.)

HL machine (Java)

Intermediate machine (Java Bytecode)

Operating System machine

Firmware machine

[Hardware machine J

Implementing a
Programming Language

L high level programming language
M, abstract machine forL

M, host machine

Pure Interpretation

— M| is interpreted over M,

— Not very efficient, mainly because of the interpreter (fetch-decode
phases)

Pure Compilation

— Programs written in L are translated into equivalent programs
written in Ly, the machine language of M,

— The translated programs can be executed directly on M,
* M, is not realized at all
— Execution more efficient, but the produced code is larger

Two limit cases that almost never exist in reality

Pure Interpretation
* Program P in L as a partial function on D:
PP > 9
* Set of programs in L: gzmgci”

Program in L

' TTTTTTTTToon

Inte.rprete.r for L Output data i

written in LO | .

: ———————————————— l/' ———————————————— !
! Input data : lExecution on MO

MO

* The interpreter defines a function

f:’go ; (@rog‘g X 9)— % such that fgo(ﬁg, Input) = P (Input)

Pure [cross] Compilation

A compiler from L to LO defines a function
Cr Lo ,@rog”gf — erogiﬂo

such that if
Cp.p0(PZL)= Pc?,

then for every Input we have @< (Input) = P2cZ°(Input)

i Input data :
I________________I
Program Compiler Program ! .
—> E— Output dat |
written in L from L to LO written in LO : Hipt e .
lExecution on M A lExecution MO

Abstract macchine M A Host macchine MO

Compilers versus Interpreters

Compilers efficiently fix decisions that can be taken at compile
time to avoid to generate code that makes this decision at run
time

— Type checking at compile time vs. runtime

— Static allocation

— Static linking

— Code optimization

Compilation leads to better performance in general

— Allocation of variables without variable lookup at run time

— Aggressive code optimization to exploit hardware features

Interpretation facilitates interactive debugging and testing

— Interpretation leads to better diagnostics of a programming
problem

— Procedures can be invoked from command line by a user
— Variable values can be inspected and modified by a user

Compilation + Interpretation

e All implementations of programming languages
use both. At least:

— Compilation (= translation) from external to internal
representation

— Interpretation for I/O operations (runtime support)

* Can be modeled by identifying an Intermediate
Abstract Machine M, with language L,
— A program in L is compiled to a program in L,
— The program in L, is executed by an interpreter for M,

Compilation + Interpretation
with Intermediate Abstract Machine

I
I
I
I
I

P‘rogre}m Compiler ' Progrgm '
written in L from L to Li written in L7

I
|
|

TN Interpreter for L¢ |
written — Output data
o in Lo or RTS L
Rrogrgm Compiler . I'Drogr?lm '
written in L from L to Li written in Lz)
Execution on MO
lCompilation on M A
MA MO

* The “pure” schemes as limit cases
* Let us sketch some typical implementation schemes...

Virtual Machines as Intermediate
Abstract Machines

* Several language implementations adopt a compilation
+ interpretation schema, where the Intermediate
Abstract Machine is called Virtual Machine

 Adopted by Pascal, Java, Smalltalk-80, C#, functional
and logic languages, and some scripting languages

— Pascal compilers generate P-code that can be interpreted
or compiled into object code

— Java compilers generate bytecode that is interpreted by
the Java virtual machine (JVM)

— The JVM may translate bytecode into machine code by
just-in-time (JIT) compilation

Compilation and Execution on
Virtual Machines

 Compiler generates intermediate program

e Virtual machine interprets the intermediate
program

Source o Intermediate
ompiler
Program Program

Compile on X Run on VM

Virtual
 Portability! mmpur “ Output

RunonX,Y, Z, .

Pure Compilation and Static Linking

* Adopted by the typical Fortran systems

* Library routines are separately linked
(merged) with the object code of the program

Source ‘ o ‘ Incomplete
ompiler
Program Ob]ect Code

extern printf();

—?;_;i‘;tf Static Library ‘ e ‘ Binary
“fscan | Object Code Executable

Compilation, Assembly, and
Static Linking

* Facilitates debugging of the compiler

Source c Assembly
ompiler
Program Program

extern printf (),

Assembler

- =

_printf

—:gi:n Static Library ‘
- Object Code

Binary
Executable

23

Compilation, Assembly, and
Dynamic Linking

* Dynamic libraries (DLL, .so, .dylib) are linked at
run-time by the OS (via stubs in the executable)

Source o Assembly
ompiler
Program Program

extern printf (),

Shared Dynamic Libraries

_printf, fget, fscan, ..

