Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 28

* Type classes in Haskell

Polymorphism vs Overloading

* Parametric polymorphism

— Single algorithm may be given many types

— Type variable may be replaced by any type

— if £::t—t then £::Int—1Int, £f: :Bool—Bool, ...
* Overloading

— A single symbol may refer to more than one
algorithm.

— Each algorithm may have different type.
— Choice of algorithm determined by type context.

— + hastypes int — iInt — Int and Float — Float —
Float, but not t—t—t for arbitrary t.

Why Overloading?

 Many useful functions are not parametric
e Can list membership work for any type?

member :: [w] -> w -> Bool

— No! Only for types w for that support equality.
e Can list sorting work for any type?

sort :: [w] -> [w]

— No! Only for types w that support ordering.

Why Overloading?

* Many useful functions are not parametric.
* Can serialize work for any type?

serialize:: w -> String

— No! Only for types w that support serialization.

* Can sumOfSquares work for any type?

sumOfSquares:: [w] -> w

— No! Only for types that support numeric operations.

Overloading Arithmetic, Take 1

* Allow functions containing overloaded symbols to define
multiple functions:

square x = x * x -- legal
——- Defines two versions:
--— Int -> Int and Float -> Float

e But consider:

squares (x,y,z) =
(square x, square y, square z)
-- There are 8 possible versions!

* This approach has not been widely used because of
exponential growth in number of versions.

Overloading Arithmetic, Take 2

e Basic operations such as + and * can be overloaded,
but not functions defined from them

3 * 3 -- legal

3.14 * 3.14 -- legal
square x = x * x -- Int -> Int
square 3 -- legal
square 3.14 -- illegal

e Standard ML uses this approach.

* Not satisfactory: Programmer cannot define
functions that implementation might support

Overloading Equality, Take 1

Equality defined only for types that admit equality:
types not containing function or abstract types.

3 * 3 == -- legal
‘a’ == ‘b’ -- legal
\x->x == \y->y+1 -- illegal

Overload equality like arithmetic ops + and * in SML.
But then we can’t define functions using ‘==

member [] y = False

member (x:xs) y = (x==y) || member xs y

member [1,2,3] 3 -- ok if default is Int
member “Haskell” ‘k’ -- illegal

Approach adopted in first version of SML.

Overloading Equality, Take 2

 Make type of equality fully polymorphic
(==) :: a -> a -> Bool

* Type of list membership function

member :: [a] -> a -> Bool

 Miranda used this approach.
— Equality applied to a function yields a runtime error

— Equality applied to an abstract type compares the
underlying representation, which violates abstraction
principles

Only provides overloading for ==

Overloading Equality, Take 3

 Make equality polymorphic in a limited way:
(==) :: a(==) -> a(==) -> Bool

where a(==) is type variable restricted to types with equality
* Now we can type the member function:

member :: a(==) -> [a(==)] -> Bool

member 4 [2,3] :: Bool

member ‘c’ [‘a’, ‘b, ‘¢’] :: Bool

member (\y->y *2) [\x->x, \x->x + 2] -- type error

 Approach used in SML today, where the type a(==) is
called an “eqgtype variable” and is written "a.

Type Classes

* Type classes solve these problems

— Provide concise types to describe overloaded
functions, so no exponential blow-up

— Allow users to define functions using overloaded
operations, eg, square, squares, and member

— Allow users to declare new collections of
overloaded functions: equality and arithmetic
operators are not privileged built-ins

— Generalize ML's eqtypes to arbitrary types
— Fit within type inference framework

Intuition

e A function to sort lists can be passed a
comparison operator as an argument:

gsort:: (a -> a -> Bool) -> [a] -> [a]
gsort cmp [] = []
gsort cmp (x:xs) = gsort cmp (filter (cmp x) xs)
++ [x] ++
gsort cmp (filter (not.cmp x) xs)

— This allows the function to be parametric

e We can built on this idea ...

Intuition (continued)

* Consider the “overloaded” parabola function

parabola x = (x * x) + x

e We can rewrite the function to take the
operators it contains as an argument

parabola’ (plus, times) x = plus (times x x) x

— The extra parameter is a “dictionary” that
provides implementations for the overloaded ops.

