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•  Programming	languages	and	Abstract	
Machines	

•  CompilaWon	and	interpretaWon	schemes	
•  Cross	compilaWon	
•  Bootstrapping	
•  Compilers	

3	



DefiniWon	of	Programming	Languages	

•  A	PL	is	defined	via	syntax,	seman>cs	and	pragma>cs	
•  The	syntax	is	concerned	with	the	form	of	programs:	
how	expressions,	commands,	declaraWons,	and	other	
constructs	must	be	arranged	to	make	a	well-formed	
program.	

•  The	seman>cs	is	concerned	with	the	meaning	of	(well-
formed)	programs:	how	a	program	may	be	expected	to	
behave	when	executed	on	a	computer.	

•  The	pragma>cs	is	concerned	with	the	way	in	which	the	
PL	is	intended	to	be	used	in	pracWce.	PragmaWcs	
include	the	paradigm(s)	supported	by	the	PL.	
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Paradigms	

A	paradigm	is	a	style	of	programming,	characterized	by	a	
parWcular	selecWon	of	key	concepts	
•  Impera>ve	programming:	variables,	commands,	
procedures.	

•  Object-oriented	(OO)	programming:	objects,	methods,	
classes.	

•  Concurrent	programming:	processes,	communicaWon.	
•  Func>onal	programming:	values,	expressions,	
funcWons.	

•  Logic	programming:	asserWons,	relaWons.	
In	general,	classificaWon	of	languages	according	to	
paradigms	is	misleading	 5	



ImplementaWon	of	a		
Programming	Language	L	

•  Programs	wriMen	in	L	must	be	executable	
•  Language	L	implicitly	defines	an	Abstract	
Machine	ML	having	L	as	machine	language	

•  ImplemenWng	ML	on	an	exisWng	host	machine	
MO		(via	compila4on,	interpreta4on	or	both)	
makes	programs	wriMen	in	L	executable	
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Abstract	Machine	for	a	Language	L	
•  Given	a	programming	language	L,	an	Abstract	Machine	
ML	for	L	is	a	collec0on	of	data	structures	and	algorithms	
which	can	perform	the	storage	and	execu0on	of	programs	
wri8en	in	L					

•  An	abstracWon	of	the	concept	of	hardware	machine	
•  Structure	of	an	abstract	machine:	

Programs	
	

Data	

Memory	 	
Operations and Data Structures for:	
•  Primitive Data processing	
•  Sequence control	
•  Data Transfer control	
•  Memory management	

Interpreter	
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General	structure	of	
the	Interpreter	

Sequence	control	

Data	control	

OperaWons	

start	

stop	

Fetch	next	instrucWon	

Decode	

Fetch	operands	

Choose	

Execute	op1	 Execute	op2	 Execute	opn	 Execute	HALT	...	

Store	the	result	Data	control	
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The	Machine	Language	of	an	AM	

•  Given	and	Abstract	machine	M,	the	machine	language	LM	of	M	
–  includes	all	programs	which	can	be	executed	by	the	interpreter	of	M	

•  Programs	are	parWcular	data	on	which	the	interpreter	can	act	
•  The	components	of	M	correspond	to	components	of	LM,	eg:	

–  PrimiWve	data	types	
–  Control	structures	
–  Parameter	passing	and	value	return	
–  Memory	management	

•  Every	Abstract	Machine	has	a	unique	Machine	Language	
•  A	programming	language	can	have	several	Abstact	Machines	
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An	example:	the	Hardware	Machine		6 1 Abstract Machines

Fig. 1.3 The structure of a conventional calculator

For this specific case, we can, using what we have already said about the compo-
nents of an abstract machine, identify the following parts.

Memory The storage component of a physical computer is composed of various
levels of memory. Secondary memory implemented using optical or magnetic com-
ponents; primary memory, organised as a linear sequence of cells, or words, of fixed
size (usually a multiple of 8 bits, for example 32 or 64 bits); cache and the registers
which are internal to the Central Processing Unit (CPU).

Physical memory, whether primary, cache or register file, permits the storage of
data and programs. As stated, this is done using the binary alphabet.

