Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-15/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 33

* Data-Flow analysis for global optimization

Data-Flow Analysis

A data-flow analysis schema defines a value at each point in the
program, IN[s] and OUT|[s] for each statement s

Values are abstractions of all program states reachable in that point
with an arbitrary computation path

Statements of the program have associated transfer functions that
relate the value before the statement to the value after

— Forward OUT][s] = f(IN[s]) or backward IN[s] = f(OUT]s])
Statements with more than one predecessor must have their value

defined by combining the values at the predecessors, using a meet
operator.

Often basic blocks are annotated with values instead of individual
statements: OUT[B] and IN[B]

Useful for annotating the code with info needed for local or global
optimization.

Data-Flow Analysis Framework

* A Data-Flow Analysis Framework (D, V, /\, F) consists of:
* Adirection D in {FORWARDS, BACKWARDS}

* A domain of values (V,/\) which forms a meet semilattice:

— A partial order with a top element and a binary operation meet (A,
greatest lower bound) such that

xAy=sx and xnysyand (Nz.zsx and zsy=7<xAY)

 Afamily F of transfer functions from V to V, including the
identity function and closed under composition

 Aframeworkis monotoneififforallfin F x=sy= f(x)=f()

e |tisdistributive if forall fin F fxay)=f(xX)Af(y)

Data-Flow Iterative Algorithm

* [Forward] Given:
— a data-flow graph with ENTRY and EXIT nodes

— one transfer function f, for each basic block B
— A “boundary condition” vgyrry

 Computes values IN[B] and OUT[B] for all blocks

1) OUT[ENTRY] = Veyrrys
2) while (changes to any OUT occur)
3) for (each basic block B other than ENTRY){
4) IN[B] = /\p a predecessor of B OUT[P]'
5) OUT(B] = f5(IN[B]);
}

Example: Dataflow analysis for
Reaching Definitions

Each point in the program is associated with the
set of definitions that are active at that point

Semilattice:
— Powerset of definitions (assignments)
— Meet operator: union. Top element: empty set
The transfer function for a block kills definitions

of variables that are redefined in the block and
adds definitions of variables that occur in the

block: fa(x) =genz U (x —kill,)
The confluence operator is union.

Reaching Definitions

in[S]

1s of the form
>

SpJemuoy

NS

- out[S]
applies .
tiisfer amction: 1 hen, the data-flow equations for § are:

Jis1(0) = genygy U (x - killgy)
gen[S] ={d}
killlS| =D, - {d}
out[S] = gen[S] U (in[S] - kill[S])

where D_ = all definitions of a in the region of code

Reaching Definitions:

Iterative solution

1) OUT[ENTRY]={}:
2) for (each basic block B) OUT[B] ={}
3) while (changes to any OUT occur)
4) for (each basic block B other than ENTRY){
5) IN[B] = Upa predecessor of B OUT[P]'
6) OUT[B] = gen, U (IN[B] — killy)
}

* Visiting order in line 4) influences convergence

* Very efficient implementations with bit vectors

* Non-iterative solutions possible: Syntax-directed,
and region-based

Dataflow analysis for Reaching Definitions
towards a syntax directed algorithm

i
]
ra = ul;

i
2 5
=

do
i := i+1;
j = j-1;
if el then
a := u2
else
i = u3
while e2

ENTRY
d i m—lgl B,
dy: 3] n
dy: a ul

. - . -
w1 on oy

%+1 32
j-1
|
= u3 B4
/

EXIT

genp =l dy dy dy)
kil ={ dy dy dg, d)

gen

B, ={d4» d5}
killB2 ={d1’ d2 d7}

genB3 ={d6}
kill =

illy =(d)
geny =(d)

kill = dy, dy)

Figure 9.13: Flow graph for illustrating reaching definitions

Reaching Definitions

1s of the form
>

gen[S] = gen[S,]| U (genl[S,] - kill[S,])
kill[S] = kill[S,] U (kill[S,] - gen[S,])
inlS,] = in[S]

inlS,] = out[S,]

out|S] = out]S,]

Reaching Definitions

1s of the form

gen|S] = gen[S,] U genl$,]
kill[S] = kill[S,] N kill[S,]
inlS,] = in[S]
inlS,] = in[S]

out|S] = out]S,] U out|S,]

10

Reaching Definitions

1s of the form
>

gen|S] = genlS,]
kill[S] = kill[S,]
inlS,] =1in[S] U genl|S,]

out[S] = out[S,]

11

Reaching Definitions:
Computing Gen/Kill

dy:j = n;
gen={d;.d,.ds.dg,d7} | dy:a = ul;
kill={d,d,} " do
dy: 1 := i+1;
.gen={d1,d2,d3} . ds: j .= j_l;
klll:{d4’d5% if el then
gen={d, d,}| | gen={d;} d gen={d,dsd..d;} do d 1a 1= u2
kill={d,ds,d.}| " kill={d}| 3 kill={d, d,} else

