
	 1	

Principles	of	Programming	Languages	[PLP-2016]		
Detailed	Syllabus		

This	document	lists	the	topics	presented	along	the	course.	The	PDF	slides	published	on	
the	course	web	page	(http://www.di.unipi.it/~andrea/Didattica/PLP-16/)	provide	a	
detailed	outline	of	the	topics	to	be	studied.		
The	presented	topics	are	based	mainly	on	selected	chapters	of	the	following	textbooks:	

• [ALSU]	Compilers:	Principles,	Techniques,	and	Tools	by	Alfred	V.	Aho,	Monica	
S.	Lam,	Ravi	Sethi,	and	Jeffrey	D.	Ullman,	2nd	edition	
Chapters	2	to	6	[excluding	sections	4.7.5	and	4.7.6],	8	[till	sec.	8.9],	9	[till	sec.	9.6]	

• [Scott]	Programming	Language	Pragmatics	by	Michael	L.	Scott,	3rd	edition		
Chapters	1,	3,	6,	7,	8	[Section	8.3	only],	9,	10,	13	

• [GM]	Programming	Languages:	Principles	and	Paradigms	by	Maurizio	
Gabbrielli	and	Simone	Martini		
Chapters	1,	4,	5,	6,	7	[till	section	7.2],	8	[till	section	8.10],	9,	10,	11	

• [Mitchell]	Concepts	in	Programming	Languages	by	John	C.	Mitchell		
Chapters	5,	6	and	7	on	Haskell	[these	are	not	included	in	the	printed	book]		

Some	additional	reading	material	is	indicated	below,	where	relevant.	Links	to	relevant	
online	resources	can	be	found	on	the	course	web	page.		
	 	
List	of	topics	
1. Introduction.	Abstract	machines,	interpretation	and	compilation		

[GM],	Chapter	1;	[Scott],	Chapter	1	(sections	1-4	to	1-6)	
a. Abstract	machines	
b. Compilation	and	interpretation	schemes	
c. Cross	compilation	and	bootstrapping	
d. Structure	of	compilers	

2. Overview	of	a	syntax-directed	compiler	front-end	[ALSU],	Chapter	2	
a. (Context-Free)	Grammars,	Chomsky	hierarchy	
b. Derivations,	parse	trees,	abstract	syntax	trees		
c. Ambiguity,	associativity	and	precedence	
d. Syntax-directed	translation,	translation	schemes	
e. Predictive	recursive	descent	parsing	
f. Left	factoring,	elimination	of	left	recursion.		
g. Lexical	analysis		
h. Intermediate	code	generation	
i. Static	checking	

3. Lexical	analysis,	Implementing	critical	parts	of	a	scanner	[ALSU],	Chapter	3	
a. Tokens,	lexeme	and	patterns	
b. Regular	expressions	and	regular	definitions	
c. Transition	diagrams	
d. Code	of	a	simple	lexical	analyzer	
e. Lexical	errors	
f. Nondeterministic	and	deterministic	finite-state	automata	(NFA	and	DFA)	
g. From	regular	expressions	to	NFA	(Thompson	construction)	
h. From	NFAs	to	DFAs	(Subset	construction	algorithm)	



	 2	

i. Minimization	(partition-refinement)	algorithm	for	DFAs,	Myhill-Nerode	
theorem	

j. The	Lex-Flex	lexical	analyzer	generator	
4. From	DFAs	to	regular	expressions	and	backwards		[optional	topic]	

[Reading	material	(downloadable	from	the	Moodle	page	of	the	course):		
(1)	Selected	pages	of	of	Aiello,	Albano,	Attardi,	Montanari:	Teoria	della	
Computabilità,	Logica,	teoria	dei	linguaggi	formali,	Materiali	didattici	ETS,	
1979,	in	Italian.	
(2)	Ginsburg	and	Rice:	Two	Families	of	Languages	Related	to	ALGOL,	Journal	of	
the	ACM	Volume	9	Issue	3,	July	1962]	

a. From	a	DFA	to	a	right-linear	grammar	
b. Context-free	grammars	as	continuous	transformations	on	languages	
c. Kleene	fixed-point	theorem	
d. Generated	language	as	least	fixed-point	of	a	grammar	
e. REs	as	solutions	of	least-fixed	points	equations	

