Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 24

 Composite data types (cont’d)

Summary

* Data Types in programming languages
* Type system, Type safety, Type checking
— Equivalence, compatibility and coercion

* Primitive and composite types

— Discrete and scalar types
— Tuples and records

— Arrays

— Unions

— Pointers

— Recursive types

A brief overview of composite types

* We review type constructors in several
languages corresponding to the following
mathematical concepts:

— Cartesian products (records and tuples)
— mappings (arrays)
— disjoint unions (algebraic data types, unions)

— recursive types (lists, trees, etc.)

Mappings

 Wewritem:S5—T tostatethatmisa
mapping from set S to set T. In other words, m
maps every value in S to some value in T.

* If m maps value x to value y, we write y = m(x).
The value y is called the image of x under m.

 Some of the mappingsin {u, v} — {a, b, c}:
m,={u—a,v—c}
m; = U= €V oG image of u is c,
m3={uec,veb} image of vis b

Arrays (1)

Arrays (found in all imperative and OO PLs)
can be understood as mappings.

If the array’s elements are of type T (base
type) and its index values are of type S, the
array’s typeis S — T.

An array’s length is the number of
components, #S.

Basic operations on arrays:
— construction of an array from its components

— indexing — using a computed index value to select

a component. -
so we can select the ith component

Arrays (2)

An array of type S — T is a finite mapping.

Here S is nearly always a finite range of consecutive values
{l, I+1, ..., u}. This is called the array’s index range.

" lower bound upper bound

In C and Java, the index range must be {0, 1, ..., n—1}.
In Pascal and Ada, the index range may be any scalar
(sub)type other than real/float.

We can generalise to n-dimensional arrays. If an array
has index ranges of types S, ..., S,, the array’s type is
S;x.xS5 —T.

When is the index range known?

e A static array is an array variable whose index range is
fixed by the program code.

* A dynamic array is an array variable whose index range
is fixed at the time when the array variable is created.

— In Ada, the definition of an array type must fix the index
type, but need not fix the index range. Only when an array
variable is created must its index range be fixed.

— Arrays as formal parameters of subroutines are often
dynamic (eg. conformant arrays in Pascal)
* A flexible (or fully dynamic) array is an array variable
whose index range is not fixed at all, but may change
whenever a new array value is assigned.

Example: C static arrays

e Array variable declarations:

float v1[] = {2.0, 3.0, 5.0, 7.0}
float v2[10];

~ index range
is {0, ..., 3}

. index range is {0, ..., 9}
= Function:

void print vector (float v[], int n) {
// Print the array v[0], .., v[n-1]>in the form “[.. ..]
int 1i; .
printf (" [SE", vI[O0]);
for (1 = 1; 1 < n; 1i++) S
printf (" $f", v[il); - A C array
printf ("]"); doesn’t know

its own length!

”

print vector(vl, 4); print vector(vz, 10);

Example: Ada dynamic arrays

* Array type and variable declarations:

type Vector is

array (Integer range <>) of Float;
vl: Vector(l .. 4) := (1.0, 0.5, 5.0, 3.5);
vZ2: Vector(0 .. m) := (0 .. m => 0.0);

e Procedure:

procedure print vector (v: in Vector) 1is
—— Print the array v in the form “[... 7.

begin
put ('["'"); put(v(v'first));
for 1 in v'first + 1 .. v'last loop
put (" '"); put(v(i));
end loop;
put (']");
end;

print vector(vl); print vector (v2);

Example: Java flexible arrays

e Array variable declarations:

float[] vl = {1.0, 0.5, 5.0, 3.5}; Indexrange
float[] v2 = {0.0, 0.0, 0.0}; is {0, ..., 3}
" index range is {0, ..., 2}
vl = v2;
"""""""" v1l’s index range is now {0, ..., 2}
= Method:
static void printVector (float[] v) {
// Print the array v in the form “[.. 17

System.out.print ("[" + v[0]);
for (int 1 = 1; 1 < v.length; 1++)

System.out.print (" " + vI[i]);
System.out.print ("]"); | Enhanced for:
J for (float f : v)
System.out.print (" " + f)

printVector (vl); printVector(v2);

Array allocation

static array, global lifetime — If a static array can exist
throughout the execution of the program, then the
compiler can allocate space for it in static global memory

static array, local lifetime — |f a static array should not
exist throughout the execution of the program, then space
can be allocated in the subroutine’s stack frame at run
time.

