Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 28

• Type classes in Haskell
Polymorphism vs Overloading

• Parametric polymorphism
 – Single algorithm may be given many types
 – Type variable may be replaced by any type
 – if $f :: t \rightarrow t$ then $f :: \text{Int} \rightarrow \text{Int}$, $f :: \text{Bool} \rightarrow \text{Bool}$, ...

• Overloading
 – A single symbol may refer to more than one algorithm.
 – Each algorithm may have different type.
 – Choice of algorithm determined by type context.
 – $+$ has types $\text{Int} \rightarrow \text{Int} \rightarrow \text{Int}$ and $\text{Float} \rightarrow \text{Float} \rightarrow \text{Float}$, but not $t \rightarrow t \rightarrow t$ for arbitrary t.
Why Overloading?

• Many useful functions are not parametric
• Can list membership work for any type?

 \texttt{\textit{member} :: \texttt{[w]} \rightarrow \texttt{w} \rightarrow \texttt{Bool}}

 – No! Only for types \(w\) for that support equality.

• Can list sorting work for any type?

 \texttt{\textit{sort} :: \texttt{[w]} \rightarrow \texttt{[w]}}

 – No! Only for types \(w\) that support ordering.
Why Overloading?

• Many useful functions are not parametric.
• Can serialize work for any type?

 – No! Only for types w that support serialization.
• Can sumOfSquares work for any type?

 – No! Only for types that support numeric operations.
Overloading Arithmetic, Take 1

• Allow functions containing overloaded symbols to define multiple functions:

```haskell
square x = x * x  -- legal
-- Defines two versions:
-- Int -> Int and Float -> Float
```

• But consider:

```haskell
squares (x,y,z) =
  (square x, square y, square z)
-- There are 8 possible versions!
```

• This approach has not been widely used because of exponential growth in number of versions.
Overloading Arithmetic, Take 2

- Basic operations such as + and * can be overloaded, but not functions defined from them

<table>
<thead>
<tr>
<th>Expression</th>
<th>Definition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 * 3</td>
<td>-- legal</td>
<td></td>
</tr>
<tr>
<td>3.14 * 3.14</td>
<td>-- legal</td>
<td></td>
</tr>
<tr>
<td>square x = x * x</td>
<td>-- Int -> Int</td>
<td></td>
</tr>
<tr>
<td>square 3</td>
<td>-- legal</td>
<td></td>
</tr>
<tr>
<td>square 3.14</td>
<td>-- illegal</td>
<td></td>
</tr>
</tbody>
</table>

- Standard ML uses this approach.
- Not satisfactory: Programmer cannot define functions that implementation might support
Overloading Equality, Take 1

• Equality defined only for types that admit equality: types not containing function or abstract types.

\[
\begin{align*}
3 * 3 & == 9 \quad \text{-- legal} \\
'a' & == 'b' \quad \text{-- legal} \\
\lambda x -> x & == \lambda y -> y+1 \quad \text{-- illegal}
\end{align*}
\]

• Overload equality like arithmetic ops \(+ \) and \(* \) in SML.
• But then we can’t define functions using ‘==‘:

```ml
member [] y = False
member (x:xs) y = (x==y) || member xs y

member [1,2,3] 3 \quad \text{-- ok if default is Int}
member "Haskell" 'k' \quad \text{-- illegal}
```

• Approach adopted in first version of SML.
Overloading Equality, Take 2

• Make type of equality fully polymorphic

\[
(==) :: a \rightarrow a \rightarrow \text{Bool}
\]

• Type of list membership function

\[
\text{member} :: [a] \rightarrow a \rightarrow \text{Bool}
\]

• Miranda used this approach.
 – Equality applied to a function yields a runtime error
 – Equality applied to an abstract type compares the underlying representation, which violates abstraction principles
Overloading Equality, Take 3

• Make equality polymorphic in a limited way:

\[
(==) :: a(==) \rightarrow a(==) \rightarrow \text{Bool}
\]

where \(a(==)\) is type variable restricted to types with equality

• Now we can type the member function:

```
member :: a(==) \rightarrow [a(==)] \rightarrow \text{Bool}
member 4 [2,3] :: \text{Bool}
member 'c' ['a', 'b', 'c'] :: \text{Bool}
member (\y\rightarrow y *2) [\x\rightarrow x, \x\rightarrow x + 2] -- type error
```

