
Principles	of	Programming	Languages	
h"p://www.di.unipi.it/~andrea/Dida2ca/PLP-15/	

Prof.	Andrea	Corradini	
Department	of	Computer	Science,	Pisa	

•  Data-Flow	analysis	for	global	op?miza?on	
	

Lesson 33!

Data-Flow	Analysis	
•  A	data-flow	analysis	schema	defines	a	value	at	each	point	in	the	

program,	IN[s]	and	OUT[s]	for	each	statement	s	
•  Values	are	abstrac?ons	of	all	program	states	reachable	in	that	point	

with	an	arbitrary	computa?on	path	
•  Statements	of	the	program	have	associated	transfer	func+ons	that	

relate	the	value	before	the	statement	to	the	value	aMer	
–  Forward			OUT[s]	=	f	(IN[s])		or	backward		IN[s]	=	f	(OUT[s])	

•  Statements	with	more	than	one	predecessor	must	have	their	value	
defined	by	combining	the	values	at	the	predecessors,	using	a	meet	
operator.		

•  OMen	basic	blocks	are	annotated	with	values	instead	of	individual	
statements:		OUT[B]	and	IN[B]	

•  Useful	for	annota?ng	the	code	with	info	needed	for	local	or	global	
op?miza?on.	

	

2	

Data-Flow	Analysis	Framework	

•  A	Data-Flow	Analysis	Framework	(D,	V,	∧,	F)	consists	of:	
•  A	direc+on	D	in	{FORWARDS,	BACKWARDS}	
•  A	domain	of	values	(V,∧)		which	forms	a	meet	semilaDce:	

–  A	par?al	order	with	a	top	element	and	a	binary	opera?on	meet	(∧,	
greatest	lower	bound)	such	that		

		

•  A	family	F	of	transfer	func+ons	from	V	to	V,	including	the	
iden?ty	func?on	and	closed	under	composi?on	

3	

x∧ y ≤ x and x∧ y ≤ y and (∀z. z ≤ x and z ≤ y⇒ z ≤ x∧ y)

x ≤ y⇒ f (x) ≤ f (y)

f (x∧ y) = f (x)∧ f (y)

•  A	framework	is	monotone	if	if	for	all	f	in	F	

•  It	is	distribu?ve	if	for	all	f	in	F	

Data-Flow	Itera?ve	Algorithm	

•  [Forward]	Given:	
–  a	data-flow	graph	with	ENTRY	and	EXIT	nodes	
–  one	transfer	func?on	fB	for	each	basic	block	B	
– A	“boundary	condi?on”		vENTRY		

•  Computes	values	IN[B]	and	OUT[B]	for	all	blocks	

4	

1) 	OUT[ENTRY]	=	vENTRY;	
2) 	while	(changes	to	any	OUT	occur)	
3) 		 	for	(each	basic	block	B	other	than	ENTRY){		
4) 		 	 	IN[B]	=	∧p	a	predecessor	of	B	OUT[P];	
5) 	 	 	OUT[B]	=	fB(IN[B]);		

	} 		

Example:	Dataflow	analysis	for	
Reaching	Defini?ons	

•  Each	point	in	the	program	is	associated	with	the	
set	of	defini?ons	that	are	ac?ve	at	that	point	

•  Semiladce:		
–  Powerset	of	defini?ons	(assignments)	
– Meet	operator:	union.	Top	element:	empty	set		

•  The	transfer	func+on	for	a	block	kills	defini?ons	
of	variables	that	are	redefined	in	the	block	and	
adds	defini?ons	of	variables	that	occur	in	the	
block:							fB(x)	=	genB	U	(x	–	killB)		

•  The	confluence	operator	is	union.	

5	

6	

Reaching	Defini?ons	

S	 d:	a:=b+c	

Then, the data-flow equations for S are:	
	
gen[S] 	 	= {d}	
kill[S] 	 	= Da - {d}	
out[S] 	 	= gen[S] ∪ (in[S] - kill[S])	
	
where Da = all definitions of a in the region of code	

is of the form	

applies �
transfer function:�
f[S](x) = gen[S] ∪ (x - kill[S]) 	

out[S]	

in[S]	

forw
ards	

•  Visi?ng	order	in	line	4)	influences	convergence	
•  Very	efficient	implementa?ons	with	bit	vectors	
•  Non-itera?ve	solu?ons	possible:	Syntax-directed,	
and	region-based	

