130 6 Denotational Semantics of IMP

computable by a Turing machine. Independently, Alonzo Church answered negatively
assuming that “calculable” meant a function expressible in the A-calculus.

6.1.1 A-Notation: Main Ideas

The A-calculus is built around the idea of expressing a calculus of functions, where it
is not necessary to assign names to functions, i.e., where functions can be expressed
anonymously. Conceptually, this amounts to have the possibility of:

e forming (anonymous) functions by abstraction over names in an expression; and
e applying a function to an argument

Building on the two basic considerations above, Church developed a theory of
functions based on rules for computation, as opposed to the classical set-theoretic
view of functions as sets of pairs (argument, result).

Example 6.1. Let us start with a simple example from arithmetic. Take a polynomial
such as
X2 —2x+5.

What is the value of the above expression when x is replaced by 2? We compute the
result by plugging in ‘2’ for ‘x’ in the expression to get

22 _2%2+5=5.

In A-notation, when we want to express that the value of an expression depends
on some value to be plugged in, we use abstraction. Syntactically, this corresponds to
prefix the expression by the special symbol A and the name of the formal parameter,
as, e.g., in:

Ax. (x* —2x+5)

The informal reading is:

wait for a value v to replace x and then compute v2 — 2v +5.

We want to be able to pass some actual parameter to the function above, i.e., to ap-
ply the function to some value v. To this aim, we denote application by juxtaposition:

(Ax. (x* =2x+5)) 2

means that the function (Ax. (x> —2x +5)) is applied to 2 (i.e., that the actual
parameter 2 must replace the occurrences of the formal parameter x in x> — 2x+ 5,
to obtain 22— 2 x2+5=25.)

Note that:

e by writing Ax. r we are declaring x as a formal parameter appearing in ¢;
e the symbol A has no particular meaning (any other symbol could have been used);

6.1 A-Notation 131

e we say that Ax ‘binds’ the (occurrences of the) variable x in ¢;
e the scope of the formal parameter x is just ¢; if x occurs also “outside” ¢, then it
refers to another (homonymous) identifier.

Example 6.2. Let us consider another example:
(Ax. Ay. (x> =2y +5)) 2

This time we have a function that is waiting for two arguments (first x, then y), but to
which we pass one value (2). We have

(Ax. Ay. (& =2y4+5)) 2= Ay. (2% =2y +5) = Ay. (9—2y)
that is, the result of applying Ax. Ay. (x> —2y+5) to 2 is still a function (Ay. (9 — 2y)).
In A-calculus we can pass functions as arguments and return functions as results.

Example 6.3. Take the term A f. (f 2): it waits for a function f that will be applied
to the value 2. If we pass the function (Ax. Ay. (x> < 2y+5)) to Af. (f 2), written:

(Af. (f2)) (Ax. Ay. (X —2y+5))
then we get the function Ay. (9 — 2y) as a result.

Definition 6.1 (Lambda terms). We define lambda terms as the terms generated by
the grammar:

t = x | Axt | (tot1) | t—(to,n1)
Where x is a variable.

As we can see the lambda notation is very simple, it has four constructs:

x: is a simple variable.

Ax. t: is the lambda abstraction which allows to define anonymous functions.

to t1:is the application of a function fg to its argument #;.

t — 19,11 1s the conditional operator, i.e. the “if-then-else” construct in lambda
notation.

Note that we omit some parentheses when no ambiguity can arise.

Lambda abstraction Ax. ¢ is the main feature. It allows to define functions, where
x represents the parameter of the function and ¢ is the lambda term which represents
the body of the function. For example the term Ax. x is the identity function.

Note that while we can have different terms ¢ and ¢’ that define the same function,
Church proved that the problem of deciding whether ¢ = ¢ is undecidable.

Definition 6.2 (Conditional expressions). Let ¢,7 and | be three lambda terms, we
define:
to ift =true

t— 19,11 = .
071 {tl ift = false

132 6 Denotational Semantics of IMP

All the notions used in this definition, like “true” and “false” can be formalised
in lambda notation only, by using lambda abstraction, as shown in Section 6.1.1.1
for the interested reader. In the following we will take the liberty to assume that data
types such as integers and booleans are available in the lambda-notation as well as
the usual operations on them.

Remark 6.1 (Associativity of abstraction and application). In the following, to limit
the number of parentheses and keep the notation more readable, we assume that
application is left-associative, and lambda-abstraction is right-associative, i.e.,

Hihhtz31y is read as (((t1 t2) t3) t4)
),xl. A,)CQ.)VX3. }LX4. t isread as),xl. (sz. (A.X3. ()v)m. l‘)))

Remark 6.2 (Precedence of application). We will also assume that application has
precedence over abstraction, i.e.:

Ax.tt =2Ax. (t1)

6.1.1.1 A-Notation: Booleans and Church Numerals

In the above examples, we have enriched standard arithmetic expressions with
abstraction and application. In general, it would be possible to encode booleans and
numbers (and operations over them) just using abstraction and application.
For example, let us consider the following terms:
def
T < Ax. Ay. x

FYax Ay.y

We can assume that 7" represents true and F represents false.
Under this convention, we can define the usual logical operations by letting:

AND & Ap.Aq.pqp

OR déflp. Ag.ppq
NoT & Ap.Ax. Ay.pyx

Now suppose that P will reduce either to 7" or to F. The expression P A B can be
read as ‘if P then A else B’.

