Lesson 6

• Towards Generation of Lexical Analyzers
 – Finite state automata (FSA)
 – From Regular Expressions to FSA
 – The Lex-Flex lexical analyzer generator
• We have seen that:
 – Tokens are defined with regular expressions
 – RE → Transition diagrams → code, by hand!!

• Example:

\[
id \rightarrow \text{letter \ (letter} \ |
\text{digit \)}^*\]

\[
\begin{align*}
\text{start} & \quad \rightarrow \quad 9 \quad \rightarrow \quad \text{letter} \quad \rightarrow \quad 10 \quad \rightarrow \quad \text{other} \quad \rightarrow \quad 11^* \quad \rightarrow \quad \text{return(gettoken(), install_id())}
\end{align*}
\]

...

case 9: c = nextchar();
 if (isletter(c)) state = 10;
 else state = fail();
 break;

case 10: c = nextchar();
 if (isletter(c)) state = 10;
 else if (isdigit(c)) state = 10;
 else state = 11;
 break;

...
Design of a Lexical Analyzer Generator

1. From the RE of each token build an NFA (non-deterministic finite automaton) that accepts the same regular language

2. Combine the NFAs into a single one

3. Either
 1. Simulate directly the NFA, or
 2. Determinize the NFA and simulate the resulting DFA (deterministic FA)

4. Solve conflicts
Non-deterministic Finite Automata

• An NFA is a 5-tuple \((S, \Sigma, \delta, s_0, F)\) where
 – \(S\) is a finite set of *states*
 – \(\Sigma\) is a finite set of symbols, the *alphabet*
 – \(\delta\) is a *mapping* from \(S \times (\Sigma \cup \{\varepsilon\})\) to a set of states
 \[
 \delta : S \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^S
 \]
 – \(s_0 \in S\) is the *start state*
 – \(F \subseteq S\) is the set of *accepting* (or *final*) *states*
Transition Graph

- An NFA can be diagrammatically represented by a labeled directed graph called a *transition graph*

\[S = \{0,1,2,3\} \]
\[\Sigma = \{a,b\} \]
\[s_0 = 0 \]
\[F = \{3\} \]
The mapping δ of an NFA can be represented in a transition table.

<table>
<thead>
<tr>
<th>State</th>
<th>Input a</th>
<th>Input b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${0, 1}$</td>
<td>${0}$</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>${2}$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>${3}$</td>
</tr>
</tbody>
</table>

$\delta(0, a) = \{0,1\}$
$\delta(0, b) = \{0\}$
$\delta(1, b) = \{2\}$
$\delta(2, b) = \{3\}$
The Language Defined by an NFA

• An NFA accepts an input string w (over Σ) if and only if there is at least one path with edges labeled with symbols from w in sequence from the start state to some accepting state in the transition graph.
• Note that ε-transitions do not contribute with symbols.
• A state transition from one state to another on the path is called a move.
• The language defined by an NFA A is the set of input strings it accepts, denoted $L(A)$.
Examples

• Which NFA, if any, accepts
 – aaabb ?
 – ababb ?
 – abb ?
 – abab ?

• Which are the languages accepted by A_1 and A_2?
From Regular Expression to NFA: Thompson’s Construction

• Given a RE, it builds by *structural induction* a NFA that:
 – Accepts exactly the language of the RE
 – Has a single accepting state
 – Has no transitions to the initial state
 – Has no transitions from the final state
Thompson’s Construction

\[r : \text{RE} \rightarrow N(r) : \text{NFA} \]

Complexity: linear in the size of the RE
An example:
RE → Syntax Tree → NFA

\((a \mid b)^*abb\)
Combining the NFAs of a Set of Regular Expressions

- \(a \) \{ action\(_1\) \}
- \(abb\) \{ action\(_2\) \}
- \(a^*b^+\) \{ action\(_3\) \}
Simulating the Combined NFA