• Approach used in SML today, where the type \(a(==)\) is called an “eqtype variable” and is written `\a`.
Type Classes

• Type classes solve these problems
 – Provide concise types to describe overloaded functions, so no exponential blow-up
 – Allow users to define functions using overloaded operations, eg, square, squares, and member
 – Allow users to declare new collections of overloaded functions: equality and arithmetic operators are not privileged built-ins
 – Generalize ML’s eqtypes to arbitrary types
 – Fit within type inference framework
Intuition

• A function to sort lists can be passed a comparison operator as an argument:

```haskell
qsort :: (a -> a -> Bool) -> [a] -> [a]
qsort cmp [] = []
qsort cmp (x:xs) = qsort cmp (filter (cmp x) xs) ++ [x] ++
  qsort cmp (filter (not.cmp x) xs)
```

– This allows the function to be parametric

• We can built on this idea …
Intuition (continued)

• Consider the “overloaded” parabola function

\[
\text{parabola } x = (x \times x) + x
\]

• We can rewrite the function to take the operators it contains as an argument

\[
\text{parabola’ } (\text{plus, times}) x = \text{plus } (\text{times } x \times x) x
\]

– The extra parameter is a “dictionary” that provides implementations for the overloaded ops.

– We have to rewrite all calls to pass appropriate implementations for plus and times:

\[
y = \text{parabola’}(\text{intPlus}, \text{intTimes}) 10
\]

\[
z = \text{parabola’}(\text{floatPlus}, \text{floatTimes}) 3.14
\]
Systematic programming style

-- Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)

-- Accessor functions
get_plus :: MathDict a -> (a->a->a)
get_plus (MkMathDict p t) = p

get_times :: MathDict a -> (a->a->a)
get_times (MkMathDict p t) = t

-- "Dictionary-passing style"
parabola :: MathDict a -> a -> a
parabola dict x = let plus = get_plus dict
times = get_times dict
 in plus (times x x) x

Type class declarations will generate Dictionary type and selector functions
Systematic programming style

-- Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)

-- Dictionary construction
intDict = MkMathDict intPlus intTimes
floatDict = MkMathDict floatPlus floatTimes

-- Passing dictionaries
y = parabola intDict 10
z = parabola floatDict 3.14

Type class instance declarations produce instances of the Dictionary

Compiler will add a dictionary parameter and rewrite the body as necessary
Type Class Design Overview

• Type class declarations
 – Define a set of operations, give the set a name
 – Example: `Eq a` type class
 * operations `==` and `\=` with `type a -> a -> Bool`

• Type class instance declarations
 – Specify the implementations for a particular type
 – For `Int` instance, `==` is defined to be integer equality

• Qualified types (or Type Constraints)
 – Concisely express the operations required on otherwise polymorphic type

```haskell
member:: Eq w => w -> [w] -> Bool
```
“for all types w that support the Eq operations”

Qualified Types

Member :: Eq w => w -> [w] -> Bool

If a function works for every type with particular properties, the type of the function says just that:

sort :: Ord a => [a] -> [a]
serialise :: Show a => a -> String
square :: Num n => n -> n
squares :: (Num t, Num t1, Num t2) =>
 (t, t1, t2) -> (t, t1, t2)

Otherwise, it must work for any type whatsoever

reverse :: [a] -> [a]
filter :: (a -> Bool) -> [a] -> [a]
Type Classes

```
square :: Num n => n -> n
square x = x*x
```

```
class Num a where
  (+) :: a -> a -> a
  (*) :: a -> a -> a
  negate :: a -> a
  ...etc...
```

```
instance Num Int where
  a + b  = intPlus a b
  a * b  = intTimes a b
  negate a = intNeg a
  ...etc...
```

The class declaration says what the Num operations are.

An instance declaration for a type T says how the Num operations are implemented on T's.

FORGET all you know about OO classes!

Works for any type 'n' that supports the Num operations.

intPlus :: Int -> Int -> Int
intTimes :: Int -> Int -> Int
e tc, defined as primitives.
Compiling Overloaded Functions

When you write this...

```haskell
square :: Num n => n -> n
square x = x*x
```

...the compiler generates this

```haskell
square :: Num n -> n -> n
square d x = (*) d x x
```

The “Num n =>” turns into an extra value argument to the function. It is a value of data type Num n and it represents a dictionary of the required operations.

