Lesson 33

- Data-Flow analysis for global optimization
Data-Flow Analysis

• A data-flow analysis schema defines a value at each point in the program, IN[s] and OUT[s] for each statement s
• Values are abstractions of all program states reachable in that point with an arbitrary computation path
• Statements of the program have associated transfer functions that relate the value before the statement to the value after
 – Forward OUT[s] = f (IN[s]) or backward IN[s] = f (OUT[s])
• Statements with more than one predecessor must have their value defined by combining the values at the predecessors, using a meet operator.
• Often basic blocks are annotated with values instead of individual statements: OUT[B] and IN[B]
• Useful for annotating the code with info needed for local or global optimization.
Data-Flow Analysis Framework

• A *Data-Flow Analysis Framework* \((D, V, \land, F)\) consists of:
 • A *direction* \(D\) in \{FORWARDS, BACKWARDS\}
 • A *domain of values* \((V, \land)\) which forms a *meet semilattice*:
 – A partial order with a *top element* and a binary operation *meet* \((\land, \text{greatest lower bound})\) such that

 \[
 x \land y \leq x \text{ and } x \land y \leq y \text{ and } (\forall z. z \leq x \text{ and } z \leq y \Rightarrow z \leq x \land y)
 \]
 • A family \(F\) of *transfer functions* from \(V\) to \(V\), including the identity function and closed under composition

• A framework is *monotone* if if for all \(f\) in \(F\)

\[
x \leq y \Rightarrow f(x) \leq f(y)
\]

• It is *distributive* if for all \(f\) in \(F\)

\[
f(x \land y) = f(x) \land f(y)
\]
Data-Flow Iterative Algorithm

- [Forward] Given:
 - a data-flow graph with ENTRY and EXIT nodes
 - one transfer function f_B for each basic block B
 - A “boundary condition” v_{ENTRY}
- Computes values IN[B] and OUT[B] for all blocks

1) $\text{OUT}[\text{ENTRY}] = v_{\text{ENTRY}}$
2) while (changes to any OUT occur)
3) for (each basic block B other than ENTRY){
4) $\text{IN}[B] = \bigwedge_p \text{a predecessor of } B \ \text{OUT}[P]$
5) $\text{OUT}[B] = f_B(\text{IN}[B])$
}
Example: Dataflow analysis for Reaching Definitions

• Each point in the program is associated with the set of definitions that are active at that point
• Semilattice:
 – Powerset of definitions (assignments)
 – Meet operator: union. Top element: empty set
• The *transfer function* for a block kills definitions of variables that are redefined in the block and adds definitions of variables that occur in the block:
 \[f_B(x) = gen_B \cup (x - kill_B) \]
• The confluence operator is union.
Reaching Definitions

Then, the data-flow equations for S are:

- $\text{gen}[S] = \{d\}$
- $\text{kill}[S] = D_a - \{d\}$
- $\text{out}[S] = \text{gen}[S] \cup (\text{in}[S] - \text{kill}[S])$

where D_a = all definitions of a in the region of code.
Reaching Definitions: Iterative solution

1) \(\text{OUT}[\text{ENTRY}] = \{ \} \);
2) for (each basic block \(B \)) \(\text{OUT}[B] = \{ \} \)
3) while (changes to any \(\text{OUT} \) occur)
4) for (each basic block \(B \) other than \(\text{ENTRY} \))
5) \(\text{IN}[B] = \bigcup_{\text{a predecessor of } B} \text{OUT}[P] \)
6) \(\text{OUT}[B] = gen_B \bigcup (\text{IN}[B] - \text{kill}_B) \)