7	

1)  OUT[ENTRY]	=	{	};	
2)  for	(each	basic	block	B)	OUT[B]	=	{	}	
3) 	while	(changes	to	any	OUT	occur)	
4) 		 	for	(each	basic	block	B	other	than	ENTRY){		
5) 		 	 	IN[B]	=	Up	a	predecessor	of	B	OUT[P];	
6) 	 	 	OUT[B]	=	genB	U	(IN[B]	–	killB)		

	} 		

Reaching	Defini?ons:	
Itera?ve	solu?on	

8	

Dataflow	analysis	for	Reaching	Defini?ons	
towards	a	syntax	directed	algorithm	

d1: i := m-1;
d2: j := n;
d3: a := u1;
 do
d4: i := i+1;
d5: j := j-1;
 if e1 then
d6: a := u2
 else
d7: i := u3
 while e2

9	

Reaching Definitions	

S	

�
�
gen[S] 	 	= gen[S2] ∪ (gen[S1] - kill[S2])�
kill[S] 	 	= kill[S2] ∪ (kill[S1] - gen[S2])�
in[S1] 	 	= in[S]�
in[S2] 	 	= out[S1]	
out[S] 	 	= out[S2]	

is of the form	

S2	

S1	

10	

Reaching Definitions	

S	

�
�
gen[S] 	 	= gen[S1] ∪ gen[S2] �
kill[S] 	 	= kill[S1] ∩ kill[S2]�
in[S1] 	 	= in[S]�
in[S2] 	 	= in[S]	
out[S] 	 	= out[S1] ∪ out[S2]	

is of the form	
S2	S1	

11	

Reaching Definitions	

S	

�
�
gen[S] 	 	= gen[S1] �
kill[S] 	 	= kill[S1]�
in[S1] 	 	= in[S] ∪ gen[S1]	
out[S] 	 	= out[S1]	

is of the form	
S1	

12	

Reaching	Defini?ons:	
Compu?ng	Gen/Kill	

d1: i := m-1;
d2: j := n;
d3: a := u1;
 do
d4: i := i+1;
d5: j := j-1;
 if e1 then
d6: a := u2
 else
d7: i := u3
 while e2

;

gen={d1}�
kill={d4, d7}	

d1	
gen={d2}�
kill={d5}	

d2	

gen={d1,d2}�
kill={d4,d5,d7}	

;

d3	
gen={d3}�
kill={d6}	

gen={d1,d2,d3}�
kill={d4,d5,d6,d7}	

; gen={d3,d4,d5,d6,d7}�
kill={d1,d2}	

do

;

gen={d4}�
kill={d1, d7}	

d4	

;

gen={d5}�
kill={d2}	

d5	

if

e2

d6	 d7	e1 gen={d6}�
kill={d3}	

gen={d7}�
kill={d1,d4}	

gen={d4,d5}�
kill={d1,d2,d7}	

gen={d4,d5,d6,d7}�
kill={d1,d2}	

gen={d4,d5,d6,d7}�
kill={d1,d2}	

gen={d6,d7}�
kill={}	

13	

Using	Bit-Vectors	to	Compute	
Reaching	Defini?ons	

d1: i := m-1;
d2: j := n;
d3: a := u1;
 do
d4: i := i+1;
d5: j := j-1;
 if e1 then
d6: a := u2
 else
d7: i := u3
 while e2

;

d1	 d2	

;

d3	

; 0011111
1100000

do

;

d4	

;

d5	

if

e2

d6	 d7	e1

1110000
0001111

1100000
0001101

1000000
0001001

0100000
0000100

0010000
0000010

0001111
1100000

0001111
1100000

0001100
1100001

0001000
1000001

0000100
0100000

0000010
0010000

0000001
1001000

0000011
0000000

d1	d2	d3	d4	d5	d6	d7	

gen=�
kill=	

14	

Reaching	Defini?ons:	
Compu?ng	In/Out	(non-itera?ve)	

d1: i := m-1;
d2: j := n;
d3: a := u1;
 do
d4: i := i+1;
d5: j := j-1;
 if e1 then
d6: a := u2
 else
d7: i := u3
 while e2

;

in={}�
out={d1}	

d1	
in={d1}�

out={d1,d2}	
d2	

in={}�
out={d1,d2}	

;

d3	
in={d1,d2}�

out={d1,d2,d3}	

in={}�
out={d1,d2,d3}	

; in={}�
out={d3,d4,d5,d6,d7}	

do

;

in={d1,d2,d3,d4,d5,d6,d7}�
out={d2,d3,d4,d5,d6}	

d4	

;