— We have to rewrite all calls to pass appropriate
implementations for plus and times:

y = parabola’ (intPlus,intTimes) 10
z = parabola’ (floatPlus, floatTimes) 3.14

Systematic programming style

-— Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)

- Accessor funCt’:'onS Type class declarations

get plus :: MathDict a -> (a->a->a) will generate Dictionary

get plus (MkMathDict p t) =p type and selector
functions

get times :: MathDict a -> (a->a->a)

get times (MkMathDict p t) =t

-—- “Dictionary-passing style”
parabola :: MathDict a -> a -> a
parabola dict x = let plus = get plus dict
times = get times dict
in plus (times x x) x

13

Systematic programming style

Type class instance declarations

produce instances of the Dictionary
-- Dictionary type

data MathDict a = MkMathDict (a->a->a) (a->a->a)

—— Dictionary construction
intDict = MkMathDict intPlus intTimes
floatDict = MkMathDict floatPlus floatTimes

-—- Passing dictionaries
y = parabola intDict 10
z = parabola floatDict 3.14

Compiler will add a dictionary
parameter and rewrite the body as
necessary

14

Type Class Design Overview

* Type class declarations
— Define a set of operations, give the set a name
— Example: Eq a type class
e operations == and \= with type a -> a -> Bool
* Type class instance declarations
— Specify the implementations for a particular type
— For Int instance, == is defined to be integer equality

* Qualified types (or Type Constraints)

— Concisely express the operations required on
otherwise polymorphic type

member:: Eq w => w -> [w] -> Bool

“for all types w that

support the Eq Quahﬁed Types

operations”

Member :: Eq w => w -> [w] -> Bool

If a function works for every type with particular
properties, the type of the function says just that:

sort :: Ord a => [a] -> [a]
serialise :: Show a => a -> String
square :: Numn => n ->n

squares ::(Num £, Num tl1l, Num t2) =>

(t, t1, t2) -> (t, t1, t2)

Otherwise, it must work for any type whatsoever

reverse :: [a] -> [a]
filter :: (a -> Bool) -> [a] -> [a]
16

Works for any type FORGET all
you know

'n’ that supports Type Classes out 00

; :
the Num operations classes!

square :: Num n => n -> n

square X = X*x .
The class declaration

says what the Num

class Num a where operations are
(+) . a -> a -> a
(*) . a -> a -> a
negate :: a -> a
.etc. .. An instance

declaration for a
type T says how the

instance Num Int where Num opera’rions are
a+b = intPlus a b implemented on T's
a *b = i1intTimes a b
negate a = intNeg a
.etc. . intPlus :: Int -> Int -> Int

intTimes :: Int -> Int -> Int
etc, defined as primitivesy

Compiling Overloaded Functions

When you write this... ...the compiler generates this
square :: Num n => n -> n square :: Num n -> n -> n
square x = x*x square d x = (*) d x x

The "Num n =>" turns into an extra value argument to
the function. It is a value of data type Num n and it
represents a dictionary of the required operations.

A value of type (Num n) is a dictionary

of the Num operations for type n

Compiling Type Classes

When you write this... ...the compiler generates this
square :: Num n => n -> n square :: Num n -> n -> n
square x = x*x square d x = (*) d x x
class Num n where data Num n

(+) ::n ->n ->n = MkNum (n -> n -> n)
(*) ::n ->n ->n (n -=> n -> n)
negate :: n -> n (n -> n)
..etc... ...etc...
(*) :: Num n ->n -> n ->n

(*) (MkNum m ...) =m

The class decl translates
to:
A data type decl for Num

A selector function for of the Num operations for type n
each class operation

A value of type (Num n) is a dictionary

Compiling Instance Declarations

When you write this... ...the compiler generates this
square :: Num n => n -> n square :: Num n -> n -> n
square x = x*x square d x = (*) d x x
instance Num Int where dNumInt :: Num Int

a+b = intPlus a b dNumInt = MkNum intPlus

a *b = intTimes a b intTimes

negate a = intNeg a intNeg

.etc. ..

An instance decl for type T
translates to a value

jiecc’rliil;'\a:;;n ngrTfhe I of the Num operations for type n

A value of type (Num n) is a dictionary

Implementation Summary

The compiler translates each function that uses an
overloaded symbol into a function with an extra
parameter: the dictionary.

References to overloaded symbols are rewritten by the
compiler to lookup the symbol in the dictionary.

The compiler converts each type class declaration into a
dictionary type declaration and a set of selector functions.

The compiler converts each instance declaration into a
dictionary of the appropriate type.

The compiler rewrites calls to overloaded functions to pass
a dictionary. It uses the static, qualified type of the
function to select the dictionary.

Functions with Multiple Dictionaries

squares :: (Num a, Num b, Num c) => (a, b, ¢) -> (a, b, c)
squares (x,y,2) = (square x, square y, square z)

Note the concise type for
the squares function!

squares :: (Num a, Num b, Num ¢c) -> (¢, b, ¢) -> (a, b, c)
squares (da,db,dc) (x, y, z) =
(square da x, so .e db y, square dc z)

Pass appropriate
dictionary on to each
square function. -

Compositionality

Overloaded functions can be defined from other
overloaded functions:

sumSq :: Num n => n -> n -> n
sumSq X y = square X + square y

sumSq :: Num n -> n -> n -> n
sumSqg d x y = (+) d (square d x)
l.quare d y)