Data is divided into a few primitive “types”: usually, we have integer numbers,
so-called “real” numbers (in reality, a subset of the rationals), characters, and fixed-
length sequences of bits. Depending upon the type of data, different physical repre-
sentations, which use one or more memory words for each element of the type are
used. For example, the integers can be represented by 1s or 2s complement num-
bers contained in a single word, while reals have to be represented as floating point
numbers using one or two words depending on whether they are single or double
precision. Alphanumeric characters are also implemented as sequences of binary
numbers encoded in an appropriate representational code (for example, the ASCII
or UNI CODE formats).

We will not here go into the details of these representations since they will be
examined in more detail in Chap. 8. We must emphasise the fact that although all
data is represented by sequences of bits, at the hardware level we can distinguish
different categories, or more properly types, of primitive data that can be manip-
ulated directly by the operations provided by the hardware. For this reason, these
types are called predefined types.

The language of the physical machine The language, L H which the physical
machine executes is composed of relatively simple instructions. A typical instruc-

•  The	language	
•  The	memory	
•  The	interpreter	
•  OperaWons	and	Data	Structures	for:	

•  PrimiWve	Data	processing	
•  Sequence	control	
•  Data	Transfer	control	
•  Memory	management	 10	



The	Java	
Virtual	
Machine	
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•  The	language	
•  The	memory	
•  The	interpreter	
•  OperaWons	and	Data	Structures	for:	

•  PrimiWve	Data	processing	
•  Sequence	control	
•  Data	Transfer	control	
•  Memory	management	

The	core	of	a	JVM	interpreter	is	basically	this:	
do {  
   byte opcode = fetch an opcode; 
   switch (opcode) { 
     case opCode1 : 
         fetch operands for opCode1; 
         execute action for opCode1; 
         break; 
     case opCode2 : 
         fetch operands for opCode2; 
         execute action for opCode2; 
         break; 
     case ... 
} while (more to do) 

~	160	opcodes	



ImplemenWng	an	Abstract	Machine	
•  Each	abstract	machine	can	be	implemented	in	hardware	or	in	

firmware,	but	if	it	is	high-level	this	is	not	convenient	in	general	
•  An	abstract	machine	M	can	be	implemented	over	a	host	

machine	MO,	which	we	assume	is	already	implemented	
•  The	components	of	M	are	realized	using	data	structures	and	

algorithms	implemented	in	the	machine	language	of	MO	
•  Two	main	cases:	
–  The	interpreter	of	M	coincides	with	the	interpreter	of	MO	

• M	is	an	extension	of	MO	

•  other	components	of	the	machines	can	differ	
–  The	interpreter	of	M	is	different	from	the	interpreter	of	MO	

• M	is	interpreted	over	MO	
•  other	components	of	the	machines	may	coincide	

12	



Hierarchies	of	Abstract	Machines	
•  ImplementaWon	of	an	AM	with	another	can	be	
iterated,	leading	to	a	hierarchy	(onion	skin	model)		

•  Example:	
22 1 Abstract Machines

Fig. 1.8 A hierarchy of
abstract machines

A canonical example of a hierarchy of this kind in a context that is seemingly
distant from programming languages is the hierarchy5 of communications protocols
in a network of computers, such as, for example, the ISO/OSI standard.

In a context closer to the subject of this book, we can consider the example shown
in Fig. 1.8.

At the lowest level, we have a hardware computer, implemented using physical
electronic devices (at least, at present; in the future, the possibility of biological
devices will be something that must be actively considered). Above this level, we
could have the level of an abstract, microprogrammed machine. Immediately above
(or directly above the hardware if the firmware level is not present), there is the ab-
stract machine provided by the operating system which is implemented by programs
written in machine language. Such a machine can be, in turn, seen as a hierarchy of
many layers (kernel, memory manager, peripheral manager, file system, command-
language interpreter) which implement functionalities that are progressively more
remote from the physical machine: starting with the nucleus, which interacts with
the hardware and manages process state changes, to the command interpreter (or
shell) which allows users to interact with the operating system. In its complexity,
therefore, the operating system on one hand extends the functionality of the physical
machine, providing functionalities not present on the physical machine (for exam-
ple, primitives that operate on files) to higher levels. On the other hand, it masks
some hardware primitives (for example, primitives for handling I/O) in which the
higher levels in the hierarchy have no interest in seeing directly. The abstract ma-
chine provided by the operating system forms the host machine on which a high-
level programming language is implemented using the methods that we discussed in
previous sections. It normally uses an intermediate machine, which, in the diagram
(Fig. 1.8), is the Java Virtual machine and its bytecode language. The level provided
by the abstract machine for the high-level language that we have implemented (Java