- Given an input string w, we look for a prefix accepted by the NFA, i.e. that is the lexeme of a token
 - We start with the set of states reachable by $start$ with ε-transitions
 - For each symbol we collect all states to which we can move from the current states
- Complexity: linear in $(\text{length of } w) \times (\text{number of states})$, using efficient representation of set of states
- Conflicts: several prefixes of w can be legal lexemes
Simulating the Combined NFA

Example 1

Must find the *longest match*: Continue until no further moves are possible
When last state is accepting: execute action,*Conflict resolution*
Simulating the Combined NFA

Example 2

Lex: When two or more accepting states are reached, the first action given in the specification is executed.
Design of a Lexical Analyzer Generator: RE to NFA to DFA

Specification with regular expressions

\[p_1 \{ action_1 \} \]
\[p_2 \{ action_2 \} \]
\[\ldots \]
\[p_n \{ action_n \} \]

• Simulating the DFA is more efficient, but
• The size of the DFA could be exponential w.r.t. the NFA

Subset construction
Deterministic Finite Automata

• A deterministic finite automaton is a special case of an NFA
 – No state has an ε-transition
 – For each state s and input symbol a there is at most one edge labeled a leaving s

• Each entry in the transition table is a single state
 – At most one path exists to accept a string
 – Simulation algorithm is simple

• Alternative definition:
 – For each state s and input symbol a there is exactly one edge labeled a leaving s
 – Easily shown to be equivalent (sink state...)

Example DFA

A DFA that accepts the same language of A_2, $(a \mid b)^*abb$
Conversion of an NFA into a DFA

• The *subset construction algorithm* converts an NFA into a DFA using:
 – ε-closure(s) = \{s\} \cup \{t \mid s \xrightarrow{\varepsilon} \ldots \xrightarrow{\varepsilon} t\}
 – ε-closure(T) = $\bigcup_{s \in T} \varepsilon$-closure($s$)
 – move(T, a) = \{t \mid s \xrightarrow{a} t \text{ and } s \in T\}

• The algorithm produces:
 – $Dstates$ is the set of states of the new DFA consisting of sets of states of the NFA
 – $Dtran$ is the transition table of the new DFA
\(\varepsilon\text{-closure} \) and move Examples

\[
\varepsilon\text{-closure}(\{0\}) = \{0,1,3,7\}
\]
\[
\text{move}(\{0,1,3,7\}, a) = \{2,4,7\}
\]
\[
\varepsilon\text{-closure}(\{2,4,7\}) = \{2,4,7\}
\]
\[
\text{move}(\{2,4,7\}, a) = \{7\}
\]
\[
\varepsilon\text{-closure}(\{7\}) = \{7\}
\]
\[
\text{move}(\{7\}, b) = \{8\}
\]
\[
\varepsilon\text{-closure}(\{8\}) = \{8\}
\]
\[
\text{move}(\{8\}, a) = \emptyset
\]

Also used to simulate NFAs (!)
Simulating an NFA using \(\varepsilon\text{-closure} \) and move

\[
S := \varepsilon\text{-closure}({s_0}) \\
S_{\text{prev}} := \emptyset \\
a := \text{nextchar}() \\
\textbf{while } S \neq \emptyset \textbf{ do} \\
\hspace{1em} S_{\text{prev}} := S \\
\hspace{1em} S := \varepsilon\text{-closure}(\text{move}(S,a)) \\
\hspace{1em} a := \text{nextchar}() \\
\textbf{end do} \\
\textbf{if } S_{\text{prev}} \cap F \neq \emptyset \textbf{ then} \\
\hspace{1em} \text{execute action in } S_{\text{prev}} \\
\hspace{1em} \text{return “yes”} \\
\textbf{else} \\
\hspace{1em} \text{return “no”}
The Subset Construction Algorithm: from a NFA to an equivalent DFA