/\ /\ d73 i := u3

gen={d1} d gen={d2} d genz{d.4’d5’d6ad7} ; a2 while e2

kill={d,,d} | "1 | kill={d}| "2 kill={d, .d,}
gen={d,ds}| . L £ gen={ds.,d}
71— ’ 1L k=
kill={d, d,.d.}

gen={d,} gen={ds} gen={d} gen={d,}
kill={d,, d,} d4 kill={d,} d5 el d6 kill={d,} d7 kill={d1d,}

Using Bit-Vectors to Compute

Reaching Definitions

1 = m-1;
d.d,d.d,d-d.d d, j
1 U U3ty Ug g Uy de5 = n:
2- J - n[
gen= "0011111] d3;a = ul;
kill= 1100000| « dO
dy: 1 := i+1;
1110000 d.:] = 9-1:
0001111 > J S A
/\ if el then
d: a := u2
1100000 0010000 0001111| §o 1
0001101 0000010 3 1100000 else
/\ /\ d7: 1 :=u3
1000000 0100000 ggg;g;; . a2 while e2
0001001 0000100 2 !
0001100 0000011
1100001 | 7 1f | 0000000
0001000 0000100 0000010 0000001
1000001 d4 0100000 d5 el d6 0010000 d7 10010003

d,: = m-1;
dy:j = n;
in={}| _ dy:a = ul;
Ol/lt={d3,d4,d5,d6,d7} ! dO
| d,: i := i+1l;
in={} . ds: 3 = j-1;
out={d,.d,.d;} if el then
in={d,d,d;} . e =
in={}] in={d,.d,} d out={d,.d, ds, do d6- la u2
out={d, d,}|_pur={d, d,.d;}| 3 de.d,} © S.‘e
in={d, d,d;, /\ d;: i := u3
. . dyds.ded ;) while e2
in_{} d1 _m_{dl} dz out={d;ds.d¢.d;}| ! 2
out={d,} ut={d,d,}

in={d, d,d;d,dsded}
in={d, d,ds.d,.ds.dgd} in={d,.ds,
OI/tt:{dz ,d3 ,d4 ,ds ’d6}

Reaching Definitions:
Computing In/Out (non-iterative)

out={d,.d,

d,

°
4

if

ll’l={d3 ,d4_ ,d5 ’d6}
0ut={d3 ,d4 ’dS ’d6 ,d7}

dy.ds.de} d5

el

in={d,.d,,

dS 3d6} d7

0ut={d} zflS’

de

out={d;d,ds.d.}

out={d,.ds.d.} dy.d}

Accuracy, Safeness, and Conservative
Estimations

e Conservative: refers to making safe assumptions
when insufficient information is available at compile
time, i.e. the compiler has to guarantee not to
change the meaning of the optimized code

* Safe: refers to the fact that a superset of reaching
definitions is safe (some may have been killed)

* Accuracy: more and better information enables more
code optimizations

15

Reaching Definitions are a
Conservative (Safe) Estimation

/Suppose this

branch is
never taken

O
Estimation:
gen|S] =gen[S,] U genlS,]
kill[S] = kill[S,] M kill[S,]
Accurate:

gen’[S] =genl[S;] & genlS]
kill’'[S] = killlS;] =2 kill[S]

16

Example: Dataflow analysis for
Live Variables [backwards!]

Each point in the program is associated with the set of
variables that are live at that point, i.e. such that their
value will be used later

Semilattice:

— Powerset of variables

— Meet operator: union. Top element: empty set

A variable is live at the beginning of a block if it is
either used before definition in the block or is live at
the end of the block and not redefined in the block.

The transfer function: fa(x) = usez U (x — defy)
The confluence operator is union.

Data-Flow Analysis for Live Variables:

an example
Bl 1 = m-1 Solution:
1 = f in[B1] = {m,n}U({1, j}—{1,3})={m,n}
o out|Bl1] =in[B2] ={1i, j}
i in[B2] ={jrU({1,3}-{3))=1{1,3}
B3: — it3 out[B2] = in[B3] = {1, j}

18

Live variables:
Iterative solution

1) IN[EXIT]={};
2) for (each basic block B) IN[B] ={}
3) while (changes to any IN occur)
4) for (each basic block B other than EXIT){
5) OUT[B] = USasuccessor of B IN[S]'
6) IN[B] = use,; U (OUT[B] — def,)
}

Constant Propagation/Folding

* Unbounded set of values:
— All constants for the relevant type
— NAC: not-a-constant
— UNDEF: no info about any value of the variable

