Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 22

e Control Flow
— [teration and Iterator
— Recursion

Overview

* Expressions evaluation
— Evaluation order
— Assignments

e Structured and unstructured flow
— Goto's
— Sequencing
— Selection
— |teration and iterators
— Recursion

Ilteration

An iterative command (or /loop) repeatedly executes a
subcommand, which is called the loop body.

Each execution of the loop body is called an iteration.

Classification of iterative commands:

— Indefinite iteration: the number of iterations is not
predetermined.

— Definite iteration: the number of iterations is
predetermined.

Note: sequencing, selection and definite iteration are
not sufficient to make a language Turing complete:
either indefinite iteration or recursion is needed

Ilteration

* Enumeration-controlled loops (aka bounded/definite
iteration) repeat a collection of statements a number of
times, where in each iteration a loop index variable (counter,
control variable) takes the next value of a set of values
specified at the beginning of the loop

* Logically-controlled loops (aka unbounded/indefinite
iteration) repeat a collection of statements until some
Boolean condition changes value in the loop

— Pretest loops test condition at the begin of each iteration
— Posttest loops test condition at the end of each iteration

— Midtest loops allow structured exits from within loop with exit
conditions

Logically-Controlled Pretest loops

Logically-controlled pretest loops check the exit condition before the
next loop iteration

Not available in Fortran-77

Pascal:
while <cond> do <stmt>
where the condition is a Boolean-typed expression
C, C++:
while (<expr>) <stmt>
where the loop terminates when the condition evaluates to 0, NULL,
or false
— Use continue and break to jump to next iteration or exit the loop

Java is similar C++, but condition is restricted to Boolean

Logically-Controlled Posttest Loops

Logically-controlled posttest loops check the exit condition after
each loop iteration

Not available in Fortran-77

Pascal:

repeat <stmt> [; <stmt>]* until <cond>
where the condition is a Boolean-typed expression and the loop
terminates when the condition is true

C, C++:

do <stmt> while (<expr>)
where the loop terminates when the expression evaluates to 0,
NULL, or false

Java is similar to C++, but condition is restricted to Boolean

Logically-Controlled Midtest Loops

« Ada supports logically-controlled midtest loops check exit conditions

anywhere within the loop:
loop
<statements>
exit when <cond>;
<statements>
exit when <cond>;

ena.loop

« Ada also supports labels, allowing exit of outer loops without gotos:
outer: loop

féf i in 1..n loop
éiit outer when a[i]>0;

end loop;
end outer loop;

* Java allows labeled breaks to exit of outer loops

Enumeration-Controlled Loops

General form:
for I = start to end by step do

body

* Informal operational semantics...

Some critical issues

 Number of iterations?

 What if I, start and/or end are modified in body?
 What if step is negative?

 Whatis the value of I after completion of the iteration?

Enumeration-Controlled Loops

Some failures on design of enumeration-controlled loops
Fortran-IV:
DO 20 i =1, 10, 2
20 CONTINUE
which is defined to be equivalent to

i=1
20 ...
i=i+ 2
IF i.LE.10 GOTO 20
Problems:

— Requires positive constant loop bounds (1 and 10) and step size (2)

— If loop index variable i is modified in the loop body, the number of iterations is
changed compared to the iterations set by the loop bounds

— GOTOs can jump out of the loop and also from outside into the loop
— The value of counter i after the loop is implementation dependent
— The body of the loop will be executed at least once (no empty bounds)

Enumeration-Controlled Loops (cont’d)

* Fortran-77:

— Same syntax as in Fortran-1V, but many dialects support ENDDO instead of
CONTINUE statements

— Can jump out of the loop, but cannot jump from outside into the loop
— Assignments to counter i in loop body are not allowed

— Number of iterations is determined by
max(|[(H-L+S)/S],0)
for lower bound L, upper bound H, step size S

— Body is not executed when (H-L+S)/5< 0

— Either integer-valued or real-valued expressions for loop bounds and step
sizes

— Changes to the variables used in the bounds do not affect the number of
iterations executed

— Terminal value of loop index variable is the most recent value assigned, which
IS

L + S * max(| (H-L+S)/S], 0)

Enumeration-Controlled Loops (cont’d)

* Algol-60 combines logical conditions in combination
loops:

for <id> := <forlist> do <stmt>
where the syntax of <forlist> is

<forlist> ::= <enumerator> [, enumerator]*
<enumerator> ::= <expr>
| <expr> step <expr>until <expr>
| <expr>while <cond>

* Not orthogonal: many forms that behave the same:

for i :=1, 3, 5, 7, 9 do ...
for i := 1 step 2 until 10 do ...
for i := 1, i+2 while i < 10 do

Enumeration-Controlled Loops (cont’d)

* Algol-60 combines logical conditions in combination
loops:

for <id> := <forlist> do <stmt>
where the syntax of <forlist> is

<forlist> ::= <enumerator> [, enumerator]*
<enumerator> ::= <expr>
| <expr> step <expr>until <expr>
| <expr>while <cond>

