Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-15/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 30 — Java 8

e Lambdas and streams in Java 8

Java 8: language extensions

Java 8 is the biggest change to Java since the
inception of the language. Main new features:
 Lambda expressions

— Method references

— Default methods in interfaces

— Improved type inference

e Stream API

A big challenge was to introduce lambdas without
requiring recompilation of existing binaries

Benefits of Lambdas in Java 8

* Enabling functional programming

— Being able to pass behaviors as well as data to
functions

— Introduction of lazy evaluation with stream
processing

* Writing cleaner and more compact code
* Facilitating parallel programming

* Developing more generic, flexible and
reusable APlIs

Lambda expression syntax:
Print a list of integers with a lambda

List<Integer> intSeq = Arrays.aslList(1,2,3);

intSeq.forEach(x -> System.out.println(x)) ;

* X -> System.out.println (x)

is a lambda expression that defines an anonymous function (method)
with one parameter named x of type Integer

// equivalent syntax
intSeq. forEach ((Integer x) -> System.out.println(x)) ;

intSeq. forEach(x -> {System.out.println(x);})

intSeq. forEach (System.out: :println); //method reference

* Type of parameter inferred by the compiler if missing

Multiline lambda, local variables,
variable capture, no new scope

List<Integer> intSeq = Arrays.aslist(1,2,3);
// multiline: curly brackets necessary
intSeq. forEach(x -> {
X += 2;
System.out.println (x) ;
}) s
// local wvariable declaration
intSeq. forEach(x -> {
int y = x + 2;
System.out.println(y) ;
}) ;
// variable capture
[final] int y = 2; // must be [effectively] final
intSeq. forEach (x -> {
System.out.println(x + y);
}) s
// no new scope!!!
int x = 0;
intSeq. forEach(x -> { //error: x already defined
System.out.println(x + 2);

});

Implementation of Java 8 Lambdas

* The Java 8 compiler first converts a lambda expression
into a function

* |t then calls the generated function

* For example, x -> System.out.println(x) could
be converted into a generated static function
public static void genName (Integer x) {

System.out.println(x) ;
}

e But what type should be generated for this function?
How should it be called? What class should it go in?

Functional Interfaces

* Design decision: Java 8 lambdas are instances of
functional interfaces.

* A functional interface is a Java interface with exactly
one abstract method. E.g.,

public interface Comparator<T> { //java.util
int compare(T ol, T o2);

}

public interface Runnable { //java.lang
void run() ;

}

public interface Callable<V> {//java.util.concurrent
V call() throws Exception;

}

Functional interfaces and lambdas

Functional Interfaces can be used as target type of lambda
expressions, i.e.

— As type of variable to which the lambda is assigned
— As type of formal parameter to which the lambda is passed
The compiler uses type inference based on target type

Arguments and result types of the lambda must match
those of the unique abstract method of the functional
interface

Lambdas can be interpreted as instances of anonymous
inner classes implementing the functional interface

The lambda is invoked by calling the only abstract method
of the functional interface

An example: From inner classes...

public class Calculatorl { // Pre Java 8

interface IntegerMath { // (inner) functional interface
int operation(int a, int b);
}

public int operateBinary(int a, int b,
return op.operation(a, b);

} // parameter type is functional interface
// inner class implementing the interface
static class IntMath$Add implements IntegerMath{
public int operation(int a, int b) {
return a + b;

IntegerMath op) {

b}

public static void main(String... args) {

Calculatorl myApp = new Calculatorl() ;
System.out.println("40 + 2 = " +

myApp .operateBinary (40, 2, new IntMath$Add()));
// anonymous inner class implementing the interface

IntegerMath subtraction = new IntegerMath () {
public int operation(int a, int b) {
return a - b;
}s
};
System.out.println("20 - 10 = " +

myApp .operateBinary (20, 10, subtraction)) ;

b}

... to lambda expressions

public class Calculator {

interface IntegerMath { // (inner) functional interface
int operation(int a, int b);

}

public int operateBinary(int a, int b, IntegerMath op) {
return op.operation(a, b);
} // parameter type is functional interface

public static void main(String... args) {
Calculator myApp = new Calculator();

// lambda assigned to functional interface variables
IntegerMath addition = (a, b) -> a + b;
System.out.println("40 + 2 = " +

myApp .operateBinary (40, 2, addition));

// lambda passed to functional interface formal parameter
System.out.println("20 - 10 = " +

myApp .operateBinary (20, 10, (a, b) -> a - b)) ;