- Initially, ε-closure(s_0) is the only state in $Dstates$ and it is unmarked

while there is an unmarked state T in $Dstates$ do
 mark T
 for each input symbol $a \in \Sigma$ do
 $U := \varepsilon$-closure($\text{move}(T, a)$)
 if U is not in $Dstates$ then
 add U as an unmarked state to $Dstates$
 end if
 $Dtran[T, a] := U$
 end do
end do
Subset Construction Example 1

\[A = \{0,1,2,4,7\} \]
\[B = \{1,2,3,4,6,7,8\} \]
\[C = \{1,2,4,5,6,7\} \]
\[D = \{1,2,4,5,6,7,9\} \]
\[E = \{1,2,4,5,6,7,10\} \]
Subset Construction Example 2

\[\begin{align*}
D_{\text{states}} & = \{A, B, C, D, E, F\} \\
A & = \{0, 1, 3, 7\} \\
B & = \{2, 4, 7\} \\
C & = \{8\} \\
D & = \{7\} \\
E & = \{5, 8\} \\
F & = \{6, 8\}\end{align*} \]
Minimizing the Number of States of a DFA

• Given a DFA, let us show how to get a DFA which accepts the same regular language with a minimal number of states
On the Minimization Algorithm

• Two states q and q' in a DFA $M = (Q, \Sigma, \delta, q_0, F)$ are equivalent (or indistinguishable) if for all strings $w \in \Sigma^*$, the states on which w ends on when read from q and q' are both accept, or both non-accept.

• An automaton is irreducible if
 – it contains no useless (unreachable) states, and
 – no two distinct states are equivalent

• The Minimization Algorithm creates an irreducible automaton accepting the same language

• Partition-refinement: starts with partition of states \{Accepting, Non-accepting\} and refines it till done
Minimization Algorithm
(Partition Refinement) Code

\textbf{DFA minimize}(\texttt{DFA (Q, }\Sigma, d, q_0, F))

remove any state q unreachable from q_0

Partition \texttt{P} = \{F, Q - F\}

\begin{verbatim}
boolean Consistent = false
while (Consistent == false) Consistent = true
 for(every Set S }\in\texttt{P}, char a }\in\Sigma, Set T }\in\texttt{P})
 // collect states of T that reach S using a
 Set temp = \{q }\in\texttt{T} | d(q,a) }\in\texttt{S} \}
 if (temp != }\emptyset \text{ && temp != T)
 Consistent = false
 P = (P\setminus\{T\})\cup\{temp, T-temp}\}
return \texttt{defineMinimizer}((Q, }\Sigma, d, q_0, F), P)
\end{verbatim}
Minimization Algorithm.
(Partition Refinement) Code

DFA defineMinimizor (DFA \((Q, \Sigma, \delta, q_0, F) \), Partition \(P \))

- Set \(Q' = P \)
- State \(q'_0 \) = the set in \(P \) which contains \(q_0 \)
- \(F' = \{ S \in P \mid S \subseteq F \} \)
- for (each \(S \in P, a \in \Sigma \))

 define \(\delta'(S,a) \) = the set \(T \in P \) which contains the states \(\delta(s,a) \) for each \(s \in S \)
- return \((Q', \Sigma, \delta', q'_0, F')\)
Minimization Algorithm: Example

- $P_1 = \{\{A, B, C, D\}, \{E\}\}$
 - $\{A, B, C, D\}, b$ not consistent
- $P_2 = \{\{A, B, C\}, \{D\}, \{E\}\}$
 - $\{A, B, C\}, b$ not consistent
- $P_3 = \{\{A, C\}, \{B\}, \{D\}, \{E\}\}$
 - Consistent!
Is the constructed automaton minimal?

• The previous algorithm guaranteed to produce an *irreducible* DFA. Why should that FA be the *smallest possible* FA for its accepted language?

• THM (Myhill-Nerode): *The minimization algorithm produces the smallest possible automaton for its accepted language.*
Proof of Myhill-Nerode theorem

Proof. Show that any irreducible automaton is the smallest for its accepted language L:

• Two strings $u, v \in \Sigma^*$ are **indistinguishable** if for all strings w, $uw \in L \iff vw \in L$.