- Visiting order in line 4) influences convergence
- Very efficient implementations with bit vectors
- Non-iterative solutions possible: Syntax-directed, and region-based
Dataflow analysis for Reaching Definitions towards a syntax directed algorithm

\[d_1: i := m-1; \]
\[d_2: j := n; \]
\[d_3: a := u_1; \]
\[\text{do} \]
\[d_4: i := i+1; \]
\[d_5: j := j-1; \]
\[\text{if } e_1 \text{ then} \]
\[d_6: a := u_2 \]
\[\text{else} \]
\[d_7: i := u_3 \]
\[\text{while } e_2 \]

Figure 9.13: Flow graph for illustrating reaching definitions
Reaching Definitions

\[
\begin{align*}
gen[S] &= \text{gen}[S_2] \cup (\text{gen}[S_1] - \text{kill}[S_2]) \\
kill[S] &= \text{kill}[S_2] \cup (\text{kill}[S_1] - \text{gen}[S_2]) \\
in[S_1] &= in[S] \\
in[S_2] &= out[S_1] \\
out[S] &= out[S_2]
\end{align*}
\]

is of the form

\[S \rightarrow S_1 \rightarrow S_2\]
Reaching Definitions

\[
\begin{align*}
gen[S] &= gen[S_1] \cup gen[S_2] \\
n\text{kill}[S] &= \text{kill}[S_1] \cap \text{kill}[S_2] \\
in[S_1] &= in[S] \\
in[S_2] &= in[S] \\
out[S] &= out[S_1] \cup out[S_2]
\end{align*}
\]
Reaching Definitions

\[\text{gen}[S] = \text{gen}[S_1] \]
\[\text{kill}[S] = \text{kill}[S_1] \]
\[\text{in}[S_1] = \text{in}[S] \cup \text{gen}[S_1] \]
\[\text{out}[S] = \text{out}[S_1] \]
Reaching Definitions: Computing Gen/Kill

d_1: \text{i} := m-1;
d_2: \text{j} := n;
d_3: \text{a} := u_1;
 \text{do}
 d_4: \text{i} := i+1;
d_5: \text{j} := j-1;
 \text{if} \ e_1 \ \text{then}
 d_6: \text{a} := u_2
 \text{else}
 d_7: \text{i} := u_3
\text{while} \ e_2;
Using Bit-Vectors to Compute Reaching Definitions

\[d_1 \cdot d_2 \cdot d_3 \cdot d_4 \cdot d_5 \cdot d_6 \cdot d_7 \]

\[\text{gen=} \quad 0011111 \]
\[\text{kill=} \quad 1100000 \]

\[d_1 \]

\[d_2 \]

\[d_3 \]

\[\text{do} \]

\[d_4 \]

\[d_5 \]

\[\text{if} \]

\[e_1 \]

\[e_2 \]

\[d_6 \]

\[d_7 \]

\[\text{gen=} \]
\[\text{kill=} \]

\[d_1: i := m-1; \]
\[d_2: j := n; \]
\[d_3: a := u1; \]
\[\quad \text{do} \]
\[d_4: i := i+1; \]
\[d_5: j := j-1; \]
\[\quad \text{if} \; e_1 \; \text{then} \]
\[d_6: a := u2 \]
\[\quad \text{else} \]
\[d_7: i := u3 \]
\[\quad \text{while} \; e_2 \]
Reaching Definitions: Computing In/Out (non-iterative)

\[\begin{align*}
&d_1: i := m-1; \\
&d_2: j := n; \\
&d_3: a := u1; \\
&\text{do} \\
&d_4: i := i+1; \\
&d_5: j := j-1; \\
&\text{if } e1 \text{ then} \\
&d_6: a := u2 \\
&\text{else} \\
&d_7: i := u3 \\
&\text{while } e2
\end{align*}\]
Accuracy, Safeness, and Conservative Estimations

- **Conservative**: refers to making safe assumptions when insufficient information is available at compile time, i.e. the compiler has to guarantee not to change the meaning of the optimized code.
- **Safe**: refers to the fact that a superset of reaching definitions is safe (some may have been killed).
- **Accuracy**: more and better information enables more code optimizations.
Reaching Definitions are a Conservative (Safe) Estimation

Suppose this branch is never taken

Estimation:
- $gen[S] = gen[S_1] \cup gen[S_2]$
- $kill[S] = kill[S_1] \cap kill[S_2]$

Accurate:
- $gen'[S] = gen[S_1] \subseteq gen[S]$
- $kill'[S] = kill[S_1] \supseteq kill[S]$
Example: Dataflow analysis for Live Variables [backwards!]