5In the literature on networks, one often speaks of a stack rather than, more correctly, of a hierarchy.
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ImplemenWng	a		
Programming	Language	

•  L	 	high	level	programming	language																										

•  ML 	abstract	machine	for	L	
•  MO	 	host	machine	
•  Pure	Interpreta>on	

–  ML	is	interpreted	over	MO	
–  Not	very	efficient,	mainly	because	of	the	interpreter	(fetch-decode	

phases)	

•  Pure	Compila>on	
–  Programs	wriMen	in	L	are	translated	into	equivalent	programs	

wriMen	in	LO,	the	machine	language	of	MO	
–  The	translated	programs	can	be	executed	directly	on	MO		

•  	ML	is	not	realized	at	all	
–  ExecuWon	more	efficient,	but	the	produced	code	is	larger	

•  Two	limit	cases	that	almost	never	exist	in	reality	
	 14	



Pure	InterpretaWon	
•  Program	P 	in	L	as	a	parWal	funcWon	on	D:	

•  Set	of	programs	in	L:	

	

•  The	interpreter	defines	a	funcWon	

14 1 Abstract Machines

Fig. 1.4 Purely interpreted implementation

Purely interpreted implementation In a purely interpreted implementation
(shown in Fig. 1.4), the interpreter for ML is implemented using a set of instruc-
tions in L o. That is, a program is implemented in L o which interprets all of L ’s
instructions; this is an interpreter. We will call it I L o

L .
Once such interpreter is implemented, executing a program PL (written in lan-

guage L ) on specified input data D ∈ D , we need only execute the program I L o
L

on machine M oL o, with PL and D as input data. More precisely, we can give
the following definition.

Definition 1.3 (Interpreter) An interpreter for language L , written in language
L o, is a program which implements a partial function:

I L o
L : (ProgL × D) → D such that I L o

L (PL , Input) = PL (Input) (1.1)

The fact that a program can be considered as input datum for another program
should not be surprising, given that, as already stated, a program is only a set of
instructions which, in the final analysis, are represented by a certain set of symbols
(and therefore by bit sequences).

In the purely interpreted implementation of L , therefore, programs in L are
not explicitly translated. There is only a “decoding” procedure. In order to execute
an instruction of L , the interpreter I L o

L uses a set of instructions in L o which
corresponds to an instruction in language L . Such decoding is not a real translation
because the code corresponding to an instruction of L is executed, not output, by
the interpreter.

It should be noted that we have deliberately not specified the nature of the ma-
chine M oL o. The language L o can therefore be a high-level language, a low-level
language or even one firmware.

Purely compiled implementation With purely compiled implementation, as
shown in Fig. 1.5, the implementation of L takes place by explicitly translating
programs written in L to programs written in L o. The translation is performed
by a special program called compiler; it is denoted by CL ,L o. In this case, the
language L is usually called the source language, while language L o is called
the object language. To execute a program PL (written in language L ) on input
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1.2 Implementation of a Language 13

1.2.2 Implementation: The Ideal Case

Let us consider a generic language, L , which we want to implement, or rather, for
which an abstract machine, ML is required. Assuming that we can exclude, for the
reasons just given, direct implementation in hardware of ML , we can assume that,
for our implementation of ML , we have available an abstract machine, M oL o,
which we will call the host machine, which is already implemented (we do not care
how) and which therefore allows us to use the constructs of its machine language
L o directly.

Intuitively, the implementation of L on the host machine M oL o takes place
using a “translation” from L to L o. Nevertheless, we can distinguish two con-
ceptually very different modes of implementation, depending on whether there is
an “implicit” translation (implemented by the simulation of ML ’s constructs by
programs written in L o) or an explicit translation from programs in L to cor-
responding programs in L o. We will now consider these two ways in their ideal
forms. We will call these ideal forms:

1. purely interpreted implementation, and
2. purely compiled implementation.

Notation

Below, as previously mentioned, we use the subscript L to indicate that a particular
construct (machine, interpreter, program, etc.) refers to language L . We will use
the superscript L to indicate that a program is written in language L . We will use
ProgL to denote the set of all possible programs that can be written in language
L , while D denotes the set of input and output data (and, for simplicity of treatment,
we make no distinction between the two).