dynamic array, local lifetime — If the index range is
known at runtime, the array can still be allocated in the
stack, but in a variable size area

fully dynamic — If the index range can be modified at
runtime it has to be allocated in the heap

Allocation of dynamic arrays on stack

sSp —>

-- Ada:
procedure foo (size : integer) is
M : array (1..size, 1..size) of real;

begin

end foo;
—
Local
variables
// C99:
void foo(int size) { _
double M[size] [size];
} fp—>

Bookkeeping

Return address

Arguments
and returns

Variable-size
part of the frame

Fixed-size part
of the frame

Arrays: memory layout

* Contiguous elements
— column major - only in Fortran

— row major
* used by everybody else

* Row pointers
— an option in C, the rule in Java

— allows rows to be put anywhere - nice for big arrays
on machines with segmentation problems

— avoids multiplication

— nice for matrices whose rows are of different lengths
e e.g. an array of strings

— requires extra space for the pointers

Arrays’ memory layout in C

char days[][10] = { char *days[] = {

"Sunday", "Monday", "Tuesday", "Sunday", "Monday", "Tuesday",

"Wednesday", "Thursday", "Wednesday", "Thursday",

"Friday", "Saturday" "Friday", "Saturday"
3 ¥
days[2] [3] == ’s’; /x in Tuesday */ days[2] [3] == ’s’; /* in Tuesday */
Sfu|n|d|aly > |
Mlo|n|d|aly S n|d aly M|lo|n
Tlu|le|s|d|al|y d y Tlu|le|s|d|a
Wle|ld|n|e|[s]|d y y Wlel|d|[n|e|s|d|a
Tlhlu|r|s|d|a VI | T|hlujr|s|d|a|y
Flr|i|d|a]|y Flrli|d|a]|y S|la
Sla|t|u|r|d|al|y tlu|r|d|la|y

* Address computation varies a lot
* With contiguous allocation part of the computation can be done statically

14

Strings

A string is a sequence of O or more characters.
Usually ad-hoc syntax is supported
Some PLs (ML, Python) treat strings as primitive.

Haskell treats strings as lists of characters. Strings
are thus equipped with general list operations
(length, head selection, tail selection,
concatenation, ...).

Ada treats strings as arrays of characters. Strings
are thus equipped with general array operations
(length, indexing, slicing, concatenation, ...).

Java treats strings as objects, of class String.

Disjoint Union (1)

* In a disjoint union, a value is chosen from one of
several different types.

* Let S + T stand for a set of disjoint-union values, each
of which consists of a tag together with a variant
chosen from either type S or type T. The tag indicates
the type of the variant:

S+T ={leftx | x&S}U{righty |yET}
— left x is a value with tag left and variant x chosen from S
— right x is a value with tag right and variant y chosen from T.

 We write left S + right T (instead of S + T) when we
want to make the tags explicit.

Disjoint Union (2)

= Basic operations on disjoint-union valuesin S + T:

e construction of a disjoint-union value from its tag and
variant

e tag test, to determine whether the variant was chosen from
SorT

e projection, to recover either the variant in S or the variant
inT.

= Algebraic data types (Haskell), discriminated
records (Ada), unions (C) and objects (Java) can
all be understood in terms of disjoint unions.

= We can generalise to multiple variants:
S5;+5+...+S,.

Example: Haskell/ML algebraic data types

 Type declaration:

data Number = Exact Int | Inexact Float

" Each Number value consists of a tag, together
with either an Integer variant (if the tag is
Exact) or a Float variant (if the tag is Inexact).

e Application code:
pl = Inexact 3.1416

rounded :: Number -> Integer
rounded num =

case num of

- Exact 1 -> i

projection .
 Inexact r -> round r

(by pattern
matching)

Variant records (unions)

Origin: Fortran | equivalence _
] Fortran | -- equivalence statement
statement: variables should integer i
share the same memory location |zeal =
. logical b
C’s union types equivalence (i, r, b)
Motivations:
— Saving space C - union
— Need of different access to the union é _
. in 1l;
same memory locations for double d:
system programming _Bool b;
— Alternative configurations of a i

data type

Variant records (unions) (2)

