
	 1	

Principles	of	Programming	Languages	[PLP]		
Exercises	on	functional	programming	and	Haskell		

1) Use	the	parse	graph	to	the	right	to	compute	
the	most	general	type	for	the	function	
 f(g,h) = g(h) + 2			
Assume	that	2	has	type	Integer	and	+	has	
type	Integer	→	Integer	→	Integer.	

	
	
	
	
	
	
	
	
	
	
2) Suppose	that	the	following	Haskell	definitions	have	been	loaded:	
	
my_const c x = c
append [] ys = ys
append (x:xs) ys = x : append xs ys
my_map f [] = []
my_map f (x:xs) = f x : my_map f xs
	
What	is	the	type	of	each	of	the	following	Haskell	expressions?	(Some	may	give	an	error.)	
	

a. my_const
b. my_const True
c. append []
d. append [True,False]
e. append [3] ['a', 'b']
f. append "quad" ['a', 'b']
g. my_map
h. my_map (my_const True)

	
What	is	the	value	of	each	of	the	following	Haskell	expressions?	

a. my_const 5 "octopus"
b. my_map (my_const "squid") [1 ..]
c. my_map sqrt [1, 2, 100]

Exercises 149

�

� �

����

�

� �

	

	

	

��

Figure 6.10. Parse tree for problem 6.5.

Write one or two sentences to explain succinctly and informally why append has the

type you give. This function is intended to append one list onto another. However,

it has a bug. How might knowing the type of this function help the programmer to

find the bug?

6.8 Type Inference and Debugging

The reduce function takes a binary operation, in the form of a function f, and a

list, and produces the result of combining all elements in the list by using the binary

operation. For example;

reduce plus [1,2,3] = 1 + 2 + 3 = 6

if plus is defined by

plus(x,y::Int) = x + y

A friend of yours is trying to learn Haskell and tries to write a reduce function. Here

is his incorrect definition:

reduce(f, x) = x

reduce(f, (x : y)) = f(x, reduce(f, y))

	 2	

3) 		Consider	the	following	definitions	in	Haskell:

a. Infer	the	type	of	the	definitions	of	functions	foo	and	bar,	including	type	
constraints.

b. What	is	the	result	of	evaluating		 bar [1,2] (foo 1)?
c. And	what	is	the	result	of	evaluating			bar [1,2,3] (foo 1)? 	

	
4) Consider	the	following	tail-recursive	function,	written	in	Haskell:	

	

	
	

a. Write	the	type	inferred	for	function	mkMin	including	the	type	constraints.	
b. Assuming	that	the	language	also	includes	assignments	and	a	while	statement,	

transform	mkMin	into	an	equivalent	non-recursive	function.		
c. Assuming	that	the	language	is	pure	functional	and	includes	lambda-

abstraction,	transform	mkMin	into	a	function	in	Continuation	Passing	Style	
(CPS).		

d. Infer	the	Haskell	type	of	the	latter	function.	
	
5) By	 exploiting	 the	 syntax	 for	 list	 comprehension	 of	 Haskell,	 write	 expressions	 that	

denote:		
a. The	list	of	squares	of	even	natural	numbers	from	0	to	100;	
b. The	list	of	all	Pythagorean	triples	up	to	n,	 	 i.e.,	of	all	 triples	(x,	y,	z)	such	that		

x,	y,	z	<=	n	and	x*x	+	y*y	=	z*z.	
	
6) Using	list	comprehension,	we	can	denote	the	list	of	all	even	numbers	from	0	to	10	as			

[2 * x | x <- [0..5]]	
but	also	as			
[2 * x | x <- [0..], x < 6]
Is	there	any	difference?	

	
7) Infer	the	type	of	the	following	Haskell	functions	(remember	that	“++”		is	the	operator	

of	list	concatenation):	

	
What	is	the	result	evaluating	the	expression	f twice (repl 1) 10 5?	

	
8) Consider	the	following	function:			
	
int foo (int x){
 if (x>100) return x-10;
 else return foo(foo(x+11));
}
Is	this	tail	recursive?	Justify	your	answer.	

mkMin x y = if x <= y then x else mkMin (x – y) y

twice x = [x,x]
repl x y = [x..y]
f g h = \x -> \y -> (g x)++(h y)

�foo x = x:(foo x)
bar x y = if (length x < 3) then (sum x) else (sum y)

