Lesson 29

• Type inference in ML / Haskell
Type Checking vs Type Inference

• Standard type checking:

```c
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };
```

– Examine body of each function
– Use declared types to check agreement

• Type inference:

```c
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };
```

– Examine code without type information. Infer the most general types that could have been declared.

ML and Haskell are designed to make type inference feasible.
Why study type inference?

• Types and type checking
 – Improved steadily since Algol 60
 • Eliminated sources of unsoundness.
 • Become substantially more expressive.
 – Important for modularity, reliability and compilation

• Type inference
 – Reduces syntactic overhead of expressive types.
 – Guaranteed to produce most general type.
 – Widely regarded as important language innovation.
 – Illustrative example of a flow-insensitive static analysis algorithm.
History

• Original type inference algorithm
 – Invented by Haskell Curry and Robert Feys for the simply typed lambda calculus in 1958

• In 1969, Hindley
 – extended the algorithm to a richer language and proved it always produced the most general type

• In 1978, Milner
 – independently developed equivalent algorithm, called algorithm W, during his work designing ML.

• In 1982, Damas proved the algorithm was complete.
 – Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#, Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6, C++0x,...
uHaskell

• Subset of Haskell to explain type inference.
 – Haskell and ML both have overloading
 – Will do not consider overloading now

<decl> ::= <name> <pat> = <exp>
<pat> ::= Id | (<pat>, <pat>) | <pat> : <pat> | []
<exp> ::= Int | Bool | [] | Id | (<exp>)
 | <exp> <op> <exp>
 | <exp> <exp> | (<exp>, <exp>)
 | if <exp> then <exp> else <exp>
Type Inference: Basic Idea

• Example

\[f \ x = 2 + x \]
\[\Rightarrow f :: \text{Int} \to \text{Int} \]

• What is the type of \(f \)?

+ has type: \(\text{Int} \to \text{Int} \to \text{Int} \)

(with overloading would be \(\text{Num} \ a \Rightarrow a \to a \to a \))

2 has type: \(\text{Int} \)

Since we are applying + to \(x \) we need \(x :: \text{Int} \)

Therefore \(f \ x = 2 + x \) has type \(\text{Int} 	o \text{Int} \)
Step 1: Parse Program

- Parse program text to construct parse tree.

\[f(x) = 2 + x \]

- Binary `@-nodes` to represent application
- Ternary `Fun`-node for function definitions
- Infix operators are converted to Curried function application during parsing: \[2 + x \rightarrow (+) 2 x \]
Step 2: Assign type variables to nodes

Variables are given same type as binding occurrence.

\[f(x) = 2 + x \]
Constraints from Application Nodes

- **Function application (apply \(f \) to \(x \))**
 - Type of \(f \) (\(t_0 \) in figure) must be domain \(\rightarrow \) range.
 - Domain of \(f \) must be type of argument \(x \) (\(t_1 \) in fig)
 - Range of \(f \) must be result of application (\(t_2 \) in fig)
 - Constraint: \(t_0 = t_1 \rightarrow t_2 \)
Constraints from Abstractions

• Function declaration:
 – Type of f (t_0 in figure) must domain \rightarrow range
 – Domain is type of abstracted variable x (t_1 in fig)
 – Range is type of function body e (t_2 in fig)
 – Constraint: $t_0 = t_1 \rightarrow t_2$
Step 3: Add Constraints

\[f \cdot x = 2 + x \]

\[
\begin{align*}
t_0 &= t_1 \rightarrow t_6 \\
t_4 &= t_1 \rightarrow t_6 \\
t_2 &= t_3 \rightarrow t_4 \\
t_2 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
t_3 &= \text{Int}
\end{align*}
\]
Step 4: Solve Constraints

