
	 1	

Principles	of	Programming	Languages	[PLP]		
Exercises	on	Syntax-Directed	Definitions	

1. Given	the	following	grammar	for	expressions:	
	 E→E+T		 T→T/F		
	 E→E-T		 T→F		
	 E→T		 F→(E)		
	 T→T*F		 F	→	id	

write	the	generated	string	 a*(b-c)+(b-c)/a as	a	parse	tree,	as	an	abstract	
syntax	tree,	and	as	a	DAG	that	is	minimal.	
	

2. Given	the	following	attributed	grammar

	 	
	show	the	annotated	parse	tree	for	expression		(5+8*7)*4n.	
	

3. Consider	the	following	attributed	grammar:	
	

S	→	X	T	 T.a	:=	X.b								S.b	:=	T.b	
T	→	X	T1	 T.b	:=	T1.b							T1.a	:=	T.a	+	X.b	
T	→		ε	 T.b	:=	T.a	
X	→	a	 X.b	:=	1	
X	→	b	 X.b	:=	2	

	
a. Say,	for	each	attribute,	if	it	is	inherited	or	synthesized.	
b. Is	the	grammar	S-attributed?	Is	it	L-attributed?	
c. Depict	the	annotated	parse	tree	for	string		bba.		For	each	attribute	in	the	

tree,	depict	 its	value	as	well	as	a	natural	number	 indicating	 the	order	of	
evaluation	of	the	attributes.		

	
4. Translate	 into	 three	address	code	the	 following	program	snapshot,	using	short-

circuit	code	for	the	boolean	expression,	and	assuming	that	b	elements	are	8	byte	
wide		(&&	denotes	lazy	conjunction,	as	in	C/Java):	

	
	
	
	 	
	
	

i = 0;
while ((i<n) && (b[i]>=0)){
 b[i] = 2*b[i];
}
n = i;

	 2	

5. When	generating	three	address	code,	it	is	often	desirable	to	minimize	the	number	
of	branches.	The	code	layout	of	a	while-loop	shown	below	(left)	has	two	branches	
per	iteration:	one	to	enter	the	body	from	the	condition	B	and	the	other	to	jump	
back	to	the	code	for	B.	Thus	it	is	usually	preferable	to	implement	while	(B)	S	as	if	
it	were	 if	(B)	 {	 repeat	S	until	 !	 (B)	 }.	Show	what	the	code	layout	looks	like	for	
this	translation,	and	revise	the	rule	for	while-loops	shown	to	the	right.	

	

					 	
Generation	of	three	address	code	for	while	(B)	S:	Code	layout	(left)	and	generation	rule	(right)	

	
6. The	following	grammar	generates	binary	numbers	with	a	"decimal"	point:	

	 S	!L.L	|	L	 	 L	!	L	B	|	B	 	 B	!	0	|	l	
Design	 an	 L-attributed	 SDD	 to	 compute	 B.val,	 the	 decimal-number	 value	 of	 an	
input	string.	For	example,	the	translation	of	string	101.101	should	be	the	decimal	
number	5.625.	Hint:	use	an	inherited	attribute	L.side	that	tells	which	side	of	the	
decimal	point	a	bit	is	on.	
	

7. Define	an	L-attributed	SDD	on	a	top-down	parsable	grammar	to	generate	the	NFA	
associated	with	 a	 regular	 expression,	 using	 Thompson’s	 algorithm	 sketched	 in	
the	 next	 figure.	 Assume	 that	 there	 is	 a	 token	 char	 representing	 any	 character,	
and	that	char.lexval	is	the	character	it	represents.	You	may	assume	the	existence	
of	a	function	new()	that	returns	a	new	state,	that	is,	a	state	never	before	returned	
by	 this	 function.	 Use	 any	 convenient	 notation	 to	 specify	 the	 transitions	 of	 the	
NFA.	

	

	 	 	
3!

N(r2)*N(r1)*

What*are*the*“important*states”*in*the*
NFA*built*from*Regular*Expression?*

f*i* ε*

f*a i*

f*i*
N(r1)*

N(r2)*

start!

start!

start! ε*

ε* ε*

ε*

f*i*
start!

N(r)* f*i*
start!

ε*

ε*

ε*

a

r1$r2!

r1r2!

r*! ε* ε*