A value of type (Num n) is a dictionary of the Num operations for type n
Compiling Type Classes

When you write this...

```haskell
square :: Num n => n -> n
square x = x * x
```

...the compiler generates this

```haskell
square :: Num n -> n -> n
square d x = (* d x x
```

```haskell
class Num n where
  (+)    :: n -> n -> n
  (*)    :: n -> n -> n
  negate :: n -> n
  ...etc...
```

data Num n
 = MkNum (n -> n -> n)
 (n -> n -> n)
 (n -> n)
 ...etc...
 ...

(*) :: Num n -> n -> n -> n
(* (MkNum _ m _ ...) = m

The class decl translates to:
A data type decl for Num
A selector function for each class operation

A value of type (Num n) is a dictionary of the Num operations for type n
Compiling Instance Declarations

When you write this...

\[
\text{square} :: \text{Num} \ n \Rightarrow n \to n \\
\text{square} \ x = x \times x
\]

...the compiler generates this

\[
\text{square} :: \text{Num} \ n \Rightarrow n \to n \to n \\
\text{square} \ d \ x = (*) \ d \ x \ x
\]

\[
\text{instance} \ \text{Num} \ \text{Int} \ \text{where} \\
\quad a + b = \text{intPlus} \ a \ b \\
\quad a \times b = \text{intTimes} \ a \ b \\
\quad \text{negate} \ a = \text{intNeg} \ a \\
\quad \ldots \text{etc} \ldots
\]

\[
\text{dNumInt} :: \text{Num} \ \text{Int} \\
\text{dNumInt} = \text{MkNum} \ \text{intPlus} \\
\quad \text{intTimes} \\
\quad \text{intNeg} \\
\quad \ldots
\]

An instance decl for type T translates to a value declaration for the Num dictionary for T

A value of type (Num n) is a dictionary of the Num operations for type n
Implementation Summary

• The compiler translates each function that uses an overloaded symbol into a function with an extra parameter: the dictionary.
• References to overloaded symbols are rewritten by the compiler to lookup the symbol in the dictionary.
• The compiler converts each type class declaration into a dictionary type declaration and a set of selector functions.
• The compiler converts each instance declaration into a dictionary of the appropriate type.
• The compiler rewrites calls to overloaded functions to pass a dictionary. It uses the static, qualified type of the function to select the dictionary.
Functions with Multiple Dictionaries

squares :: (Num a, Num b, Num c) => (a, b, c) -> (a, b, c)
squares(x,y,z) = (square x, square y, square z)

Note the concise type for the squares function!

squares :: (Num a, Num b, Num c) -> (a, b, c) -> (a, b, c)
squares (da,db,dc) (x, y, z) =
 (square da x, square db y, square dc z)

Pass appropriate dictionary on to each square function.
Compositionality

Overloaded functions can be defined from other overloaded functions:

```haskell
sumSq :: Num n => n -> n -> n
sumSq x y = square x + square y
```

```haskell
sumSq :: Num n => n -> n -> n -> n
sumSq d x y = (+) d (square d x) (square d y)
```

Extract addition operation from d

Pass on d to square
Compositionality

Build compound instances from simpler ones:

class Eq a where
 (==) :: a -> a -> Bool

instance Eq Int where
 (==) = intEq -- intEq primitive equality

instance (Eq a, Eq b) => Eq(a,b)
 (u,v) == (x,y) = (u == x) && (v == y)

instance Eq a => Eq [a] where
 (==) [] [] = True
 (==) (x:xs) (y:ys) = x==y && xs == ys
 (==) _ _ = False
Compound Translation

Build compound instances from simpler ones.

class Eq a where
 (==) :: a -> a -> Bool
instance Eq a => Eq [a] where
 (==) [] [] = True
 (==) (x:xs) (y:ys) = x==y && xs == ys
 (==) _ _ = False

data Eq = MkEq (a->a->Bool) -- Dictionary type
 (==) (MkEq eq) = eq
 dEqList :: Eq a -> Eq [a] -- Selector
 dEqList d = MkEq eql
 where
 eql [] [] = True
 eql (x:xs) (y:ys) = (==) d x y && eql xs ys
 eql _ _ = False
Many Type Classes