For natural numbers, we can adopt the convention that the number 7 is represented
by a function that takes a function f and an argument x and applies f to x for n times
consecutively. For example:

6.1 A-Notation 133
def
0= Af. Ax. x
def

1L =Af Ax. fx

def

2=Af. Ax. f (fx)

Then, the operations for successor, sum, multiplication can be defined by letting:
SUCC ¥ An. Af. Ax. f (n f %)

SUM & An. Am. Af-Ax.m f (n fx)

def

MUL = An. Am. Af.n (m f)

6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding
Substitution

The names of the formal parameters we choose for a given function should not
matter. Therefore, any two expressions that differ just for the particular choice of
A-abstracted variables and have the same structure otherwise, should be considered
as equal.

For example, we do not want to distinguish between the terms

Ax. (x2—2x+5) Ay. (? —2y+5)
On the other hand, the expressions
K=2x+5 ¥ —2y+5

must be distinguished, because depending on the context where they are used, the
symbols x and y could have a different meaning.

We say that two terms are o-convertible if one is obtained from the other by
renaming some A-abstracted variables. We call free the variables x whose occurrences
are not under the scope of a A binder.

Definition 6.3 (Free variables). The set of free variables occurring in a term is
defined by structural recursion:

134 6 Denotational Semantics of IMP

The second equation highlights that the lambda abstraction is a binding operator.

Definition 6.4 (Alpha-conversion). We define o-conversion as the equivalence in-
duced by letting

Ax.t=Ay. (t['/x]) ify &fv(r)
where 7[¥ /] denotes the substitution of x with y applied to the term z.

Note the side condition y ¢ fv(¢), which is needed to avoid ‘capturing’ other free
variables appearing in 7.
For example:

Az 2 =2y +5=2Ax. x> =2y +5#Ay. y* —2y+5

We have now all ingredients to define the basic computational rule, called f3-rule,
which explains how to apply a function to an argument:

Definition 6.5 (Beta-rule). Let 7,7’ be two lambda terms we define:
Ax.t)t=11/,]

this axiom is called B-rule.

In defining alpha-conversion and the beta-rule we have used substitutions like
[Y/+] and [' /;]. Let us now try to formalise the notion of substitution by structural
recursion. What is wrong with the following naive attempt?

(oqdef J 2 ify=x
R

and apply ¢ to ¢

rt = (Ax. Ay. (x> —2y+5)) y
= (Ay. (& =2y +5))P' /4]
= Ay (P =2y +5)P /)
=Ay. (* =2y +5)
It happens that the free variable y € fv(z) has been ‘captured’ by the lambda-

abstraction Ay. Instead, free variables occurring in # should remain free during the
application of the substitution [*/,].

6.2 Denotational Semantics of IMP 135

Thus we need to correct the above version of substitution for the case related
to (Ay. t')['/+] by applying first the alpha-conversion to Ay. ' (to make sure that
if y € fv(¢), then the free occurrences of y in ¢ will not be captured by Ay when
replacing x in ') and then the substitution [' /,]. Formally, we let:

Definition 6.6 (Capture-avoiding substitution). Let ¢, 7y and #; be four lambda
terms, we define:

AR S
Ay) /] E Az (CFADIL]) iz fv(Ay.) Utv(e)U{x)
(to)['/e] € (w0l 14)) (1['/4])
(1" = t0,0)[/) E (T /) = (ol /). (/)

Note that the matter of names is not so trivial. In the second equation we first
rename y in ¢’ with a fresh name z, then proceed with the substitution of x with ¢.
As explained, this solution is motivated by the fact that y might not be free in'z,
but it introduces some non-determinism in the equations due to the arbitrary nature
of the new name z. This non-determinism immediately disappear if we regard the
terms up to the alpha-conversion equivalence, as previously introduced. Obviously
a-conversion and substitution should be defined at the same time to avoid circularity.
By using the a-conversion we can prove statements like Ax. x = 4y. y.

Example 6.5 (Application with alpha-renaming). Consider the terms ¢,#’ from Exam-
ple 6.4:

rt = (Ax. Ay. (x> =2y+5)) y
= (Ay. (@ =2y £5)P/i]
=2z (& — 29+ 5)F /5P /)
= Az (P®=2z+5)P /)
= Az. ()? —2z+5)

Finally we introduce some notational conventions for omitting parentheses when
defining the domains and codomains of functions:

A—BxC=A— (BxC) AxBxC=(AxB)xC
AXB—C=(AxB)—C A—-B—-C=A—(B—C)

6.2 Denotational Semantics of IMP

As we said we will use lambda notation as meta-language; this means that we will
express the semantics of IMP by translating IMP syntax to lambda terms.