* Not orthogonal: many forms that behave the same:

for i :=1, 3, 5, 7, 9 do ...
for i := 1 step 2 until 10 do ...
for i := 1, i+2 while i < 10 do

Enumeration-Controlled Loops (cont’d)

« Pascal’'s enumeration-controlled loops have simple and
elegant design with two forms for up and down:
for <id> := <expr> to <expr> do <stmt>
and
for <id> := <expr> downto <expr> do <stmt>
« Can iterate over any discrete type, e.g. integers, chars,
elements of a set

 Lower and upper bound expressions are evaluated once
to determine the iteration range

« Counter variable cannot be assigned in the loop body
* Final value of loop counter after the loop is undefined

Enumeration-Controlled Loops (cont’d)

« Ada’s for loop is much like Pascal's:

for <id> in <expr> .. <expr> loop
<statements>
end loop

and

for <id> in reverse <expr> .. <expr> loop
<statements>
end loop

« Lower and upper bound expressions are evaluated once to determine
the iteration range

« Counter variable has a local scope in the loop body
— Not accessible outside of the loop

« Counter variable cannot be assigned in the loop body

Enumeration-Controlled Loops (cont’d)

« C and C++ do not have true enumeration-controlled loops, they
have combination loops

« A'"for" loop is essentially a logically-controlled loop
. for (1 = first; 1 <= last; i += step) {

}
is equivalent to
{

i = first;
while (i1 <= last) {

i += step;
}

}

» Java’s standard for statement is as in C/C++, but the enhanced for is
almost a true enumeration-controlled loop (see later)

Enumeration-Controlled Loops (cont’d)

Why is C/C++/Java for not enumeration controlled?

— Assignments to counter i and variables in the bounds are allowed, thus
it is the programmer's responsibility to structure the loop to mimic
enumeration loops

Use continue to jump to next iteration
Use break to exit loop

C++ and Java also support local scoping for counter variable
for (int 1 = 1; i <= n; i++)

In this case the look index variable is not accessible after the loop

Enumeration-Controlled Loops (cont’d)

* Other problems with C/C++ for loops to emulate enumeration-
controlled loops are related to the mishandling of bounds and limits
of value representations

— This C program never terminates (do you see why?)
#include <limits.h> // INT MAX is max int value
main ()

{ int 1i;
for (i = 0; i <= INT MAX; i++)
printf ("Iteration %d\n", 1i);
}
— This C program does not count from 0.0 to 10.0, why?
main ()
{ £float n;
for (n = 0.0; n <= 10; n += 0.01)
printf ("Iteration %g\n", n);

Enumeration-Controlled Loops (cont’d)

 How is loop iteration counter overflow handled?
« C, C++, and Java: nope
 Fortran-77

— Calculate the number of iterations in advance

— For REAL typed index variables an exception is raised
when overflow occurs

« Pascal and Ada

— Only specity step size 1 and -1 and detection of the
end of the iterations is safe

— Pascal’s final counter value is undefined (may have
wrapped)

lterators

Containers (collections) are aggregates of homogeneous
data, which may have various (topo)logical properties

— Eg: arrays, sets, bags, lists, trees,...

Common operations on containers requires to iterate on
(all of) its elements

— Eg: search, print, map, ...

[terators provide an abstraction for iterating on
containers, through a sequential access to all their
elements

Iterator objects are also called enumerators or
generators

Ilterators in Java

Iterators are supported in the Java Collection Framework: interface
Iterator<T>

They exploit generics (as collections do)

lterators are usually defined as nested classes (non-static private
member classes): each iterator instance is associated with an
instance of the collection class

Collections equipped with iterators have to implement the
Iterable<T> interface

class BinTree<T> implements Iterable<T> ({
BinTree<T> left;
BinTree<T> right;
T val;

// other methods: insert, delete, lookup,
public Iterator<T> iterator() ({
return new Treelterator (this);

}

Iterators in Java (cont’d)

class BinTree<T> implements Iterable<T> ({

private class Treelterator implements Iterator<T> ({
private Stack<BinTree<T>> s = new Stack<BinTree<T>>() ;
Treelterator (BinTree<T> n) {
if (n.val '= null) s.push(n);
}
public boolean hasNext () ({
return !s.empty () ;
}
public T next () {

if ('hasNext()) throw new NoSuchElementException() ;
BinTree<T> n = s.pop()
if (n.right !'= null) s.push(n.right);
if (n.left !'= null) s.push(n.left);
return n.val;
}
public void remove () {
throw new UnsupportedOperationException() ;

b}

Iterators in Java (cont’d)

 Use of the iterator to print all the nodes of a BinTree:

for (Iterator<Integer> it = myBinTree.iterator () ;

it.hasNext () ;)
{ Integer i = it.next();
System.out.println (i) ;
}

* Java provides (since Java 5.0) an enhanced for statement (foreach) which exploits
iterators. The above loop can be written:

for (Integer i : myBinTree)
System.out.println (i) ;

* Inthe enhanced for, myBinTree must either be an array of integers, or it has to
implement Iterable<Integer>

« The enhanced for on arrays is a bounded iteration. On an arbitrary iterator it depends
on the way it is implemented.