10

Other examples of lambdas: Runnable

public class ThreadTest {// using functional interface Runnable
public static void main(String[] args) {
Runnable rl = new Runnable() { // anonymous inner class
@QOverride
public void run() {
System.out.println ("0ld Java Way") ;
}
};

Runnable r2 = () -> { System.out.println("New Java Way"); };

new Thread(rl) .start () ;
new Thread(r2) .start();

}

// constructor of class Thread

public Thread (Runnable target)

Other examples of lambdas: Listener

JButton button = new JButton("Click Me!");

// pre Java 8
button.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent evt) ({
System.out.println ("Handled by anonymous class listener") ;

}
})

// Java 8
button.addActionListener (
e -> System.out.println("Handled by Lambda listener")) ;

12

public interface Consumer<T> ({

}

public interface Supplier<T> ({

}

public interface Predicate<T> {

}

public interface Function <T,R> {

}

New Functional Interfaces in
package java.util.function

void accept (T t);

T get();

boolean test (T t);

R apply (T t);

//java.

//java.

//java.

//java.

util. function

util. function

util. function

util. function

13

Other examples of lambdas

List<Integer> intSeq = new ArrayList<>(Arrays.aslList(1,2,3));

// sort list in descending order using Comparator<Integer>
intSeq.sort((x,z) -> z - xX); // lambda with two arguments
intSeq. forEach (System.out: :println) ;

// remove odd numbers using a Predicate<Integer>
intSeq.removelIf (x -> x%2 == 1),
intSeq. forEach (System.out: :println); // prints only ‘2’

// default method of Interface List<E>

default void sort (Comparator<? super E> c)

// default method of Interface Collection<E>

default boolean removeIf (Predicate<? super E> filter)
// default method of Interface Iterable<T>

default void forEach (Consumer<? super T> action)

14

Default Methods

Adding new abstract methods to an interface breaks
existing implementations of the interface

Java 8 allows interface to include
e Abstract (instance) methods, as usual
e Static methods

* Default methods, defined in terms of other possibly
abstract methods

Java 8 uses lambda expressions and default methods in
conjunction with the Java collections framework to achieve

backward compatibility with existing published interfaces

Method References

 Method references can be used to pass an existing
function in places where a lambda is expected

 The signature of the referenced method needs to
match the signature of the functional interface method

Method Reference Syntax
Type

static ClassName::StaticMethodName String::valueOf
constructor ClassName::new ArrayList::new
specific object objectReference::MethodName x::toString
instance

arbitrary object of a ClassName::InstanceMethodName Object::toString
given type

16

Streams in Java 8

The new java.util.stream package provides utilities
to support functional-style operations on streams
of values. Streams differ from collections in several
ways:

* No storage. A stream is not a data structure that
stores elements; instead, it conveys elements
from a source (a data structure, an array, a
generator function, an I/O channel,...) through a
pipeline of computational operations.

* Functional in nature. An operation on a stream
produces a result, but does not modify its source.

Streams in Java 8 (cont’d)

Laziness-seeking. Many stream operations, such as filtering,
mapping, or duplicate removal, can be implemented lazily,
exposing opportunities for optimization. Stream operations are
divided into intermediate (stream-producing) operations and
terminal (value- or side-effect-producing) operations. Intermediate
operations are always lazy.

Possibly unbounded. While collections have a finite size, streams
need not. Short-circuiting operations such as limit(n) or findFirst()
can allow computations on infinite streams to complete in finite
time.

Consumable. The elements of a stream are only visited once during
the life of a stream. Like an Iterator, a new stream must be
generated to revisit the same elements of the source.

Pipelines

* Atypical pipeline contains
— A source, producing (by need) the elements of the stream
— Zero or more intermediate operations, producing streams
— A terminal operation, producing side-effects or non-stream
values

* Example of typical pattern: filter / map / reduce

double average = listing // collection of Person
.stream() // stream wrapper over a collection

.filter(p -> p.getGender () == Person.Sex.MALE) // filter

.mapToInt (Person: :getAge) // extracts stream of ages
.average () // computes average (reduce/fold)

.getAsDouble() ; // extracts result from OptionalDouble

19

Anatomy of the Stream Pipeline

A Stream is processed through a pipeline of operations
A Stream starts with a source

Intermediate methods are performed on the Stream
elements. These methods produce Streams and are not
processed until the terminal method is called.

The Stream is considered consumed when a terminal
operation is invoked. No other operation can be performed
on the Stream elements afterwards

A Stream pipeline contains some short-circuit methods (which
could be intermediate or terminal methods) that cause the
earlier intermediate methods to be processed only until the
short-circuit method can be evaluated.