in={d2,d3,�
d4,d5,d6}�

out={d3,d4,d5,d6}	
d5	

if

e2

d6	 d7	e1
in={d3,d4,�
 d5,d6}�
out={d4,d5,d6}	

in={d3,d4,d5,d6}�
out={d3,d5,�
 d6,d7}	

in={d1,d2,d3,d4,d5,d6,d7}�
out={d3,d4,d5,d6}	

in={d1,d2,d3,�
d4,d5,d6,d7}�

out={d3,d5,d6,d7}	

in={d1,d2,d3}�
out={d3,d4,d5,�

d6,d7}	

in={d3,d4,d5,d6}�
out={d3,d4,d5,d6,d7}	

15	

Accuracy,	Safeness,	and	Conserva?ve	
Es?ma?ons	

•  Conserva+ve:	refers	to	making	safe	assump?ons	
when	insufficient	informa?on	is	available	at	compile	
?me,	i.e.	the	compiler	has	to	guarantee	not	to	
change	the	meaning	of	the	op?mized	code	

•  Safe:	refers	to	the	fact	that	a	superset	of	reaching	
defini?ons	is	safe	(some	may	have	been	killed)	

•  Accuracy:	more	and	beler	informa?on	enables	more	
code	op?miza?ons	

16	

Reaching	Defini?ons	are	a	
Conserva?ve	(Safe)	Es?ma?on	

S2	S1	

Suppose this �
branch is �

never taken	

Es?ma?on:	
gen[S] 	 	=	gen[S1]	∪	gen[S2]		
kill[S] 	 	=	kill[S1]	∩	kill[S2]	
	
Accurate:	
gen’[S] 	=	gen[S1] 	⊆	gen[S]		
kill’[S] 	=	kill[S1] 	⊇	kill[S]	

Example:	Dataflow	analysis	for		
Live	Variables	[backwards!]	

•  Each	point	in	the	program	is	associated	with	the	set	of	
variables	that	are	live	at	that	point,	i.e.	such	that	their	
value	will	be	used	later	

•  Semiladce:		
–  Powerset	of	variables	
– Meet	operator:	union.	Top	element:	empty	set		

•  A	variable	is	live	at	the	beginning	of	a	block	if	it	is	
either	used	before	defini?on	in	the	block	or	is	live	at	
the	end	of	the	block	and	not	redefined	in	the	block.		

•  The	transfer	func+on:							fB(x)	=	useB	U	(x	–	defB)		
•  The	confluence	operator	is	union.	

17	

18	

Data-Flow	Analysis	for	Live	Variables:	
an	example	

	

 i := m-1
 j := n

 j := j-1

 := i+j

B1:	

B2:	

B3:	

Solution:�
in[B1] = {m, n}∪({i, j}–{i, j}) = {m, n}�
out[B1] = in[B2] = {i, j}�
in[B2] = {j} ∪ ({i, j} – {j}) = {i, j}	
out[B2] = in[B3] = {i, j}	

19	

1)  IN[EXIT]	=	{	};	
2)  for	(each	basic	block	B)	IN[B]	=	{	}	
3) 	while	(changes	to	any	IN	occur)	
4) 		 	for	(each	basic	block	B	other	than	EXIT){		
5) 		 	 	OUT[B]	=	US	a	successor	of	B	IN[S];	
6) 	 	 	IN[B]	=	useB	U	(OUT[B]	–	defB) 		

	} 		

Live	variables:	
Itera?ve	solu?on	

Constant	Propaga?on/Folding	

•  Unbounded	set	of	values:	
– All	constants	for	the	relevant	type	
– NAC:	not-a-constant	
– UNDEF:	no	info	about	any	value	of	the	variable	

•  The	semiladce:	

20	

Constant	Propaga?on/Folding	

•  Transfer	func?on	for	statements:	
1.  Iden?ty,	if	it	is	not	an	assigment	
2.  If	it	is	an	assigment	to	x:	

1.  m’(v)	=	m(v)	for	v	!=	x	
2.  If	the	RHS	is	a	constant	c,	m’(x)	=	c	
3.  If	the	RHS	is		“y	op	z”,	

1.  If	m(y)	and	m(z)	are	constant,	m’(x)	=	m(y)	op	m(z)	
2.  If	m(y)	=	NAC	or	m(z)	=	NAC,	then	m’(x)	=	NAC	
3.  m’(x)	=	UNDEF,	otherwise	

4.  If	the	RHS	is	anything	else	(e.g.	func?on	call)	m’(x)	=	
NAC		

21	

Constant	Propaga?on/Folding	

•  Transfer	func?ons	are	monotonic	but	not	
distribu?ve	

22	

On	Par?al-Redundancy	Elimina?on	

23	

On	Par?al-Redundancy	Elimina?on	

24	

•  Four	step	“Lazy	Code	Mo?on”	algorithm	
– Find	blocks	where	evalua?on	of	an	expression	can	
be	an?cipated	(backwards)	