5. Parsing	[ALSU],	Chapter	4.	
a. Parser	as	string	recognizer	(acceptor)		
b. Left-recursion	elimination,	left-factoring,	LL(1)	grammars	
c. Recursive-descent	parsing,	table-driven	parsing	
d. Error	recovery	during	top-down	parsing.		
e. Bottom-Up,	shift-reduce	parsing:	handles	
f. Stack-implementation	of	shift-reduce	(driver)	
g. Shift/reduce	and	reduce/reduce	conflicts	
h. LR(0)	items,	LR(0)	automaton	and	LR(0)	parsing	table,	SLR	parsing		
i. LR(1)	items,	automaton	and	canonical	parsing	table,	LALR	parsing	tables	
j. LR	parsing	with	ambiguous	grammars		
k. Error	detection	during	shift/reduce	parsing	
l. Parser	generators:	Yacc/Bison,	dealing	with	ambiguous	grammars	in	Yacc	

6. Syntax-Directed	Translation		[ALSU],	Chapter	5	
a. Syntax-directed	definitions	(attribute	grammars)	
b. Synthesized	and	Inherited	attributes,	annotated	parse	trees	
c. S-attributed	definitions:	evaluation	with	postorder	depth-first	traversal	
d. Evaluation	order	of	attributes,	dependency	graph,	topological	sort		
e. L-attributed	definitions:	evaluation	with	depth-first,	left-to-right	traversal	
f. Syntax-directed	translation	schemes	
g. Postfix	translation	schemes	and	their	implementation	with	LR	parsing	
h. Translation	schemes	for	L-attributed	definition	schemes:	implementation	

with	top-down	and	bottom-up	parsing	
7. Intermediate	Code	Generation		[ASLU]	Chapter	6		

a. Intermediate	representations	
b. Syntax-directed	translation	to	three-address	code	
c. Handling	names	in	local	scopes	
d. Translation	of	declarations,	expressions	and	statements	in	scope	
e. Translation	of	short-circuit	boolean	expressions	
f. Translation	of	conditionals	and	iteration	
g. Use	of	backpatching	lists		

8. Code	generation		[ALSU]	Chapter	8		
a. Instruction	selection,	register	allocation	and	assigment,	instruction	ordering		
b. Target	machine	architecture	and	instruction	set/addressing	modes	



	 3	

c. Flow	graphs:	basic	blocks,	control	flow	graphs,	partition	algorithm	
d. Loops	in	Control	Flow	Graphs	
e. Local	vs.	Global	Optimization	
f. DAG	Based	Optimization	
g. Peephole	Optimization	and	other	techniques	
h. Next-use	and	liveness	informations	
i. Simple	code	generation	algorithm	
j. Simple	register	allocation	algorithm	
k. Global	register	allocation	with	graph	coloring	
l. Instruction	selection	using	tree	translation	schemes	
m. Optimal	register	allocation	for	expressions	using	Ershov	numbers	

9. Data-Flow	analysis		[ALSU]	Chapter	9	
a. Global,	Machine	Independent	Optimization	
b. Liveness,	Available	Expressions,	Very	Busy	Expressions	and	Reachable	

Definitions	Analysis	
c. The	Data-Flow	analysis	frameworks	
d. Data-Flow	iterative	algorithm	
e. Map	semilattices	and	Constant	Propagation	Analysis	
f. Accuracy,	Safeness,	and	Conservative	Estimations	
g. Determining	loops	in	flow	graphs:	dominators	
h. Data-Flow	analysis	for	dominators	
i. Region	Based	Analysis,	Symbolic	Analysis	[optional	topic]	