\[
\begin{align*}
 t_0 &= t_1 \rightarrow t_6 \\
 t_4 &= t_1 \rightarrow t_6 \\
 t_2 &= t_3 \rightarrow t_4 \\
 t_2 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
 t_3 &= \text{Int} \\
 t_3 \rightarrow t_4 &= \text{Int} \rightarrow (\text{Int} \rightarrow \text{Int}) \\
 t_0 &= t_1 \rightarrow t_6 \\
 t_4 &= t_1 \rightarrow t_6 \\
 t_4 &= \text{Int} \rightarrow \text{Int} \\
 t_2 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
 t_3 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
 t_3 &= \text{Int} \\
 t_1 \rightarrow t_6 &= \text{Int} \rightarrow \text{Int} \\
 t_1 &= \text{Int} \\
 t_6 &= \text{Int} \\
 t_4 &= \text{Int} \rightarrow \text{Int} \\
 t_2 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
 t_3 &= \text{Int} \rightarrow \text{Int} \\
 t_3 &= \text{Int} \rightarrow \text{Int} \\
\end{align*}
\]
Step 5: Determine type of declaration

\[f \cdot x = 2 + x \]

\[f :: \text{Int} \rightarrow \text{Int} \]

\[
\begin{align*}
t_0 &= \text{Int} \rightarrow \text{Int} \\
t_1 &= \text{Int} \\
t_6 &= \text{Int} \\
t_4 &= \text{Int} \rightarrow \text{Int} \\
t_2 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
t_3 &= \text{Int}
\end{align*}
\]
Type Inference Algorithm

• Parse program to build parse tree
• Assign type variables to nodes in tree
• Generate constraints:
 – From environment: constants (2), built-in operators (+), known functions (tail).
 – From form of parse tree: e.g., application and abstraction nodes.
• Solve constraints using unification
• Determine types of top-level declarations
Inferring Polymorphic Types

- Example:
 \[f \circ g = g \circ 2 \]
 \[> f :: (\text{Int} \rightarrow t_4) \rightarrow t_4 \]

- Step 1:
 Build Parse Tree
Inferring Polymorphic Types

- Example:

\[f \circ g = g \, 2 \]
\[> f :: (\text{Int} \to t_4) \to t_4 \]

- Step 2:
 Assign type variables
Inferring Polymorphic Types

• Example:

\[f \circ g = g \circ 2 \]
\[> f :: (\text{Int} \to t_4) \to t_4 \]

• Step 3:
Generate constraints

\[
\begin{align*}
t_0 &= t_1 \to t_4 \\
t_1 &= t_3 \to t_4 \\
t_3 &= \text{Int}
\end{align*}
\]
Inferring Polymorphic Types

• Example:

\[
\begin{align*}
 f \ast g &= g \ 2 \\
 > f &:: (\text{Int} \rightarrow t_4) \rightarrow t_4 \\
\end{align*}
\]

• Step 4:

Solve constraints

- \(t_0 = t_1 \rightarrow t_4 \)
- \(t_1 = t_3 \rightarrow t_4 \)
- \(t_3 = \text{Int} \)

\[
\begin{align*}
 t_0 &= (\text{Int} \rightarrow t_4) \rightarrow t_4 \\
 t_1 &= \text{Int} \rightarrow t_4 \\
 t_3 &= \text{Int} \\
\end{align*}
\]
Inferring Polymorphic Types

- Example:

\[f \circ g = g \circ 2 \]
\[> f :: (\text{Int} \rightarrow t_4) \rightarrow t_4 \]

- Step 5:
Determine type of top-level declaration

Unconstrained type variables become polymorphic types.

\[
\begin{align*}
 t_0 &= (\text{Int} \rightarrow t_4) \rightarrow t_4 \\
 t_1 &= \text{Int} \rightarrow t_4 \\
 t_3 &= \text{Int}
\end{align*}
\]
Using Polymorphic Functions

• Function:

\[
\begin{align*}
\text{add } x &= 2 + x \\
\text{isEven } x &= \text{mod } (x, 2) == 0 \\
\end{align*}
\]

\[
\begin{align*}
> \text{add} &: \text{Int} \rightarrow \text{Int} \\
> \text{isEven} &: \text{Int} \rightarrow \text{Bool} \\
\end{align*}
\]

• Possible applications:

\[
\begin{align*}
\text{f } \text{add} \\
> 4 &: \text{Int} \\
\end{align*}
\]
Recognizing Type Errors