A program written in L can be seen as a partial function (see the box):

PL : D → D

such that

PL (Input) = Output

if the execution of PL on input data Input terminates and produces Output as its
result. The function is not defined if the execution of PL on its input data, Input,
does not terminate.3

3It should be noted that there is no loss of generality in considering only one input datum, given
that it can stand for a set of data.
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Pure	[cross]	CompilaWon	

1.2 Implementation of a Language 15

Fig. 1.5 Pure compiled implementation

data D, we must first execute CL ,L o and give it PL as input. This will produce
a compiled program PcL o as its output (written in L o). At this point, we can
execute PcL o on the machine M oL o supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from L to L o is a program which imple-
ments a function:

CL ,L o : ProgL → ProgL o

such that, given a program PL , if

CL ,L o(P
L ) = PcL o, (1.2)

then, for every Input∈ D4:

PL (Input) = PcL o(Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if M oL o is
the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.

A	compiler	from	L	to	LO	defines	a	funcWon	

such	that	if	
	
then	for	every	Input	we	have				
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Compilers	versus	Interpreters	
•  Compilers	efficiently	fix	decisions	that	can	be	taken	at	compile	

Wme	to	avoid	to	generate	code	that	makes	this	decision	at	run	
Wme	
–  Type	checking	at	compile	Wme	vs.	runWme	
–  StaWc	allocaWon	
–  StaWc	linking	
–  Code	opWmizaWon	

•  CompilaWon	leads	to	beMer	performance	in	general	
–  AllocaWon	of	variables	without	variable	lookup	at	run	Wme	
–  Aggressive	code	opWmizaWon	to	exploit	hardware	features	

•  InterpretaWon	facilitates	interacWve	debugging	and	tesWng	
–  InterpretaWon	leads	to	beMer	diagnosWcs	of	a	programming	
problem	

–  Procedures	can	be	invoked	from	command	line	by	a	user	
–  Variable	values	can	be	inspected	and	modified	by	a	user	

17	



CompilaWon	+	InterpretaWon	

•  All	implementaWons	of	programming	languages	
use	both.	At	least:	
– CompilaWon	(=	translaWon)	from	external	to	internal	
representaWon	

–  InterpretaWon	for	I/O	operaWons	(runWme	support)	
•  Can	be	modeled	by	idenWfying	an	Intermediate	
Abstract	Machine	MI	with	language	LI	
– A	program	in	L	is	compiled	to	a	program	in	LI	
– The	program	in	LI	is	executed	by	an	interpreter	for	MI	

18	



CompilaWon	+	InterpretaWon	
with	Intermediate	Abstract	Machine	

18 1 Abstract Machines

Can interpreter and compiler always be implemented?

At this point, the reader could ask if the implementation of an interpreter or a com-
piler will always be possible. Or rather, given the language, L , that we want to
implement, how can we be sure that it is possible to implement a particular program
I L o

L in language L o which performs the interpretation of all the constructs of L ?
How, furthermore, can we be sure that it is possible to translate programs of L into
programs in L o using a suitable program, CL ,L o?

The precise answer to this question requires notions from computability theory
which will be introduced in Chap. 3. For the time being, we can only answer that the
existence of the interpreter and compiler is guaranteed, provided that the language,
L o, that we are using for the implementation is sufficiently expressive with respect
to the language, L , that we want to implement. As we will see, every language
in common use, and therefore also our L o, have the same (maximum) expressive
power and this coincides with a particular abstract model of computation that we
will call Turing Machine. This means that every possible algorithm that can be for-
mulated can be implemented by a program written in L o. Given that the interpreter
for L is no more than a particular algorithm that can execute the instructions of
L , there is clearly no theoretical difficulty in implementing the interpreter I L o

L .
As far as the compiler is concerned, assuming that it, too, is to be written in L o,
the argument is similar. Given that L is no more expressive than L o, it must be
possible to translate programs in L into ones in L o in a way that preserves their
meaning. Furthermore, given that, by assumption, L o permits the implementation
of any algorithm, it will also permit the implementation of the particular compiling
program CL ,L o that implements the translation.

