
	 1	

Principles	of	Programming	Languages	[PLP]		
Exercises	on	Scoping,	Evaluation	strategies,	Type	checking…	

1) Consider	the	Pascal	program	to	the	right:		
a) What	is	the	reference	environment	at	

the	location	in	the	program	indicated	
by	<==	(*)?	That	is,		give	the	variables,	
arguments,	and	procedures	that	are	
visible	(in	scope)	at	this	location.		

b) 	The	main	program	calls,	P1,	P1	calls	
P3,	and	P3	calls	P2.	Draw	the	stack	
layout	of	the	subroutine	stack	after	
these	calls.	Show	the	subroutine	
frames	(without	their	details)	with	
the	static	links.			

c) Draw	the	specific	subroutine	frame	
layout	of	procedure	P1,	indicating	the	
relevant	information	that	it	has	to	
contain.		

	
	
	
	
	
2) Consider	the	following	outline	of	a	program	in	a	C-like	language:		

a) If	 the	 language	 is	dynamically	 scoped,	what	would	be	printed	at	points	 (1)	and	

(2)?			
b) If	the	language	is	statically	scoped,	what	would	happen?		

	
3) Show	a	code	fragment	in	which	short-circuit	semantics	for	or	yield	a	different	result	

than	complete-evaluation	semantics.		
	
4) For	 each	 of	 the	 following	 mechanisms	 of	 the	 C	 programming	 language,	 show	 an	

example	of	a	type	error	that	can	be	caused	by	it:	
a) explicit	deallocation	of	memory,	
b) union	types,	and		
c) pointer	arithmetics	

	
	
	

	program scopes(input, output)
procedure P1(A1 : integer)

var X : integer
procedure P2(A2 : integer)

var Y : integer
begin (* body of P2 *)

... <== (*)
end;
procedure P3(A3 : integer)

var X : integer;
begin (* body of P3 *)

P2(X)
end

begin (* body of P1 *)
P3(X)

end
begin (* body of main program *)

P1(0)
end.

(a) What is the reference environment at the location in the program indicated by <== (*)? That is,
give the variables, arguments, and procedures that are visible (in scope) at this location. (4 points)

(b) The main program calls, P1, P1 calls P3, and P3 calls P2. Draw the stack layout of the subrou-
tine stack after these calls. Show the subroutine frames (without their details) with the static
links. (4 points)

(c) Draw the specific subroutine frame layout of procedure P1. Name each of the slots in this frame
and indicate for each of the slots what it is used for. (4 points)

10. Consider the following program:

var z : integer; /* global variable */
procedure addto(x, y)

begin
z := 1;
y := y + x

end
begin /* body of main program */

z := 2;
addto(z, z);
write_integer(z)

end

For each of the parameter passing modes shown in the table below show the value printed by the
program. (8 points)

By value By reference By value/result

Output:

The parameter passing mode is applicable to both parameters of addto.

11. Consider the following Java program:

2

int add (int i) { return i + d; }
void p () { const int d = 1;
 print(add(20)); // (1)
void q () { const int d = 2;
 print(add(20)); // (2)

	 2	

5) Show	what	does	the	program	to	
the	right	prints	if	the	
programming	language	has:	
a) static	scoping	and	deep	

binding	
b) dynamic	scoping	and	deep	

binding	
c) static	scoping	and	shallow	

binding	
d) dynamic	scoping	and	shallow	

binding		
In	which	of	the	four	cases	above	the	
functional	 parameter	 has	 to	 be	
passed	as	a	closure?	
	
6) Describe three different ways of allocating in memory a 2-dimensional array A of

dimensions N x M.
a) Assuming that indexes range in {0, …, N-1} and {0, …, M-1} respectively, give
the formula for accessing an arbitrary element A[i][j] for each of the three
proposed allocation schemes.
b) Translate the formulas into three-address code

7) Innermost	 and	 outermost	 evaluation	 strategies	 may	 require	 a	 different	 number	 of	
steps	to	evaluate	an	expression.	Show	how	many	steps	are	necessary	to	evaluate	the	
expression		square	((1	+	2)	*	3)	using	the	rule		square	(x)	->	x	*	x	and	the	obvious	
rules	for	addition	and	multiplication,	by	using:	
a) innermost	(applicative)	evaluation	
b) outermost	(normal	order)	evaluation	
c) outermost	evaluation	with	memoization	

	
	
8)		The	ML	function	main	to	the	
right	computes	Fibonacci	
numbers	in	a	nonstandard	way	
(see	Exercise	7.3.1	page	451	of	
the	Dragon	book).	

Show	the	stack	of	activation	
records	that	result	from	a	call	to	
main,	up	until	the	time	that	the	
first	call	(to	fib0(1))	is	about	to	
return.	Show	the	access	link	in	
each	of	the	activation	records	
on	the	stack.	

	

int y = 2;
int function f(int function h(int)){
 int y = 3;
 return h();
}
int function g(){
 int x = y+1;
 return x;
}
int function k(){
 int y = 4;
 return f(g);
}
write(k());

