
	 1	

Principles	of	Programming	Languages	[PLP]		
Exercises	on	Parsing	

	
1) Consider	the	following	grammar	G	:	

	
	 	 	 	 R	→	(R)		|			R	+	R			|		R	R			|			R	*			|			a	
		
a) Provide	a	leftmost	and	a	rightmost	derivation	for	string	(a+a)*a		
b) Draw	a	parse	tree	for	string	(a+a)*a	
c) Describe	the	language	generated	by	grammar	G	
d) Draw	an	abstract	syntax	tree	of	string	(a+a)*a	
e) Is	grammar	G	ambiguous?	Is	string	(a+a)*a	ambiguous?	
f) Transform	grammar	G	by	left-factorizing	it:	call	LF(G)	the	resulting	grammar	
g) Draw	a	parse	tree	for	the	string		(a+a)*a	with	respect	to	grammar	LF(G)	
h) Transform	grammar	G	by	eliminating	left	recursion,	obtaining	grammar	LRE(G)	
i) Draw	a	parse	tree	for	the	string		(a+a)*a	with	respect	to	grammar	LRE(G)	

	
2) Consider	the	following	grammar	over	the	set	of	terminal	symbols	{id	,	"	,	+	}:		
	

S		→		id	|	"	T	"		
T		→		S	V		
V		→		ε		|		+	S	V	
	

a) Show	First(𝛼)	for	each	production	X	→	𝛼	and	Follow(A)	for	each	non-terminal	A	
b) Build	the	LL(1)		parse	table	
c) Starting	 from	 the	 configuration	 (stack:	 	 S	 $,	 input:	 "	 id	 +	 id	 "	 $),	 show	 the	

evolution	 of	 the	 stack	 and	 of	 the	 input	 in	 the	 first	 six	 steps	 of	 the	 top-down	
predictive	 parsing	 algorithm	 using	 the	 LL(1)	 parse	 table.	 (Note:	 the	 top	 of	 the	
stack	is	to	the	left.)		

	
3) Given	grammar		 	 A	→ A A + | a	

a) Is string Aa+A+ a sentential form? Is it a right-sentential form?	
b) Which	is	the	handle	in	string		 AA+a+ ?	

	
4) Given	grammar					 E	→ E + E | x	

a) Is	the	following	claim	true	or	false?	Motivate	your	answer.	
“In	string				E+E+x	,	both		E	+	E		and		x		are	handles.”				 	

		
	 	

	 2	

	
5) Consider	grammar		

	 	 	 	 S → (A) | x
 A → A + S | S 	

	
a) Show	First(𝜶)	for	each	production	X → 𝛂	and	Follow(X)	for	each	non-terminal	X	
b) Is	the	grammar	LL(1)?	Justify	your	answer	
c) Draw	the	LR(0)	automaton	of	the	grammar	
d) Draw	the	SLR	parsing	table	of	the	grammar	
e) Starting	from	the	configuration	(stack:		0,	input:	(x + x)),	show	the	evolution	

of	the	stack	and	of	the	input	in	the	first	six	steps	of	the	bottom-up	LR	parsing	
algorithm	using	the	SLR(1)	parse	table.	(Note:	the	“0”	in	the	stack	represents	the	
start	state	of	the	LR(0)	automaton.)	
	

6) Consider	the	following	grammar,	whose	terminals	are	{a,	?}:	
	

S	! 	A		
A	! 	B	|	B	A		
B	! 	a	?	C		
C	! 	ε	|	a	C	
	

a) Left-factor	the	grammar,		
b) Compute	the	First(A)	and	Follow(𝛼)	sets	for	each	production	A	!	𝛼	of	the	

resulting	grammar.	
c) Build	the	LL(1)		parse	table.	
d) Explain	why	the	grammar	is	not	LL(1).	
e) Show	that	the	language	is	LL(2),		arguing		convincingly	that	the	conflicts	can	be	

resolved	by	looking	ahead	one	more	token.	
	
7) Consider	the	grammar:		

A	→	CaBa		
A	→	B		
B	→	C		
C	→	b	
	

a) What	is	the	language	generated	by	the	grammar?	Is	it	ambiguous?	
b) Construct	the	LR(0)	automaton	
c) Build	the	SLR	parse	table.	Is	the	grammar	SLR?	
d) Construct	the	LR(1)	automaton	and	the	LR(1)	parsing	table.	Is	the	grammar	

LR(1)?		
	

	

