Principles of Programming Languages [PLP]
Exercises on Syntax-Directed Definitions

1. Given the following grammar for expressions:

E—E+T T—T/F
E-E-T T->F
E-T F—(E)
T-T*F F—id

write the generated string a* (b-c)+(b-c)/a asa parse tree, as an abstract
syntax tree, and as a DAG that is minimal.

2. Given the following attributed grammar

PRODUCTION SEMANTIC RULES

) L En L.val = E.val

2) E—E + T | E.val = E;.val+ T.val
3) E-T E.val = T.val

4) T =Ty * F T.val = Ty.val X F.val
5 T —F T.val = F.val

6) F—-(FE) F.val = E.val

7) F — digit F.val = digit.lexval

show the annotated parse tree for expression (5+8%*7) *4n.

3. Consider the following attributed grammar:

S—>XT T.a:=Xb Sb:=Tb
T->XT: T.b:=T.b Tia:=T.a+Xb
T- ¢ T.b:=T.a

X—a Xb:=1

X-b Xb:=2

a. Say, for each attribute, if it is inherited or synthesized.
. Is the grammar S-attributed? Is it L-attributed?
c. Depict the annotated parse tree for string bba. For each attribute in the
tree, depict its value as well as a natural number indicating the order of
evaluation of the attributes.

4. Translate into three address code the following program snapshot, using short-
circuit code for the boolean expression, and assuming that b elements are 8 byte

wide (&& denotes lazy conjunction, as in C/Java):

i=20;
while ((i<n) && (b[i]>=0)){
b[i] = 2*b[i];

}
n=1i;

5.

begin :

B.true :

B.false :

When generating three address code, it is often desirable to minimize the number
of branches. The code layout of a while-loop shown below (left) has two branches
per iteration: one to enter the body from the condition B and the other to jump
back to the code for B. Thus it is usually preferable to implement while (B) S as if
it were if (B) { repeat S until ! (B) }. Show what the code layout looks like for
this translation, and revise the rule for while-loops shown to the right.

to B.true .]
B.code - S — while (B) S; begin = newlabel()
) _10>B~fal5€ B.true = newlabel()
B.false = S.next
S1.code S1.next = begin
S.code = label(begin) || B.code
goto begin || label(B.true) || Si.code
- () while Il gen(goto’ begin)

Generation of three address code for while (B) S: Code layout (left) and generation rule (right)

6.

The following grammar generates binary numbers with a "decimal” point:
S->LL|L L->LB|B B>0]1

Design an L-attributed SDD to compute B.val, the decimal-number value of an

input string. For example, the translation of string 101.101 should be the decimal

number 5.625. Hint: use an inherited attribute L.side that tells which side of the

decimal point a bit is on.

Define an L-attributed SDD on a top-down parsable grammar to generate the NFA
associated with a regular expression, using Thompson’s algorithm sketched in
the next figure. Assume that there is a token char representing any character,
and that char.lexval is the character it represents. You may assume the existence
of a function new() that returns a new state, that is, a state never before returned
by this function. Use any convenient notation to specify the transitions of the
NFA.

N start>‘ c >©

a start . a C
M

start
r 1 r 2 .\./Q
€ €

start
riTs — (i Nir) CI N)

€

r* start