• Each point in the program is associated with the set of variables that are *live* at that point, i.e. such that their value will be used later

• Semilattice:
 – Powerset of variables
 – Meet operator: union. Top element: empty set

• A variable is *live* at the beginning of a block if it is either used before definition in the block or is live at the end of the block and not redefined in the block.

• The *transfer function*: \(f_B(x) = \text{use}_B \cup (x - \text{def}_B) \)

• The confluence operator is union.
Data-Flow Analysis for Live Variables: an example

Solution:

\[\text{in}[B1] = \{m, n\} \cup (\{i, j\} - \{i, j\}) = \{m, n\} \]

\[\text{out}[B1] = \text{in}[B2] = \{i, j\} \]

\[\text{in}[B2] = \{j\} \cup (\{i, j\} - \{j\}) = \{i, j\} \]

\[\text{out}[B2] = \text{in}[B3] = \{i, j\} \]
Live variables: Iterative solution

1) \(\text{IN(EXIT)} = \{ \} \);
2) for (each basic block B) \(\text{IN}[B] = \{ \} \)
3) while (changes to any IN occur)
4) for (each basic block B other than EXIT)
5) \(\text{OUT}[B] = U_{S \text{ a successor of } B} \text{IN}[S] \);
6) \(\text{IN}[B] = use_B U (\text{OUT}[B] - \text{def}_B) \)

}
Constant Propagation/Folding

• Unbounded set of values:
 – All constants for the relevant type
 – NAC: not-a-constant
 – UNDEF: no info about any value of the variable

• The semilattice:
Constant Propagation/Folding

• Transfer function for statements:
 1. Identity, if it is not an assignment
 2. If it is an assignment to x:
 1. $m'(v) = m(v)$ for $v \neq x$
 2. If the RHS is a constant c, $m'(x) = c$
 3. If the RHS is “$y \ op \ z$”,
 1. If $m(y)$ and $m(z)$ are constant, $m'(x) = m(y) \ op \ m(z)$
 2. If $m(y) = \text{NAC}$ or $m(z) = \text{NAC}$, then $m'(x) = \text{NAC}$
 3. $m'(x) = \text{UNDEF}$, otherwise
 4. If the RHS is anything else (e.g. function call) $m'(x) = \text{NAC}$
Constant Propagation/Folding

- Transfer functions are monotonic but not distributive

```
+---+     +---+  +---+
|   | →   |   |→ |
| B1|     | B2|   | B3|
+---+     +---+  +---+
|   |     |   |→ |
| x = 2 | x = 3 | y = 2 | y = 3 |
+---+     +---+  +---+
|     |     |   |→ |
| z = x + y |   |   |→ |
+---+     +---+  +---+
|     |     |     |→ |
|   |     |     | EXIT |
```

<table>
<thead>
<tr>
<th>m</th>
<th>m(x)</th>
<th>m(y)</th>
<th>m(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_0</td>
<td>UNDEF</td>
<td>UNDEF</td>
<td>UNDEF</td>
</tr>
<tr>
<td>f_1(m_0)</td>
<td>2</td>
<td>3</td>
<td>UNDEF</td>
</tr>
<tr>
<td>f_2(m_0)</td>
<td>3</td>
<td>2</td>
<td>UNDEF</td>
</tr>
<tr>
<td>f_1(m_0) ∧ f_2(m_0)</td>
<td>NAC</td>
<td>NAC</td>
<td>UNDEF</td>
</tr>
<tr>
<td>f_3(f_1(m_0) ∧ f_2(m_0))</td>
<td>NAC</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td>f_3(f_1(m_0))</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>f_3(f_2(m_0))</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>f_3(f_1(m_0)) ∧ f_3(f_2(m_0))</td>
<td>NAC</td>
<td>NAC</td>
<td>5</td>
</tr>
</tbody>
</table>