- **Eq**: equality
- **Ord**: comparison
- **Num**: numerical operations
- **Show**: convert to string
- **Read**: convert from string
- **Testable, Arbitrary**: testing.
- **Enum**: ops on sequentially ordered types
- **Bounded**: upper and lower values of a type
- **Generic programming, reflection, monads, ...**
- **And many more.**
Subclasses

• We could treat the Eq and Num type classes separately

```
memsq :: (Eq a, Num a) => a -> [a] -> Bool
memsq x xs = member (square x) xs
```

— But we expect any type supporting Num to also support Eq

• A subclass declaration expresses this relationship:

```
class Eq a => Num a where
  (+) :: a -> a -> a
  (*) :: a -> a -> a
```

• With that declaration, we can simplify the type of the function

```
memsq :: Num a => a -> [a] -> Bool
memsq x xs = member (square x) xs
```
Default Methods

• Type classes can define “default methods”

```
-- Minimal complete definition:  
--     (==) or (/=)
class Eq a where
    (==) :: a -> a -> Bool
    x == y    = not (x /= y)
    (/=) :: a -> a -> Bool
    x /= y    = not (x == y)
```

• Instance declarations can override default by providing a more specific definition.
Deriving

- For Read, Show, Bounded, Enum, Eq, and Ord, the compiler can generate instance declarations automatically

```haskell
data Color = Red | Green | Blue
  deriving (Show, Read, Eq, Ord)
```

Main> show Red
“Red”
Main> Red < Green
True
Main> let c :: Color = read “Red”
Main> c
Red

- Ad hoc: derivations apply only to types where derivation code works
Numeric Literals

class Num a where
 (+) :: a -> a -> a
 (-) :: a -> a -> a
 fromInteger :: Integer -> a
...

inc :: Num a => a -> a
inc x = x + 1

Even literals are overloaded.
1 :: (Num a) => a

"1" means "fromInteger 1"

Advantages:
- Numeric literals can be interpreted as values of any appropriate numeric type
- Example: 1 can be an Integer or a Float or a user-defined numeric type.
Example: Complex Numbers

• We can define a data type of complex numbers and make it an instance of `Num`.

```haskell
class Num a where
  (+) :: a -> a -> a
  fromInteger :: Integer -> a

data Cpx a = Cpx a a
  deriving (Eq, Show)

instance Num a => Num (Cpx a) where
  (Cpx r1 i1) + (Cpx r2 i2) = Cpx (r1+r2) (i1+i2)
  fromInteger n = Cpx (fromInteger n) 0
```

Example: Complex Numbers

• And then we can use values of type \texttt{Cpx} in any context requiring a \texttt{Num}:

```haskell
data Cpx a = Cpx a a

c1 = 1 :: Cpx Int
c2 = 2 :: Cpx Int
c3 = c1 + c2

parabola x = (x * x) + x
c4 = parabola c3
i1 = parabola 3
```
Type Inference

• Type inference infers a qualified type $Q \Rightarrow T$
 – T is a Hindley Milner type, inferred as usual
 – Q is set of type class predicates, called a constraint

• Consider the example function:

```haskell
eexample z xs =
    case xs of
      []     -> False
      (y:ys) -> y > z || (y==z && ys == [z])
```

 – Type T is $a \rightarrow [a] \rightarrow \text{Bool}$
 – Constraint Q is $\{ \text{Ord } a, \text{Eq } a, \text{Eq } [a] \}$

 *Ord a because $y > z$
 *Eq a because $y == z$
 *Eq $[a]$ because $ys == [z]$
Type Inference

• Constraint sets Q can be simplified:
 – Eliminate duplicates
 • \{\text{Eq } a, \text{Eq } a\} simplifies to \{\text{Eq } a\}
 – Use an \textbf{instance declaration}
 • If we have instance \text{Eq } a => \text{Eq } [a],
 • then \{\text{Eq } a, \text{Eq } [a]\} simplifies to \{\text{Eq } a\}
 – Use a \textbf{class declaration}
 • If we have class \text{Eq } a => \text{Ord } a \text{ where } ...,
 • then \{\text{Ord } a, \text{Eq } a\} simplifies to \{\text{Ord } a\}

• Applying these rules,
 – \{\text{Ord } a, \text{Eq } a, \text{Eq}[a]\} simplifies to \{\text{Ord } a\}
Type Inference

• Putting it all together:

```haskell
example z xs =
  case xs of
    []     -> False
    (y:ys) -> y > z || (y==z && ys ==[z])
```