- Function:
 \[
 f \ g = g \ 2 \\
 > f :: (\text{Int} \rightarrow t_4) \rightarrow t_4
 \]

- Incorrect use
 \[
 \text{not } x = \text{if } x \text{ then True else False} \\
 > \text{not} :: \text{Bool} \rightarrow \text{Bool} \\
 f \ \text{not} \\
 > \text{Error: operator and operand don't agree} \\
 \text{operator domain: } \text{Int} \rightarrow a \\
 \text{operand: } \text{Bool} \rightarrow \text{Bool}
 \]

- Type error:
 cannot unify Bool → Bool and Int → t
Another Example

• Example:

\[f(g,x) = g(g \ x) \]

> \(f :: (t_8 \rightarrow t_8, t_8) \rightarrow t_8 \)

• Step 1:
 Build Parse Tree
Another Example

- Example:
 \[f (g, x) = g (g x) \]
 \[> f :: (t_8 \rightarrow t_8, \ t_8) \rightarrow t_8 \]

- Step 2:
Assign type variables
Another Example

• Example:
 \[f \circ (g, x) = g \circ (g \circ x) \]
 \[> f :: (t_8 \to t_8, t_8) \to t_8 \]

• Step 3:
 Generate constraints

\[
\begin{align*}
t_0 &= t_3 \to t_8 \\
t_3 &= (t_1, t_2) \\
t_1 &= t_7 \to t_8 \\
t_1 &= t_2 \to t_7
\end{align*}
\]
Another Example

• Example:

\[f \circ (g, x) = g \circ (g \circ x) \]

> \[f :: (t_8 \to t_8, t_8) \to t_8 \]

• Step 4:

Solve constraints

\[t_0 = t_3 \to t_8 \]
\[t_3 = (t_1, t_2) \]
\[t_1 = t_7 \to t_8 \]
\[t_1 = t_2 \to t_7 \]

\[t_0 = (t_8 \to t_8, t_8) \to t_8 \]
Another Example

• Example:

\[f \ (g, x) = g \ (g \ x) \]

\[> f :: (t_8 \to t_8, t_8) \to t_8 \]

• Step 5:
Determine type of \(f \)

\[t_0 = (t_8 \to t_8, t_8) \to t_8 \]

\[t_0 = t_3 \to t_8 \]

\[t_3 = (t_1, t_2) \]

\[t_1 = t_7 \to t_8 \]

\[t_1 = t_2 \to t_7 \]

26
Polymorphic Datatypes

• Functions may have multiple clauses

 \[
 \text{length } [] = 0 \\
 \text{length } (x: \text{rest}) = 1 + (\text{length } \text{rest})
 \]

• Type inference
 – Infer separate type for each clause
 – Combine by adding constraint that all clauses must have the same type
 – Recursive calls: function has same type as its definition
Type Inference with Datatypes

• Example:

  ```
  length (x:rest) = 1 + (length rest)
  ```

• Step 1: Build Parse Tree
Type Inference with Datatypes

- Example:

\[\text{length } (x:rest) = 1 + (\text{length } rest) \]

- Step 2: Assign type variables
Type Inference with Datatypes

• Example:

 \[
 \text{length} \ (x: \text{rest}) = 1 + (\text{length} \ \text{rest})
 \]

• Step 3: Generate constraints

- \(t_0 = t_3 \rightarrow t_{10} \)
- \(t_3 = t_2 \)
- \(t_3 = [t_1] \)
- \(t_6 = t_9 \rightarrow t_{10} \)
- \(t_4 = t_5 \rightarrow t_6 \)
- \(t_4 = \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \)
- \(t_5 = \text{Int} \)
- \(t_0 = t_2 \rightarrow t_9 \)
Type Inference with Datatypes

• Example:

 \[\text{length} \ (x: \text{rest}) = 1 + (\text{length} \ \text{rest}) \]

• Step 3: Solve Constraints

\[
\begin{align*}
 t_0 &= t_3 \rightarrow t_{10} \\
 t_3 &= t_2 \\
 t_3 &= [t_1] \\
 t_6 &= t_9 \rightarrow t_{10} \\
 t_4 &= t_5 \rightarrow t_6 \\
 t_4 &= \text{Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
 t_5 &= \text{Int} \\
 t_0 &= t_2 \rightarrow t_9
\end{align*}
\]

\[
\begin{align*}
 t_0 &= [t_1] \rightarrow \text{Int}
\end{align*}
\]
Multiple Clauses