Extract addition

operation from d Pass on d to square

23

Compositionality

Build compound instances from simpler ones:

class Eq a where
(==) :: a -> a -> Bool

instance Eq Int where
(==) = intEq -—- intEq primitive equality

instance (Eq a, Eq b) => Eqgq(a,b)
(u,v) == (x,y) = (u == x) && (v ==y)

instance Eq a => Eq [a] where
(==) I[1 [] True
(==) (x:xs) (y:ys) X==y && Xs == ys
(== False

24

Compound Translation
Build compound instances from simpler ones.

class Eq a where

(==) :: a -> a -> Bool
instance Eq a => Eq [a] where
(==) I[I [] = True
(==) (x:xs) (y:ys) = x==y && xXs == ys
(==) _ . = False
data Eq = MkEq (a->a->Bool) -- Dictionary type
(==) (MkEq eq) = eq -— Selector
dEqlist :: Eq a -> Eq [a] -- List Dictionary
dEqList d = MkKEq eql
where
eql [] [] = True
eql (x:xs) (y:ys) = (==) d x y && eql xs ys
eql = False

25

Many Type Classes

Eq: equality

Ord: comparison

Num: numerical operations

Show: convert to string

Read: convert from string

Testable, Arbitrary: testing.

Enum: ops on sequentially ordered types
Bounded: upper and lower values of a type
Generic programming, reflection, monads, ...
And many more.

Subclasses

* We could treat the Eg and Num type classes separately

memsq :: (Eq a, Num a) => a -> [a] -> Bool
memsq X XS = member (square x) xs

— But we expect any type supporting Num to also support Eq

* A subclass declaration expresses this relationship:

class Eq a => Num a where
(+) :: a -> a -> a
(*) :: a ->a -> a

* With that declaration, we can simplify the type of the function

memsq :: Num a => a -> [a] -> Bool
memsq X XS = member (square x) xs

27

Eq
All except
10, (->)

Ord
All except 10,

IOError, (->)

Enum
(), Bool, Char, Ordering,

Int, Integer, Float,
Double

Integral
Int, Integer

Monad
10, [1, Maybe

MonadPlus
10, [1, Maybe

All except
10, (->)

Int, Integer,
Float, Double

Int, Integer,
Float, Double

RealFrac
Float, Double

Read
All except
10, (->)

Bounded
Int, Char, Bool, ()

Ordering,tuples

Fractional
Float, Double

Floating
Float, Double

RealFloat
Float, Double

Functor
10, [1, Maybe

28

Default Methods

* Type classes can define “default methods”

-- Minimal complete definition:
-= (==) or (/=)
class Eq a where

(==) :: a -> a -> Bool

X ==Y = not (x /=vy)
(/=) :: a -> a -> Bool
x /=y = not (x == vy)

* |[nstance declarations can override default by
providing a more specific definition.

Deriving

* For Read, Show, Bounded, Enum, Eq, and Ord, the compiler
can generate instance declarations automatically

data Color = Red | Green | Blue
deriving (Show, Read, Eq, Ord)

Main> show Red

\\ Redll

Main> Red < Green
True

Main>let ¢ :: Color = read “Red”
Main> c
Red

— Ad hoc : derivations apply only to types where derivation code works
30

Numeric Literals

class Num a where

(+) :: a -> a -> a
(-) :: a ->a -> a
fromInteger :: Integer -> a
inc :: Num a => a -> a
inc x =x +1
Advantages:

Even literals are
overloaded.
1:: (Numa) =>a

"1” means
“fromInteger 1”

- Numeric literals can be interpreted as values

of any appropriate numeric type

- Example: 1 can be an Integer or a Float or a

user-defined numeric type.

31

Example: Complex Numbers

 We can define a data type of complex
numbers and make it an instance of Num.

class Num a where
(+) :: a -=> a -> a
fromInteger :: Integer -> a

data Cpx a = Cpx a a
deriving (Eq, Show)

instance Num a => Num (Cpx a) where
(Cpx rl il) + (Cpx r2 i2) = Cpx (rl+r2) (i1+i2)
fromInteger n = Cpx (fromInteger n) O

32

Example: Complex Numbers

* And then we can use values of type Cpx in
any context requiring a Num:

data Cpx a = Cpx a a

cl =1 :: Cpx Int

c2 = 2 :: Cpx Int

c3 =cl + c2

parabola x = (x * x) + x
c4 = parabola c3

il = parabola 3

33

Type Inference

 Type inference infers a qualified type Q=>T
— Tis a Hindley Milner type, inferred as usual
— Qs set of type class predicates, called a constraint

* Consider the example function:

example z xs =
case xs of
[1] -> False
(y:ys) ->y >z || (y==z && ys == [z])

