Principles of Programming Languages [PLP]
Exercises on functional programming and Haskell

1) Use the parse graph to the right to compute
the most general type for the function
f(g,h) = g(h) + 2
Assume that 2 has type Integer and + has
type Integer — Integer — Integer.

2) Suppose that the following Haskell definitions have been loaded:

my const c x c

append [] ys = ys

append (x:xs) ys = x : append xs ys
my map £ [] = []

my map £ (x:xs) = £ x : my map f xs

What is the type of each of the following Haskell expressions? (Some may give an error.)

. my const

my const True

. append []

append [True,False]
append [3] ['a', 'b']

. append "quad" ['a', 'b']
. my_map

my map (my const True)

TQ HOD QO DD

What is the value of each of the following Haskell expressions?
a. my const 5 "octopus"
b. my map (my const "squid") [1 ..]
c. my map sqrt [1, 2, 100]



3) Consider the following definitions in Haskell:

foo x = x: (foo x)
bar x y = if (length x < 3) then (sum x) else (sum y)

a. Infer the type of the definitions of functions foo and bar, including type
constraints.

b. What is the result of evaluating bar [1,2] (foo 1)?

C. And what is the result of evaluating bar [1,2,3] (foo 1)7?

4) Consider the following tail-recursive function, written in Haskell:

mkMin x y = if x <=y then x else mkMin (x - y) y

a. Write the type inferred for function mkMin including the type constraints.

b. Assuming that the language also includes assignments and a while statement,
transform mkMin into an equivalent non-recursive function.

c. Assuming that the language is pure functional and includes lambda-
abstraction, transform mkMin into a function in Continuation Passing Style
(CPS).

d. Infer the Haskell type of the latter function.

5) By exploiting the syntax for list comprehension of Haskell, write expressions that
denote:

a. The list of squares of even natural numbers from 0 to 100;

b. The list of all Pythagorean triples up to n, i.e., of all triples (X, y, z) such that
X, ¥, Z <= n and x*x + y*y = z*z.

6) Using list comprehension, we can denote the list of all even numbers from 0 to 10 as
[2 * x | x <- [0..5]]
but also as
[2 * x | x <- [0..], x < 6]
[s there any difference?

7) Infer the type of the following Haskell functions (remember that “++” is the operator
of list concatenation):

twice x = [x,x]
repl x y = [x..y]
fgh=1\x->\y -> (g x)++(h y)

What is the result evaluating the expression £ twice (repl 1) 10 57

8) Consider the following function:

int foo (int x){
if (x>100) return x-10;
else return foo(foo(x+11l));

}

[s this tail recursive? Justify your answer.