Fig. 1.6 Implementation: the real case with intermediate machine

The real situation for the implementation of a high-level language is therefore
that shown in Fig. 1.6. Let us assume, as above, that we have a language L that has
to be implemented and assume also that a host machine M oL o exists which has
already been constructed. Between the machine ML that we want to implement and

•  The	“pure”	schemes	as	limit	cases	
•  Let	us	sketch	some	typical	implementaWon	schemes…	
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Virtual	Machines	as	Intermediate	
Abstract	Machines	

•  Several	language	implementaWons	adopt	a	compilaWon	
+	interpretaWon	schema,	where	the	Intermediate	
Abstract	Machine	is	called	Virtual	Machine	

•  Adopted	by	Pascal,	Java,	Smalltalk-80,	C#,	funcWonal	
and	logic	languages,	and	some	scripWng	languages	
–  Pascal	compilers	generate	P-code	that	can	be	interpreted	
or	compiled	into	object	code	

–  Java	compilers	generate	bytecode	that	is	interpreted	by	
the	Java	virtual	machine	(JVM)	

–  The	JVM	may	translate	bytecode	into	machine	code	by	
just-in-Wme	(JIT)	compilaWon	

20	



CompilaWon	and	ExecuWon	on		
Virtual	Machines	

•  Compiler	generates	intermediate	program	
•  Virtual	machine	interprets	the	intermediate	
program	

•  Portability!	 Virtual	
Machine	

Compiler	
Source	

Program	
Intermediate	

Program	

Input	 Output	

Run on VM	Compile on X	

Run on X, Y, Z, …	
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Pure	CompilaWon	and	StaWc	Linking	

•  Adopted	by	the	typical	Fortran	systems	
•  Library	rouWnes	are	separately	linked	
(merged)	with	the	object	code	of	the	program	

Compiler	
Source	

Program	
Incomplete	

Object Code	

Linker	Static Library�
Object Code	

_printf 
_fget 
_fscan 
… 

extern printf(); 

Binary	
Executable	
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CompilaWon,	Assembly,	and		
StaWc	Linking	

•  Facilitates	debugging	of	the	compiler	

Compiler	
Source	

Program	
Assembly�
Program	

Linker	Static Library�
Object Code	

Binary	
Executable	

Assembler	

_printf 
_fget 
_fscan 
… 

extern printf(); 
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CompilaWon,	Assembly,	and		
Dynamic	Linking	

•  Dynamic	libraries	(DLL,	.so,	.dylib)	are	linked	at	
run-Wme	by	the	OS	(via	stubs	in	the	executable)	

Compiler	
Source	

Program	
Assembly�
Program	

Incomplete	
Executable	

Input	
Output	

Assembler	

Shared Dynamic Libraries	
_printf, _fget, _fscan, … 

extern printf(); 
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Preprocessing	

•  Most	C	and	C++	compilers	use	a	preprocessor	
to	import	header	files	and	expand	macros	

Compiler	

Preprocessor	
Source	

Program	
Modified Source�

Program	

Assembly or �
Object Code	

#include <stdio.h> 
#define N 99 
… 
for (i=0; i<N; i++) 

for (i=0; i<99; i++) 
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The	CPP	Preprocessor	

•  Early	C++	compilers	used	the	CPP	preprocessor	
to	generated	C	code	for	compilaWon	

C	Compiler	

C++	
Preprocessor	

C++	
Source	
Code	

C Source	
Code	

Assembly or �
Object Code	
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Compilers,	graphically	

•  Three	languages	involved	in	wriWng	a	compiler	
–  Source	Language	(S)	
–  Target	Language	(T)	
–  ImplementaWon	Language	(I)	

•  T-Diagram:	

•  If	I	=	T	we	have	a	Host	Compiler	
•  If	S,	T,	and	I	are	all	different,	we	have	a	Cross-Compiler		

S 	 							T	

I	
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Composing	compilers	

•  Compiling	a	compiler	we	get	a	new	one:	the	result	is	
described	by	composing	T-diagrams	

•  The	shape	of	the	basic	transformaWon,	in	the	most	
general	case,	is	the	following:	

•  Note:	by	wriWng	this	transformaWon,	we	implicitly	
assume	that	we	can	execute	programs	wriMen	in	M	

S 	 							T	

I	 I 									N	

M	

S 									T	

N	
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Composing	compilers:	an	example	

•  A	compiler	of	S	to	M	can	be	wriMen	in	any	
language	having	a	host	compiler	for	M	

	
•  By	compiling	it	we	get	a	host	compiler	of	S	for	
M.																														