* |[n Ada, Pascal, unions are discriminated by a
tag, called discriminant

* Integrated with records in Pascal/Ada, not in C

ADA — discriminated variant

type Form is I
(pointy, cirggLary“féEEéngular);
type Figure (f: Form := pointy) is record
X, y: Float;
case f 1is
when pointy => null;
when circular => r: Float;
when rectangular => w, h: Float;
end case;
end record;

Using discriminated records in Ada

e Application code: .~ discriminated-record

box: Figure := L construction
(rectangular, 1.5, 2.0, 3.0, 4.0);

function area (fig: Figure) return Float

is

begin

return 0.0; tag test
when circular =>
return 3.1416 * fig.r**2;
when rectangular => .
return fig.w * flg hj
end case; -

end; TN L.
" projection

(Lack of) Safety in variant records

On

ly Ada has strict rules for assignment: tag and

variant have to be changed together

For nondiscriminated unions (Fortran, C) no
runtime check: responsibility of the programmer

In
INC

Pascal the tag field can be modified
ependently of the variant. Even worse: the tag

fie
Un

d is optional.
ions not included in Modula 3, Java, and

recent OO laguages: replaced by classes +
inheritance

Example: Java objects (1)

* Type declarations:

class Point {
private float x, vy;
... // methods

}

class Circle extends Point {
private float r;

// methods inherits x and y
J from Point

class Rectangle extends Point {
private float w, h;

// methods inherits x and y
} from Point

Example: Java objects (2)

e Methods:
class Point {

public float area ()
{ return 0.0; }

}

class Circle extends Point {

i;UbliC float area () overrides Point’s
{ return 3.1416 * ¢ % r,; } area() method

}

class Rectangle extends Point {

gublic float area() ..
{ return w * h; } 7 overrides Point’s

J area() method

Example: Java objects (3)

e Application code:

Rectangle box =
new Rectangle (1.5, 2.0, 3.0,4.0);

it can refer to a
Point, Circle, or
Rectangle object

float al = box.area();

Point 1t = ..;

float a2 = it.area(); calls the appropriate

area() method

Value model vs. reference model

What happens when a composite value is assigned to a variable of
the same type?

Value model (aka copy semantics): all components of the
composite value are copied into the corresponding components of
the composite variable.

Reference model: the composite variable is made to contain a
reference to the composite value.

Note: this makes no difference for basic or immutable types.

C and Ada adopt copy semantics.

Java adopts value model for primitive values, reference model for
objects.

Functional languages usually adopt the reference model

Example: Ada value model (1)

e Declarations:
type Date 1is

record
y: Year Number;
m: Month;

d: Day Number;
end record;
dateA: Date := (2004, jan, 1);
dateB: Date;

e Effect of copy semantics:

dateA dateB

dateB := dateA;
dateB.y := 2005; <=

3-27

Example: Java reference model (1)

* Declarations:

class Date {

int y, m, d;

public Date (int y, int m, int d)
{ ..}
}
Date dateR new Date (2004, 1, 1);
Date dateS new Date (2004, 12, 25);

* Effect of reference semantics:

dateR dateS

dateS = dateR;
dateR.y = 2005; <

3-28

Ada reference model with pointers (2)

 We can achieve the effect of reference model
in Ada by using explicit pointers:
type Date Pointer 1s access Date;

Date Pointer dateP = new Date;
Date Pointer dateQ = new Date;

aateP.all := datelh;
dateQ := dateP;

Java value model with cloning (2)

 We can achieve the effect of copy semantics in
Java by cloning:

Date dateR = new Date (2004, 4, 1);
dateT = dateR.clone() ;

Pointers

Thus in a language adopting the value model, the reference
model can be simulated with the use of pointers.

A pointer (value) is a reference to a particular variable.
A pointer’s referent is the variable to which it refers.
A null pointer is a special pointer value that has no referent.

A pointer is essentially the address of its referent in the store,
but it also has a type. The type of a pointer allows us to infer
the type of its referent.

Pointers mainly serve two purposes:

— efficient (sometimes intuitive) access to elaborated objects (as in C)

— dynamic creation of linked data structures, in conjunction with a heap
storage manager

Dangling pointers

A dangling pointer is a pointer to a variable that
has been destroyed.

Dangling pointers arise from the following
situations:

— where a pointer to a heap variable still exists after the
heap variable is destroyed by a deallocator

— where a pointer to a local variable still exists at exit
from the block in which the local variable was
declared.