— TypeTis a->[a]->Bool

— Constraint Qis {Ord a, Eq a, Eq [a]} Ord a because y>z
Eqa Dbecause y==z
Eq [a] because ys == [Z]

34

Type Inference

e Constraint sets Q can be simplified:
— Eliminate duplicates
* {Eq a, Eq a} simplifies to {Eq a}
— Use an instance declaration
* If we have instance Eq a => Eq [a],
* then {Eq a, Eq [a]} simplifies to {Eq a}
— Use a class declaration

 If we have class Eq a => Ord a where ...,
* then {Ord a, Eq a} simplifies to {Ord a}

* Applying these rules,
— {Ord a, Eq a, Eq[a]} simplifies to {Ord a}

Type Inference

e Putting it all together:

example z xs =
case xs of
[] -> False

(y:ys) ->y >z || (y==z && ys ==[z])

—T=a->[a] ->Bool
—Q={0rd a, Eq a, Eq [a]}
— Q simplifies to {Ord a}

— example :: {Ord a} => a -> [a] -> Bool

36

Detecting Errors

* Errors are detected when predicates are
known not to hold:

Prelude> ‘a’ + 1
No instance for (Num Char)
arising from a use of +' at <interactive>:1:0-6
Possible fix: add an instance declaration for (Num Char)
In the expression: 'a' + 1
In the definition of 'it': it = 'a' + 1

Prelude> (\x -> x)
No instance for (Show (t -> t))
arising from a use of "print' at <interactive>:1:0-4
Possible fix: add an instance declaration for (Show (t -> t))
In the expression: print it
In a stmt of a 'do' expression: print it
37

More Type Classes: Constructors

* Type Classes are predicates over types

* Constructor Classes are predicates over type
contstructors

 Example: Map function useful on many
Haskell types

* Lists:
map:: (a -> b) -> [a] -> [Db]
map £ [] = []
map £ (x:xs) = f x : map f xs

result = map (\x->x+1) [1,2,4]

Constructor Classes
e More examples of map function

data Tree a = Leaf a | Node(Tree a, Tree a)
deriving Show

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f (Leaf x) = Leaf (f x)
mapTree £ (Node(l,r)) = Node (mapTree f 1, mapTree f r)

tl = Node (Node (Leaf 3, Leaf 4), Leaf 5)
result = mapTree (\x->x+1) tl

data Opt a = Some a | None
deriving Show

mapOpt :: (a -> b) -> Opt a -> Opt b
mapOpt £ None = None
mapOpt £ (Some x) = Some (f x)

ol = Some 10
result = mapOpt (\x->x+1) ol

39

Constructor Classes

* All map functions share the same structure

map :: (a -> b) -> [a] -> [Db]
mapTree :: (a -> b) -> Tree a -> Tree b
mapOpt :: (a -> b) -> Opt a -> Opt b

* They can all be written as:
fmap:: (a -> b) ->ga ->gb
— where g is:
[-] for lists, Tree for trees, and Opt for options

* Note that g is a function from types to types, i.e.
a type constructor

Constructor Classes

* Capture this pattern in a constructor class,

class Functor g where
fmap :: (a -> b) ->ga ->gb

A type class where the predicate is over
type constructors

Constructor Classes

class Functor f where
fmap :: (a ->b) ->f a ->fb

instance Functor [] where
fmap £ [] = []
fmap £ (x:xs)

f x : fmap f xs

instance Functor Tree where
fmap f (Leaf x) = Leaf (f x)
fmap £ (Node(tl,t2)) = Node(fmap £ tl, fmap f t2)

instance Functor Opt where
fmap £ (Some s) = Some (f s)
fmap f None = None

42

Constructor Classes

* Or by reusing the definitions map, mapTree, and mapOpt:

class Functor f where
fmap :: (a ->b) ->f a ->fb

instance Functor [] where
fmap = map

instance Functor Tree where
fmap = mapTree

instance Functor Opt where
fmap = mapOpt

Constructor Classes

 We can then use the overloaded symbol fmap to map over
all three kinds of data structures:

*Main> fmap (\x->x+1) [1,2,3]
[2,3,4]
it :: [Integer]

*Main> fmap (\x->x+1) (Node(Leaf 1, Leaf 2))
Node (Leaf 2,Leaf 3)
it :: Tree Integer

*Main> fmap (\x->x+1) (Some 1)

Some 2
it :: Opt Integer

* The Functor constructor class is part of the standard
Prelude for Haskell

44

Type classes /= OOP

Dictionaries and method suites are similar
— In OOP, a value carries a method suite.
— With type classes, the dictionary travels separately

Method resolution is static for type classes, dynamic
for objects.

Dictionary selection can depend on result type
fromInteger :: Num a => Integer -> a
Based on polymorphism, not subtyping.

Old types can be made instances of new type classes
but objects can’t retroactively implement interfaces or
inherit from super classes.