S 	 							M	

I	 I 									M	

M	

S 									M	

M	
Example:	
S 	Pascal	
I 	C	
M 	68000	
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Bootstrapping	
•  Bootstrapping:	techniques	which	use	parWal/inefficient	
compiler	versions	to	generate	complete/beMer	ones	

•  Oren	compiling	a	translator	programmed	in	its	own	
language	

•  Why	wriWng	a	compiler	in	its	own	language?	
–  it	is	a	non-trivial	test	of	the	language	being	compiled	
–  compiler	development	can	be	done	in	the	higher	level	
language	being	compiled.	

–  improvements	to	the	compiler’s	back-end	improve	not	
only	general	purpose	programs	but	also	the	compiler	itself	

–  it	is	a	comprehensive	consistency	check	as	it	should	be	
able	to	reproduce	its	own	object	code	
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Compilers:	Portability	Criteria	

•  Portability	
–  Retargetability	
–  Rehostability	

•  A	retargetable	compiler	is	one	that	can	be	modified	
easily	to	generate	code	for	a	new	target	language	

•  A	rehostable	compiler	is	one	that	can	be	moved	easily	
to	run	on	a	new	machine	

•  A	portable	compiler	may	not	be	as	efficient	as	a	
compiler	designed	for	a	specific	machine,	because	we	
cannot	make	any	specific	assumpWon	about	the	target	
machine		

31	



Using	Bootstrapping	to	port	a	compiler	

•  We	have	a	host	compiler/interpreter	of	L	for	M	
•  Write	a	compiler	of	L	to	N	in	language	L	itself	
	
	

L 	 							N	

L	 L 									M	

M	

L 									N	

N	L 									N	

M	

L 	 							N	

L	

L 									N	

M	Example:	
L 	Pascal	
M 	P-code	
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Bootstrapping	to	opWmize	a	compiler	

•  The	efficiency	of	programs	and	compilers:	
–  Efficiency	of	programs:		

•  memory	usage	
•  runWme	

–  Efficiency	of	compilers:		
•  Efficiency	of	the	compiler	itself	
•  Efficiency	of	the	emiMed	code	

•  Idea:	Start	from	a	simple	compiler	(generaWng	
inefficient	code)	and	develop	more	sophisWcated	
version	of	it.	We	can	use	bootstrapping	to	
improve	performance	of	the	compiler.	
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Bootstrapping	to	opWmize	a	compiler	

•  We	have	a	host	compiler	of	ADA	to	M	
•  Write	an	opWmizing	compiler	of	ADA	to	M	in	ADA	
	
	

ADA	 							M*	

ADA	 ADA									M	

M	

ADA									M*	

M*	ADA									M*	

M	

ADA	 							M*	

ADA	

ADA									M*	

M	
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Full	Bootstrapping	
•  A	full	bootstrap	is	necessary	when	building	a	new	
compiler	from	scratch.	

	
•  Example:	
•  We	want	to	implement	an	Ada	compiler	for	machine	
M.	We	don’t	have	access	to	any	Ada	compiler	

•  Idea:	Ada	is	very	large,	we	will	implement	the	
compiler	in	a	subset	of	Ada	(call	it	Ada0)	and	
bootstrap	it	from	a	subset	of	Ada	compiler	in	
another	language	(e.g.	C)	
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Full	Bootstrapping	(2)	
•  Step	1:	build	a	compiler	of	Ada0	to	M	in	another	language,	say	C	

•  Step	2:	compile	it	using	a	host	compiler	of	C	for	M	

•  Note:	new	versions	would	depend	on	the	C	compiler	for	M	

Ada0	 							M	

C	

Ada0	 							M	

C	 C 							M	

M	

Ada0					v1						M	

M	
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Full	Bootstrapping	(3)	
•  Step	3:	Build	another	compiler	of	Ada0	in		Ada0	

•  Step	4:	compile	it	using	the	Ada0	compiler	for	M	

•  Note:	C	compiler	is	no	more	necessary	

Ada0	 							M	

Ada0		

Ada0					v2						M	

M	

Ada0	 							M	

Ada0		 Ada0					v1						M	

M	
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Full	Bootstrapping	(4)	
•  Step	5:	Build	a	full	compiler	of	Ada	in		Ada0	

•  Step	4:	compile	it	using	the	second	Ada0	compiler	for	M	

•  Future	versions	of	the	compiler	can	be	wriMen	directly	in	Ada	

Ada 	 							M	

Ada0		

Ada 															M	

M	Ada0					v2						M	

M	

Ada 	 							M	

Ada0		
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