- $T = a -> [a] -> \text{Bool}$
- $Q = \{\text{Ord } a, \text{Eq } a, \text{Eq } [a]\}$
- Q simplifies to $\{\text{Ord } a\}$
- `example` :: $\{\text{Ord } a\} => a -> [a] -> \text{Bool}$
Detecting Errors

• Errors are detected when predicates are known not to hold:

Prelude> 'a' + 1
 No instance for (Num Char)
 arising from a use of `+' at <interactive>:1:0-6
 Possible fix: add an instance declaration for (Num Char)
 In the expression: 'a' + 1
 In the definition of `it': it = 'a' + 1

Prelude> (\x -> x)
 No instance for (Show (t -> t))
 arising from a use of `print' at <interactive>:1:0-4
 Possible fix: add an instance declaration for (Show (t -> t))
 In the expression: print it
 In a stmt of a 'do' expression: print it
More Type Classes: Constructors

• **Type Classes** are predicates over **types**

• **Constructor Classes** are predicates over **type constructors**

• Example: Map function useful on many Haskell types

• Lists:

```haskell
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
result = map (\x->x+1) [1,2,4]
```
Constructor Classes

• More examples of map function

```haskell
data Tree a = Leaf a | Node(Tree a, Tree a)
  deriving Show

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f (Leaf x) = Leaf (f x)
mapTree f (Node(l,r)) = Node (mapTree f l, mapTree f r)

t1 = Node(Node(Leaf 3, Leaf 4), Leaf 5)
result = mapTree (\x->x+1) t1
```

```haskell
data Opt a = Some a | None
  deriving Show

mapOpt :: (a -> b) -> Opt a -> Opt b
mapOpt f None = None
mapOpt f (Some x) = Some (f x)

o1 = Some 10
result = mapOpt (\x->x+1) o1
```
Constructor Classes

• All map functions share the same structure:

```haskell
map :: (a -> b) -> [a] -> [b]
mapTree :: (a -> b) -> Tree a -> Tree b
mapOpt :: (a -> b) -> Opt a -> Opt b
```

• They can all be written as:

```haskell
fmap :: (a -> b) -> g a -> g b
```

– where g is:

 [-] for lists, Tree for trees, and Opt for options

• Note that g is a function from types to types, i.e. a type constructor
Constructor Classes

• Capture this pattern in a constructor class,

```haskell
class Functor g where
  fmap :: (a -> b) -> g a -> g b
```

A type class where the predicate is over type constructors
Constructor Classes

class Functor f where
 fmap :: (a -> b) -> f a -> f b

instance Functor [] where
 fmap f [] = []
 fmap f (x:xs) = f x : fmap f xs

instance Functor Tree where
 fmap f (Leaf x) = Leaf (f x)
 fmap f (Node(t1,t2)) = Node(fmap f t1, fmap f t2)

instance Functor Opt where
 fmap f (Some s) = Some (f s)
 fmap f None = None
Constructor Classes

- Or by reusing the definitions map, mapTree, and mapOpt:

```haskell
class Functor f where
  fmap :: (a -> b) -> f a -> f b

instance Functor [] where
  fmap = map

instance Functor Tree where
  fmap = mapTree

instance Functor Opt where
  fmap = mapOpt
```
Constructor Classes

- We can then use the overloaded symbol `fmap` to map over all three kinds of data structures:

  ```haskell
  *Main> fmap (\x->x+1) [1,2,3]
  [2,3,4]
  it :: [Integer]
  
  *Main> fmap (\x->x+1) (Node(Leaf 1, Leaf 2))
  Node (Leaf 2,Leaf 3)
  it :: Tree Integer
  
  *Main> fmap (\x->x+1) (Some 1)
  Some 2
  it :: Opt Integer
  ```

- The **Functor** constructor class is part of the standard Prelude for Haskell
Type classes /= OOP

- **Dictionaries** and **method suites** are similar
 - In OOP, a value carries a method suite.
 - With type classes, the dictionary travels separately
- Method resolution is static for type classes, dynamic for objects.
- Dictionary selection can depend on result type

  ```haskell
  fromInteger :: Num a => Integer -> a
  ```
- Based on polymorphism, not subtyping.
- Old types can be made instances of new type classes but objects can’t retroactively implement interfaces or inherit from super classes.