\[f_3(f_1(m_0) ∧ f_2(m_0)) < f_3(f_1(m_0)) ∧ f_3(f_2(m_0)) \]
Figure 9.30: Examples of (a) global common subexpression, (b) loop-invariant code motion, (c) partial-redundancy elimination.
On Partial-Redundancy Elimination

• Four step “Lazy Code Motion” algorithm
 – Find blocks where evaluation of an expression can be anticipated (backwards)
 – Check availability of expressions along all paths leading to a block needing it (forwards)
 – Postpone the expression as much as possible (forwards)
 – Eliminate assignments to temporaries that are used only once (backwards)
Determining Loops in Flow Graphs

• In absence of loops data-flow analysis converges in one pass, if performed according to topological order
• Study of loops needed also to evaluate convergence speed
• For some values semi-lattices, loops do not modify values, so they can be ignored
• For others, several iterations in loops are needed: eg, constant folding

L: x = y;
 y = z;
 z = 1;
 goto L
Determining Loops in Flow Graphs: Dominators

• Dominators: $d \text{ dom } n$
 – Node d of a CFG dominates node n if every path from the initial node of the CFG to n goes through d
 – The loop entry dominates all nodes in the loop

• The immediate dominator m of a node n is the last dominator on the path from the initial node to n
 – If $d \neq n$ and $d \text{ dom } n$ then $d \text{ dom } m$
Dominator Trees

CFG

Dominator tree
Data-Flow analysis for Dominators

• Computes $D(n)$, set of dominators for each node n (forwards)
• Semilattice: powerset of CFG nodes
• Transfer function: $f_B(x) = x \cup \{B\}$
• Meet operator: intersection
• Boundary: $\text{OUT}[\text{ENTRY}] = \{\text{ENTRY}\}$
• Initialization: $\text{OUT}[B] = \text{NODES}$
Natural Loops

• A back edge is an edge $a \rightarrow b$ whose head b dominates its tail a

• Given a back edge $n \rightarrow d$
 – The natural loop consists of d plus the nodes that can reach n without going through d
 – The loop header is node d

• In other words
 – A natural loop must have a single-entry node d
 – There must be a back edge that enters node d
Natural Inner/Outer Loops

- Unless two loops have the same header, they are disjoint or one is nested within the other.
- A nested loop is an *inner loop* if it contains no other loops.
- A loop is an *outer loop* if it is not contained within another loop.
Natural Inner Loops Example

CFG

Dominator tree

Natural loop for 3 \textit{dom} 4
Natural loop for 4 \textit{dom} 7
Natural loop for 7 \textit{dom} 10
Natural Outer Loops Example

Natural loop for 1 \textit{dom} 9

Natural loop for 3 \textit{dom} 8

CFG

Dominator tree
Pre-Headers

- To facilitate loop transformations, a compiler often adds a *preheader* to a loop
- Code motion (of loop invariant code), strength reduction, and other loop transformations populate the preheader
Reducible Flow Graphs

- *Reducible graph* = disjoint partition in forward and back edges such that the forward edges form an acyclic (sub)graph

Example of a reducible CFG

Example of a nonreducible CFG
(not a natural loop: no back edge to dominator 1)
Speed of convergence of data-flow analysis

• Maximum number of iterations: (height of the lattice) x (number of nodes)

• If value of interest can be propagated along acyclic path (reaching definitions, available expressions, live variables), few passes are sufficient in general, depending on the depth of the graph (~ number of loop nesting).