• Function with multiple clauses

\[
\begin{align*}
\text{append} & \ (\ [], r) = r \\
\text{append} & \ (x:xs, r) = x : \text{append} (xs, r)
\end{align*}
\]

• Infer type of each clause
 – First clause:
 \[
 > \text{append} :: ([t_1], t_2) \rightarrow t_2
 \]
 – Second clause:
 \[
 > \text{append} :: ([t_3], t_4) \rightarrow [t_3]
 \]

• Combine by equating types of two clauses

\[
> \text{append} :: ([t_1], [t_1]) \rightarrow [t_1]
\]
Most General Type

- Type inference produces the *most general type*

 \[
 \text{map} \left(f, \left[\right] \right) = \left[\right]
 \]
 \[
 \text{map} \left(f, x : xs \right) = f \ x : \text{map} \left(f, xs \right)
 \]
 \[
 > \text{map} :: (t_1 \rightarrow t_2, \left[t_1 \right]) \rightarrow \left[t_2 \right]
 \]

- Functions may have many less general types

 \[
 > \text{map} :: (t_1 \rightarrow \text{Int}, \left[t_1 \right]) \rightarrow \left[\text{Int} \right]
 \]
 \[
 > \text{map} :: (\text{Bool} \rightarrow t_2, \left[\text{Bool} \right]) \rightarrow \left[t_2 \right]
 \]
 \[
 > \text{map} :: (\text{Char} \rightarrow \text{Int}, \left[\text{Char} \right]) \rightarrow \left[\text{Int} \right]
 \]

- Less general types are all instances of most general type, also called the *principal type*
Type Inference with overloading

• In presence of overloading (Type Classes), type inference infers a qualified type $Q \Rightarrow T$
 – T is a Hindley Milner type, inferred as usual
 – Q is set of type class predicates, called a constraint

• Consider the example function:

```example
example z xs =
  case xs of
    []     -> False
    (y:ys) -> y > z || (y==z && ys == [z])
```

 – Type T is $a \rightarrow [a] \rightarrow \text{Bool}$
 – Constraint Q is $\{ \text{Ord } a, \text{Eq } a, \text{Eq } [a] \}$

Ord a because $y > z$
Eq a because $y == z$
Eq $[a]$ because $ys == [z]$
Simplifying Type Constraints

• Constraint sets Q can be simplified:
 – Eliminate duplicates
 • \{\text{Eq a}, \text{Eq a}\} simplifies to \{\text{Eq a}\}
 – Use an \textit{instance declaration}
 • If we have instance Eq a => Eq [a],
 • then \{\text{Eq a}, \text{Eq [a]}\} simplifies to \{\text{Eq a}\}
 – Use a \textit{class declaration}
 • If we have class Eq a => Ord a where ...,
 • then \{\text{Ord a}, \text{Eq a}\} simplifies to \{\text{Ord a}\}

• Applying these rules,
 – \{\text{Ord a}, \text{Eq a}, \text{Eq[a]}\} simplifies to \{\text{Ord a}\}
Type Inference with overloading

• Putting it all together:

```haskell
example z xs =
  case xs of
    []     -> False
    (y:ys) -> y > z || (y==z && ys ==[z])
```

- $T = a \rightarrow [a] \rightarrow \text{Bool}$
- $Q = \{\text{Ord } a, \text{Eq } a, \text{Eq } [a]\}$
- Q simplifies to $\{\text{Ord } a\}$
- `example :: \{\text{Ord } a\} \Rightarrow a \rightarrow [a] \rightarrow \text{Bool}`
Complexity of Type Inference Algorithm

• When Hindley/Milner type inference algorithm was developed, its complexity was unknown

• In 1989, Kanellakis, Mairson, and Mitchell proved that the problem was exponential-time complete

• Usually linear in practice though...
 – Running time is exponential in the depth of polymorphic declarations