A deallocator immediately destroys a heap variable.
All existing pointers to that heap variable become
dangling pointers.

Thus deallocators are inherently unsafe.

Dangling pointers in languages

Cis highly unsafe:

— After a heap variable is destroyed, pointers to it might still
exist.

— At exit from a block, pointers to its local variables might still
exist (e.g., stored in global variables).

Ada and Pascal are safer:

— After a heap variable is destroyed, pointers to it might still
exist.

— But pointers to local variables may not be stored in global
variables.

Java is very safe:

— It has no deallocator.

— Pointers to local variables cannot be obtained.
Functional languages are even safer:

— they don’t have pointers

Example: C dangling pointers

 Consider this C code:
struct Date {int v, d; };

struct Date* dateP, dateQ;
dateP (struct Date*)malloc(
dateP->y 2004; dateP->m = 1;
dateQ = dateP;

free (dateQ) ;

m,

printf ("sd", dateP->y);
dateP->y 2005;

fails ~ Fails

sizeof
dateP->d = 1;

- allocates a new
heap variable

(struct Date));

makes dateQ point
to the same heap
variable as dateP

7 deallocates that heap

variable (dateP and
dateQ are now
dangling pointers)

Techniques to avoid dangling pointers

* Tombstones —
— A pointer variable refers to a P 3
tombstone that in turn refers .,
to an object - /)
— If the object is destroyed, the pr2[—
tombstone is marked as ot pn.
“expired” N - o

reused)

ptr2 —

35

Locks and Keys

Heap objects are associated R B
with an integer (lock)

initialized when created. e K ey K2
A valid pointer contains a key /

that matches the lock on the —

object in the heap. o —]

Every access checks that they

ptr2 [135942

match

A dangling reference is
unlikely to match.

Pointers and arrays in C

* InC, an array variable is a pointer to its first element

int *a == int al]
int **a == int *al[]
 BUT equivalences don't always hold

— Specifically, a declaration allocates an array if it specifies a size for the
first dimension, otherwise it allocates a pointer

int **a, int *al[] pointer to pointerto int
int *a[n], n-element array of row pointers
int a[n][m], 2-darray
* Pointer arithmetics: operations on pointers are scaled by the
base type size. All these expressions denote the third element

of a:
al[2] (a+2) [0] (a+1) [1] 2[a] O[a+2]

C pointers and recursive types

 Cdeclaration rule: read right as far as you can
(subject to parentheses), then left, then out a level
and repeat

int *a[n], n-element array of pointers to integer

int (*a) [n], polnter to n-element array of
integers

 Compiler has to be able to tell the size of the things
to which you point
— So the following aren't valid:

int al[]][] bad
int (*a) [] bad

Recursive types: Lists

A recursive type is one defined in terms of itself,
like lists and trees

A list is a sequence of 0 or more component
values.

The length of a list is its number of components.
The empty list has no components.

A non-empty list consists of a head (its first
component) and a tail (all but its first
component).

A list is homogeneous if all its components are of
the same type. Otherwise it is heterogeneous.

List operations

e Typical list operations:
— length
— emptiness test
— head selection
— tail selection
— concatenation.

Example: Haskell lists

Type declaration for integer-lists:
data IntlList = Nil | Cons Int IntlList

Some IntList constructions: " recursive
Nil
Cons 2 (Cons 3 (Cons 5 (Cons 7 Nil)))

Actually, Haskell has built-in list types:
[Int] [String] [[Int]]

Some list constructions:
[1 [2,3,5,7] ["cat","dog"] [[1],[2,3]]

Built-in operator for cons

[2,3,5,7] = 2:[3,5,7] =2:3:5:[7] = 2:3:5:7:[]

Example: Ada lists

 Type declarations for integer-lists:

type IntNode;
type IntList is access IntNode;.
type IntNode is record \
head: Integer;
tail: IntlList;
end record;

e mutually
recursive

D An IntList construction:

new IntNode'(2,
new IntNode'(3,
new IntNode'(5,
new IntNode'(7, null)))

Example: Java lists

* C(Class declarations for generic lists:
class List<E> {

public E head;
public List<E> tall; recursive

public List<E> (E el, List<E> t) {
head = h; tail = t;
}
}

o A list construction:
List<Integer> list =

new List<Integer>(2,
new List<Integer>(3,
new List<integer>(5, null))));