Input

- =

‘ Incomplete
“ .

24

Preprocessing

Most C and C++ compilers use a preprocessor
to import header files and expand macros

Source
Preprocessor
Program

Modified Source
Program

#include <stdio.h>
#define N 99

for (i=0; i<99; i++)

for (i=0; i<N; i++)

Assembly or
Compiler Object Code

25

The CPP Preprocessor

* Early C++ compilers used the CPP preprocessor
to generated C code for compilation

C++ CS
Cot ource
Source ‘ Preprocessor ‘ Code
Code
Assembly or
C Compiler Object Code

Compilers, graphically

Three languages involved in writing a compiler
— Source Language (S)

— Target Language (T)

— Implementation Language (l)

T-Diagram:
S T

If I =T we have a Host Compiler
If S, T, and | are all different, we have a Cross-Compiler

Composing compilers

 Compiling a compiler we get a new one: the result is
described by composing T-diagrams

* The shape of the basic transformation, in the most
general case, is the following:

S T S T

| ' N N

M

* Note: by writing this transformation, we implicitly
assume that we can execute programs written in M

Composing compilers: an example

A compiler of Sto M can be written in any

language having a host compiler for M

S

M

S

M

M

Example:

S Pascal
I C

M 68000

* By compiling it we get a host compiler of S for

M.

Bootstrapping

Bootstrapping: techniques which use partial/inefficient
compiler versions to generate complete/better ones
Often compiling a translator programmed in its own
language

Why writing a compiler in its own language?

— it is a non-trivial test of the language being compiled

— compiler development can be done in the higher level
language being compiled.

— improvements to the compiler’s back-end improve not
only general purpose programs but also the compiler itself

— it is a comprehensive consistency check as it should be
able to reproduce its own object code

Compilers: Portability Criteria

Portability

— Retargetability
— Rehostability

A retargetable compiler is one that can be modified
easily to generate code for a new target language

A rehostable compiler is one that can be moved easily
to run on a new machine

A portable compiler may not be as efficient as a
compiler designed for a specific machine, because we
cannot make any specific assumption about the target
machine

Using Bootstrapping to port a compiler

* We have a host compiler/interpreter of L for M
 Write a compiler of Lto N in language L itself

L N
L N
_ L L M
Example: M
L Pascal
M P-code M
L N L N
L L N N

Bootstrapping to optimize a compiler

* The efficiency of programs and compilers:
— Efficiency of programs:
* memory usage
* runtime

— Efficiency of compilers:
* Efficiency of the compiler itself
 Efficiency of the emitted code

e |dea: Start from a simple compiler (generating
inefficient code) and develop more sophisticated

version of it. We can use bootstrapping to
improve performance of the compiler.

Bootstrapping to optimize a compiler

e We have a host compiler of ADA to M
 Write an optimizing compiler of ADA to M in ADA

ADA M*
ADA M*
ADA ADA M
M
M
ADA M* ADA M*
ADA| ADA M* M*

Full Bootstrapping

A full bootstrap is necessary when building a new
compiler from scratch.

Example:

We want to implement an Ada compiler for machine
M. We don’t have access to any Ada compiler

Idea: Ada is very large, we will implement the
compiler in a subset of Ada (call it Ada,) and
bootstrap it from a subset of Ada compiler in
another language (e.g. C)

Full Bootstrapping (2)

* Step 1: build a compiler of Ada, to M in another language, say C

Ada, M

C

e Step 2: compile it using a host compiler of C for M

Ada, M Ada, vi ™M

C C M M

M

* Note: new versions would depend on the C compiler for M

Full Bootstrapping (3)

 Step 3: Build another compiler of Ada, in Ada,

Ada, M

Ada,

* Step 4: compile it using the Ada, compiler for M

Ada, M Ada, v2 ™M

Adao Adao vi M M

M

* Note: C compiler is no more necessary

Full Bootstrapping (4)

* Step 5: Build a full compiler of Ada in Ada,

Ada M

Ada,

* Step 4: compile it using the second Ada, compiler for M

Ada M Ada M

Ada, Ada, v2 ™M M

M

e Future versions of the compiler can be written directly in Ada