• Thus if u and v are **distinguishable**, their paths from the start state must have different endpoints.

• Therefore the number of states in any DFA for L must be larger than or equal to the number of mutually distinguishable strings for L.

• But in an **irreducible** DFA every state gives rise to another mutually distinguishable string!

• Therefore, any other DFA for the same language must have at least as many states as the irreducible DFA
The Lex and Flex Scanner Generators

• *Lex* and its newer cousin *flex* are *scanner generators*

• Scanner generators systematically translate regular definitions into C source code for efficient scanning

• Generated code is easy to integrate in C applications
Creating a Lexical Analyzer with Lex and Flex

lex source program lex.l → lex (or flex) → lex.yy.c

lex.yy.c → C compiler → a.out

input stream → a.out → sequence of tokens
Lex Specification

• A lex specification consists of three parts:
 regular definitions, C declarations in \%

translation rules
%%
user-defined auxiliary procedures

• The translation rules are of the form:
 \[p_1 \{ \text{action}_1 \} \]
 \[p_2 \{ \text{action}_2 \} \]
 \[\ldots \]
 \[p_n \{ \text{action}_n \} \]
Regular Expressions in Lex

- `x` match the character `x`
- \ . match the character .
- "string" match contents of string of characters
- . match any character except newline
- ^ match beginning of a line
- $ match the end of a line
- `[xyz]` match one character `x`, `y`, or `z` (use \ to escape -)
- `[^xyz]` match any character except `x`, `y`, and `z`
- `[a-z]` match one of `a` to `z`
- `r*` closure (match zero or more occurrences)
- `r+` positive closure (match one or more occurrences)
- `r?` optional (match zero or one occurrence)
- `r1r2` match `r1` then `r2` (concatenation)
- `r1|r2` match `r1` or `r2` (union)
- `(r)` grouping
- `r1\r2` match `r1` when followed by `r2`
- `{d}` match the regular expression defined by `d`
Example Lex Specification 1

Translation rules

```c
{%
#include <stdio.h>
%
%%
[0-9]+ { printf("%s\n", yytext); } .|\n { } 
%%
main()
{ yylex(); }
}
```

Contains the matching lexeme

Invokes the lexical analyzer

`lex spec.l`
`gcc lex.yy.c -ll`
`./a.out < spec.l`
Example Lex Specification 2

```c
#include <stdio.h>
int ch = 0, wd = 0, nl = 0;
%
delim [ \t]+
%
\n { ch++; wd++; nl++; }
^{delim} { ch+=yyleng; }
{delim} { ch+=yyleng; wd++; }
. { ch++; }
%
main()
{ yylex();
   printf("%8d%8d%8d\n", nl, wd, ch);
}
```
Example Lex Specification 3

```c
#include <stdio.h>

\%
\%
digit     [0-9]
letter    [A-Za-z]
id        {letter}({letter}|{digit})*
\%
{digit}+  { printf("number: %s\n", yytext); }
{id}      { printf("ident: %s\n", yytext); }
.         { printf("other: %s\n", yytext); }
\%
main()
{ yylex(); }
```

Translation rules

Regular definitions
Example Lex Specification 4

```c
%%
/* definitions of manifest constants */
#define LT (256)
...
%

delim [ \t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?
%
{ws} { }
if {return IF;}
then {return THEN;}
else {return ELSE;}
{id} {yylval = install_id(); return ID;}
{number} {yylval = install_num(); return NUMBER;}
"<" {yylval = LT; return RELOP;}
"<=" {yylval = LE; return RELOP;}
"=" {yylval = EQ; return RELOP;}
"<>" {yylval = NE; return RELOP;}
">" {yylval = GT; return RELOP;}
">=" {yylval = GE; return RELOP;}
%%
int install_id() { ...
```

Return token to parser

Token attribute

Install `yytext` (of length `yyleng`) as identifier in symbol table.