* The semilattise 32//{7(11?@\\\

N\

NAC

Constant Propagation/Folding

 Transfer function for statements:
1. Identity, if it is not an assigment

2. Ifitisan assigment to x:

1. m’(v) =m(v) forv !=x

2. Ifthe RHS is a constant ¢, m’(x) = c

3. IftheRHSis “yop z”,
1. If m(y) and m(z) are constant, m’(x) = m(y) op m(z)
2. If m(y) = NAC or m(z) = NAC, then m’(x) = NAC
3. m’(x) = UNDEF, otherwise

4. If the RHS is anything else (e.g. function call) m’(x) =
NAC

Constant Propagation/Folding

 Transfer functions are monotonic but not
distributive

/\ m m@) | my) | me)
B B mo UNDEF | UNDEF | UNDEF
1 % = 2 = 2 f1(mo) 2 3 UNDEF
: 3 x =3 fg(mo) 3 2 UNDEF
Y = y = 2 f1(mo) A fa(my) NAC NAC | UNDEF
/ fa(fi(mo) A f2(mg)) NAC NAC NAC

B f3(f1(mo)) 2 3 5

3 f3(f2(mq)) 3 2 5

z = x4y f3(fi(mo)) A f3(f2(mo)) | Nac NAC 5

i Fs (f1(mo) A fa(mo)) < f3(f1(mo)) A f3(f2(mo))

EXIT

On Partial-Redundancy Elimination

B
R 1 B,
B .
2 . / B3

~a_ Y
NS Cb NS
e = b+c B4 & d = b+e B4
U U U
B1 B1
B, / \ t=b+c \ B,
PR _ By B, B
t = b+c b =7 I t = b+c t = btc
a=t t = btc a=+t
~ o (B ~ 7
e.=t B4 1 d =t B4

(a) (b) (c)

Figure 9.30: Examples of (a) global common subexpression, (b) loop-invariant
code motion, (c) partial-redundancy elimination.

On Partial-Redundancy Elimination

* Four step “Lazy Code Motion” algorithm

— Find blocks where evaluation of an expression can
be anticipated (backwards)

— Check availability of expressions along all paths
leading to a block needing it (forwards)

— Postpone the expression as much as possible
(forwards)

— Eliminate assighments to temporaries that are
used only once (backwards)

Determining Loops in Flow Graphs

In absence of loops data-flow analysis converges in one
pass, if performed according to topological order

Study of loops needed also to evaluate convergence
speed

For some values semi-lattices, loops do not modify
values, so they can be ignored

For others, several iterations in loops are needed: eg,
constant folding

N < X

O B N =

09
@)
~
—

25

Determining Loops in Flow Graphs:
Dominators

e Dominators: d dom n

— Node d of a CFG dominates node n if every path

from the initial node of the CFG to n goes through
d

— The loop entry dominates all nodes in the loop

e The immediate dominator m of a node n is the
last dominator on the path from the initial
node to n

—Ifd=nand d dom nthend dom m

26

CFG

Dominator Trees

Dominator tree

27

Data-Flow analysis for Dominators

Computes D(n), set of dominators for each
node n (forwards)

Semilattice: powerset of CFG nodes
Transfer function: f;(x) = x U {B}
Meet operator: intersection
Boundary: OUT[ENTRY] ={ENTRY}
Initialization: OUT[B] = NODES

Natural Loops

* A back edge is an edge a — b whose head b
dominates its tail a

 Given a backedgen —d

— The natural loop consists of d plus the nodes that can
reach n without going through d

— The loop header is node d
* |n other words

— A natural loop must have a single-entry node d
— There must be a back edge that enters node d

29

Natural Inner/Outer Loops

* Unless two loops have the same header, they
are disjoint or one is nested within the other
A nested loop is an inner loop if it contains no

other loops
* Aloop is an outer loop if it is not contained
within another loop

30

Natural Inner Loops Example

*, NaXural loop

ne
lllll

% Natural loop
ifor 7 dom 10

CFG Dominator tree

31

Natural Outer Loops Example

Natural loop
for 1 dom9 f=""\

CFG Dominator tree

32

Pre-Headers

* To facilitate loop transformations, a compiler
often adds a preheader to a loop

* Code motion (of loop invariant code), strength
reduction, and other loop transformations
populate the preheader

Y3

Reducible Flow Graphs

* Reducible graph = disjoint partition in forward
and back edges such that the forward edges
form an acyclic (sub)graph

Example of a
nonreducible CFG

(not a natural loop: no back edge to dominatdt 1)

Example of a
reducible CFG

Speed of convergence of
data-flow analysis

 Maximum number of iterations: (height of the
lattice) x (humber of nodes)

* |f value of interest can be propagated along
acyclic path (reaching definitions,available
expressions, live variables), few passes are
sufficient in general, depending on the depth
of the graph (~ number of loop nesting).