10. Programming	languages	and	abstraction:	names	and	bindings		[Scott]	Chapter	3,	
[GM]	Chapters	4	and	5	

a. Programming	language	and	abstractions	
b. Runtime	environment	
c. Names	and	abstraction		
d. Bindings	and	binding	time	
e. Static,	stack	and	heap	allocation	of	memory	
f. Scope	of	a	binding		
g. Static	scoping	and	Closest	Nested	Scope	Rule		
h. Static	Links	and	Displays		for	supporting	Static	Scoping	
i. Declarations	and	Definitions,	Modules	
j. Local	symbol	tables	during	compilation	
k. Syntax-Directed	Translation	of	three-address	code	in	scope	[ALSU]	Section	

2.7	
l. Implementation	of	scopes		[Scott]	Section	3.4	

i. Static	scoping:	LeBlanc	&	Cook	lookup	algorithm	
ii. Dynamic	scoping:	association	lists	and	central	reference	tables	

m. Shallow	and	deep	binding	
n. Functions	returning	procedures	and	retention;	Object	Closures	
a. Type	Systems	

Type	Errors	Modules	as	abstraction	and	encapsulation	mechanism	
b. Modules	as	algebraic	data	types,	modules	as	classes		
c. Implementation	of	scopes		[Scott]	Section	3.4	

• Static	scoping:	LeBlanc	&	Cook	lookup	algorithm	
• Dynamic	scoping:	association	lists	and	central	reference	tables	

d. Returning	subroutines	as	closures	with	unlimited	extent	
e. Object	closures	in	Object	Oriented	languages.	



	 4	

11. Type	systems		[Scott]	Chapter	7,	[GM]	Chapter	8,	[ALSU]	Chapter	6	
a. Data	types,	type	errors,	type	safety	
b. Static	vs.	dynamic	typing,	conservativity	of	static	typing		
c. Type	equivalence:	structural	vs.	name	equivalence	
d. Type	compatibility	and	coercion	
e. Discrete	types,	scalar	types,	composite	types	
f. Tuples,	records	and	arrays	
g. Generating	intermediate	code	for	array	declaration	and	access		
h. Disjoint	unions	types:	algebraic	data	types,	discriminated	records,	variants,	

objects,	active	patterns	in	F#	
i. Value	Model	and	Reference	Model	of	variables	
j. Preventing	dangling	pointers:	tombstones,	locks	and	keys	
k. Pointers	and	arrays	in	C	

12. Functional	programming	languages		[Scott]	Chapter	10,	[GM]	Chapter	11,	
[Mitchell]	Chapter	5	

a. Historical	origins	and	main	concepts	
b. Functional	languages:	the	LISP	family,	the	ML	family,	Haskell	
c. Applicative	and	Normal	Order	evaluation	of	lambda-terms	
d. Overview	of	Haskell	

• Primitive	types,	Algebraic	Data	Types,	Lists	and	List	Constructors	
• Patterns	and	declarations,	functions	and	pattern	matching	
• List	comprehension	
• Higher-order	functions	
• Lazy	evaluation	

e. Implementation	of	Overloading	through	Type	Classes	and	Constructor	Classes	
in	Haskell			[Mitchell]	Chapter	7	

f. Monads	in	Haskell;	Monads	as	containers	and	as	computations,	the	IO	Monad		
g. Type	Inference:	the	Hindley-Milner	algorithm		

[Mitchell]	Chapter	6:	pages	118-136	
h. Type	Inference	with	Overloading:	generating	type	constraints	
i. Recursion	vs.	iteration,		tail	recursion		[Scott]	Section	6.6	
j. Continuation	passing	style	(CPS)	

• Making	argument	evaluation	order	explicit	
• Tail	recursion	and	CPS	

13. Java	8	extensions	
a. Lambda	expressions	in	Java	8		
b. The	stream	API	in	Java	8	

	
	