Stream sources

Streams can be obtained in a number of ways. Some examples
include:

From a Collection via the stream() and parallelStream() methods;
From an array via Arrays.stream(Object[]);

From static factory methods on the stream classes, such as
Stream.of(Object[]), IntStream.range(int, int) or
Stream.iterate(Object, UnaryOperator);

The lines of a file can be obtained from BufferedReader.lines();
Streams of file paths can be obtained from methods in Files;
Streams of random numbers can be obtained from Random.ints();
Numerous other stream-bearing methods in the JDK...

21

Intermediate Operations

* Anintermediate operation keeps a stream open for further operations.
Intermediate operations are lazy.

e Several intermediate operations have arguments of functional interfaces,
thus lambdas can be used

Stream<T> filter (Predicate<? super T> predicate) // filter

IntStream mapToInt (ToIntFunction<? super T> mapper) // map £:T -> int
<R> Stream<R> map (Function<? super T,? extends R> mapper) // map f:T->R
Stream<T> peek (Consumer<? super T> action) //performs action on elements
Stream<T> distinct() // remove duplicates - stateful

Stream<T> sorted() // sort elements of the stream - stateful

Stream<T> limit (long maxSize) // truncate

Stream<T> skip(long n) // skips first n elements

Terminal Operations

* A terminal operation must be the final operation on a stream.
Once a terminal operation is invoked, the stream is consumed and
is no longer usable.

* Typical: collect values in a data structure, reduce to a value, print or
other side effects.

void forEach (Consumer<? super T> action)

Object[] toArray ()

T reduce (T identity, BinaryOperator<T> accumulator) // fold
Optional<T> reduce (BinaryOperator<T> accumulator) // fold
Optional<T> min (Comparator<? super T> comparator)

boolean allMatch (Predicate<? super T> predicate) // short-circuiting
boolean anyMatch (Predicate<? super T> predicate) // short-circuiting

Optional<T> findAny() // short-circuiting

Infinite Streams
* Streams wrapping collections are finite
* |nfinite streams can be generated wit:

— iterate
— generate

static <T> Stream<T> iterate (T seed, UnaryOperator<T> f)

// Example: summing first 10 elements of an infinite stream
int sum = Stream.iterate(0,x -> x+1) .1limit (10) .reduce (0, (x,s) -> x+s);

static <T> Stream<T> generate (Supplier<T> s)

// Example: printing 10 random mumbers
Stream.generate (Math: :random) .1imit (10) . forEach (System.out: :println) ;

<R> Stream<R> flatMap (Function<? super T,? extends Stream<? extends R>>
mapper)

Parallelism & Streams from Collections

e Streams facilitate parallel execution

e Stream operations can execute either in serial
(default) or in parallel

* A stream wrapping a collection uses a
Splititerator over the collection

* Does not provide methods for returning
elements but

— For applying an action to the next or to all remaining
elements

— For splitting: If parallel, the split() method creates a
new Splititerator and partitions the stream

Critical issues

e Non-interference

— Behavioural parameters (like lambdas) of stream
operations should not affect the source (non-interfering
behaviour)

— Risk of ConcurrentModificationExceptions, even if in single
thread

e Stateless behaviours

— Statless behaviour for intermediate operations is
encouraged, as it facilitates parallelism, and functional
style, thus maintenance

e Parallelism and thread safety

— For parallel streams, ensuring thread safety is the
programmers’ responsibility

Monads in Java: Optional and Stream

public static <T> Optional<T> of (T wvalue)
// Returns an Optional with the specified present non-null value.

<U> Optional<U> flatMap (Function<? super T,Optional<U>> mapper)
/* If a value is present, apply the provided Optional-bearing mapping

function to it, return that result, otherwise return an empty
Optional. */

static <T> Stream<T> of (T t)
// Returns a sequential Stream containing a single element.

<R> Stream<R> flatMap (
Function<? super T,? extends Stream<? extends R>> mapper)
/* Returns a stream consisting of the results of replacing each element

of this stream with the contents of a mapped stream produced by applying
the provided mapping function to each element. */

27

References

The Java Tutorials, http://docs.oracle.com/javase/tutorial/
java/index.html

Lambda Expressions, http://docs.oracle.com/javase/tutorial/
java/javaOO/lambdaexpressions.html

Adib Saikali, Java 8 Lambda Expressions and Streams,
https://www.youtube.com/watch?v=8pDm_kH4YKY

Brian Goetz, Lambdas in Java: A peek under the hood.
https://www.youtube.com/watch?v=MLksirK9nnE