– Check	availability	of	expressions	along	all	paths	
leading	to	a	block	needing	it	(forwards)	

– Postpone	the	expression	as	much	as	possible	
(forwards)	

– Eliminate	assignments	to	temporaries	that	are	
used	only	once	(backwards)	

25	

Determining	Loops	in	Flow	Graphs	
•  In	absence	of	loops	data-flow	analysis	converges	in	one	
pass,	if	performed	according	to	topological	order	

•  Study	of	loops	needed	also	to	evaluate	convergence	
speed	

•  For	some	values	semi-ladces,	loops	do	not	modify	
values,	so	they	can	be	ignored	

•  For	others,	several	itera?ons	in	loops	are	needed:	eg,	
constant	folding	

		L:	 	x	=	y;	
	y	=	z;						
	z	=	1;	
	goto	L		

26	

Determining	Loops	in	Flow	Graphs:	
Dominators	

•  Dominators:	d	dom	n	
– Node	d	of	a	CFG	dominates	node	n	if	every	path	
from	the	ini?al	node	of	the	CFG	to	n	goes	through	
d	

– The	loop	entry	dominates	all	nodes	in	the	loop	
•  The	immediate	dominator	m	of	a	node	n	is	the	
last	dominator	on	the	path	from	the	ini?al	
node	to	n	
–  If	d	≠	n	and	d	dom	n	then	d	dom	m	

27	

Dominator	Trees	

1	
2	

3	

4	
5	 6	

7	

8	
9	 10	

1	

2	 3	

4	

6	5	 7	

8	

9	 10	

CFG	 Dominator tree	

Data-Flow	analysis	for	Dominators	

•  Computes	D(n),	set	of	dominators	for	each	
node	n	(forwards)	

•  Semiladce:	powerset	of	CFG	nodes	
•  Transfer	func?on:	fB(x)	=	x	U	{B}		
•  Meet	operator:	intersec?on	
•  Boundary:	OUT[ENTRY]	={ENTRY}	
•  Ini?aliza?on:	OUT[B]	=	NODES	

28	

29	

Natural	Loops	

•  A	back	edge	is	an	edge	a	→	b	whose	head	b	
dominates	its	tail	a	

•  Given	a	back	edge	n	→	d		
–  The	natural	loop	consists	of	d	plus	the	nodes	that	can	
reach	n	without	going	through	d	

–  The	loop	header	is	node	d	
•  In	other	words	
– A	natural	loop	must	have	a	single-entry	node	d	
– There	must	be	a	back	edge	that	enters	node	d	

30	

Natural	Inner/Outer	Loops	

•  Unless	two	loops	have	the	same	header,	they	
are	disjoint	or	one	is	nested	within	the	other	

•  A	nested	loop	is	an	inner	loop	if	it	contains	no	
other	loops	

•  A	loop	is	an	outer	loop	if	it	is	not	contained	
within	another	loop	

31	

Natural Inner Loops Example	

1	
2	

3	

4	
5	 6	

7	

8	
9	 10	

1	

2	 3	

4	

6	5	 7	

8	

9	 10	

CFG	 Dominator tree	

Natural loop�
for 7 dom 10	

Natural loop�
for 3 dom 4	

Natural loop�
for 4 dom 7	

32	

Natural Outer Loops Example	

1	
2	

3	

4	
5	 6	

7	

8	
9	 10	

1	

2	 3	

4	

6	5	 7	

8	

9	 10	

CFG	 Dominator tree	

Natural loop�
for 1 dom 9	

Natural loop�
for 3 dom 8	

33	

Pre-Headers	

•  To facilitate loop transformations, a compiler
often adds a preheader to a loop	

•  Code motion (of loop invariant code), strength
reduction, and other loop transformations
populate the preheader	

Header	 Header	

Preheader	

34	

Reducible Flow Graphs	

1	
2	

3	

4	

Example of a�
reducible CFG	

1	

2	 3	

Example of a�
nonreducible CFG �

(not a natural loop: no back edge to dominator 1)	

•  Reducible graph = disjoint partition in forward
and back edges such that the forward edges
form an acyclic (sub)graph	

Speed	of	convergence	of		
data-flow	analysis	

•  Maximum	number	of	itera?ons:	(height	of	the	
ladce)	x	(number	of	nodes)	

•  If	value	of	interest	can	be	propagated	along	
acyclic	path	(reaching	defini+ons,available	
expressions,	live	variables),	few	passes	are	
sufficient	in	general,	depending	on	the	depth	
of	the	graph	(~	number	of	loop	nes?ng).		

35	

