
	 1	

Principles	of	Programming	Languages	[PLP]		
Exercises	on	Code	Generation	and	Optimization	

1. Consider	 the	 three	 address	 code	 fragment	
to	the	right	

a. Partition	 it	 in	 basic	 blocks	 showing	
the	resulting	Control	Flow	Graph	

	
b. Show	the	dominator	tree	

	
	
	
	
	
	
	
	

2. Consider	the	pseudo	code	program	to	the	
right	

	
a. Draw	the	Control	Flow	Graph	

representation	of	the	program	
	
	

b. Apply	(global)	liveness	analysis	to	the	CFG	
	
	

c. Draw	the	conflict	graph	of	the	variables	based	
on	the	live	ranges,	and	determine	the	
minimum	number	of	registers	needed	execute	
the	program	without	spilling	during	runtime	

	
	

d. Assign	registers	to	the	variables	a	to	f 	
	
	
	
	
	 	

	 	

COP5621 Fall 2013 – Extra Credit Homework 4

Robert van Engelen

Due date: December 5, 2013

1. Consider the pseudo code program:

begin

a := readint();

b := readint();

c := a + b;

if (a > b)

d := c;

e := 2;

f := d + e;

else

d := 0;

if (a == b)

d := 1;

endif

e := 1;

f := d + e;

endif

writeint(e);

writeint(f);

end

Assign registers to the variables a to f using graph coloring. That is, from the live

ranges of variables in the CFG representation of the program (show the CFG) deter-

mine the conflict graph and the minimum number of registers.

1

	

		 	



	 2	

4. A	 simple	 data	 flow	 analysis	 allows	 one	 to	 detect	 the	 arithmetic	 sign	 of	 the	
numeric	 variables	 in	 a	 program.	 This	 analysis	 associates	 each	 variable	with	 an	
element	in	the	set	{+,	−,	0}.	For	example,	if	a	variable	can	only	assume	the	values	
0,	1,	2	and	3	during	the	execution	of	a	program,	then	its	abstract	state	is	{0,	+}.	

a. 		Design	 a	 set	 of	 transfer	 functions	 to	 compute	 this	 analysis.	 Assume	 that	
your	underlying	programming	language	has	the	instructions	listed	below	
to	the	left.	

b. 		Show	 the	 result	of	 the	 sign	analysis	you	defined	 to	 the	CFG	below	 to	 the	
right.		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

5. On	the	control	flow	graph	to	
the	right,		

	
a. execute	reaching	

definition	analysis,	
showing	the	resulting	
IN[B]	and	OUT[B]	sets	
for	each	block	B	

	
b. execute	available	

expression	analysis,	
showing	the	resulting	
IN[B]	and	OUT[B]	sets	
for	each	block	B.	

There exists a very simple analysis to detect the arithmetic sign of the numeric vari-
ables in a program. This analysis associates each variable with an element in the set
{+,�, 0}. For example, if a variable can only assume the values 0, 1, 2 and 3 during
the execution of a program, then its abstract state is {0,+}. Design a set of trans-
fer functions to compute this analysis. Assume that your underlying programming
language has the following syntactic categories of instructions:

(a) a = n, n 2 N

(b) a = b, {a, b} ⇢ Var

(c) a = b� c, {a, b, c} ⇢ Var

(d) a = b+ c, {a, b, c} ⇢ Var

(e) a = b⇥ c, {a, b, c} ⇢ Var

(f) if a goto Li, a 2 Var , Li 2 Label

(g) goto Li, Li 2 Label

(h) print a, a 2 Var

2. Show the result of your sign analysis to the program below:

a = 0

if p goto L
1

p = a - N

a = a + b

b = 0

goto L
2

print p

2

There exists a very simple analysis to detect the arithmetic sign of the numeric vari-
ables in a program. This analysis associates each variable with an element in the set
{+,�, 0}. For example, if a variable can only assume the values 0, 1, 2 and 3 during
the execution of a program, then its abstract state is {0,+}. Design a set of trans-
fer functions to compute this analysis. Assume that your underlying programming
language has the following syntactic categories of instructions:

(a) a = n, n 2 N

(b) a = b, {a, b} ⇢ Var

(c) a = b� c, {a, b, c} ⇢ Var

(d) a = b+ c, {a, b, c} ⇢ Var

(e) a = b⇥ c, {a, b, c} ⇢ Var

(f) if a goto Li, a 2 Var , Li 2 Label

(g) goto Li, Li 2 Label

(h) print a, a 2 Var

2. Show the result of your sign analysis to the program below:

a = 0

if p goto L
1

p = a - N

a = a + b

b = 0

goto L
2

print p

2