Ilterators in C++

« (C++ iterators are associated with a container object and used in loops
similar to pointers and pointer arithmetic

» They exploit the possibility of overloading primitive operations.

vector<int> V;
for (vector<int>::iterator it = V.begin(), it !'=

V.end (), ++it)
cout << *n << endl;

An in-order tree traversal:

tree_node<int> T;

for (tree node<int>::iterator it = T.begin(); it !=
T.end(); ++it)
cout << *n << endl;

True lterators

« While Java and C++ use iterator objects that hold
the state of the iterator, Clu, Python, Ruby, and C#
use “true iterators” which are functions that run in
“parallel” (in a separate thread) to the loop code to
produce elements
— The yield operation in Clu returns control to the loop body

— The loop returns control to the generator’s last yield

operation to allow it to compute the value for the next
iteration

— The loop terminates when the generator function returns

True Iterators (cont’d)

* Generator function for pre-order visit of binary tree in Python
* Since Python is dynamically typed, it works automatically
for different types

class BinTree:
def init (self): # constructor
self.data = self.lchild = self.rchild = None

other methods: insert, delete, lookup,
def preorder (self):
if self.data !'= None:
yield self.data
if self.lchild '= None:
for d in self.lchild.preorder() :
yield d
if self.rchild '= None:
for d in self.rchild.preorder():
yield d

Iterators in some functional languages

e Exploting “in line” definitions of functions, the body of
the iteration can be defined as a function having as
argument the loop index

 Then the body is passed as last argument to the
iterator which is a function realising the loop

* Simple iterator in Scheme and sum of 50 odd numbers:

(define uptoby

(lambéa (low high.step f) (let ((sum 0))
(if (<= low high) (uptoby 1 100 2
(begin (Lambda (i)
(f low) (set! sum (+ sum i))))
(uptoby (+ low step) high step f)) sum)

0))))

Recursion

Recursion: subroutines that call themselves directly or indirectly
(mutual recursion)

Typically used to solve a problem that is defined in terms of simpler
versions, for example:

— To compute the length of a list, remove the first element, calculate the
length of the remaining list in n, and return n+1

— Termination condition: if the list is empty, return O

lteration and recursion are equally powerful in theoretical sense

— lteration can be expressed by recursion and vice versa
Recursion is more elegant to use to solve a problem that is naturally
recursively defined, such as a tree traversal algorithm

Recursion can be less efficient, but most compilers for functional
languages are often able to replace it with iterations

Tail-Recursive Functions

Tail-recursive functions are functions in which no operations follow
the recursive call(s) in the function, thus the function returns
immediately after the recursive call:

tail-recursive not tail-recursive
int trfun|() int rfun|()
{ . { ..
return trfun(); return l+rfun();

} }
A tail-recursive call could reuse the subroutine's frame on the run-
time stack, since the current subroutine state is no longer needed
— Simply eliminating the push (and pop) of the next frame will do
In addition, we can do more for tail-recursion optimization: the

compiler replaces tail-recursive calls by jumps to the beginning of
the function

Tail-Recursion Optimization

« Consider the GCD function:
int gcd(int a, int b)
{ if (a==b) return a;
else if (a>b) return gcd(a-b, b);
else return gcd(a, b-a);
}
« a good compiler will optimize the function into:
int gcd(int a, int b)
{ start:
if (a==b) return a;
else if (a>b) { a = a-b; goto start; }
else { b = b-a; goto start; }

}
« which is just as efficient as the iterative version:

int gcd(int a, int b)
{ while (a'=b)
if (a>b) a =
else b = b-a;
return a;

}

a-b;

Converting Recursive Functions to Tail-
Recursive Functions

 Remove the work after the recursive call and include it in some other
form as a computation that is passed to the recursive callh')
« For example, the non-tail-recursive function computing i f(n)
(define summation (lambda (f low high) e
(if (= low high)
(f low)
(+ (f low) (summation f (+ low 1) high)))))

* can be rewritten into a tail-recursive function:

(define summation (lambda (f low high subtotal)
(if (=low high)
(+ subtotal (f low))
(summation f (+ low 1) high (+ subtotal (f low))))))

Example

* Here is the same example in C:

typedef int (*int func) (int);
int summation(int func f, int low, int high)
{ if (low == high)
return £ (low)
else
return f(low) + summation(f, low+l, high) ;

}
rewritten into the tail-recursive form:

int summation(int func £, int low, int high, int subtotal)
{ if (low == high)
return subtotal+f (low)
else
return summation(f, low+l, high, subtotal+f(low));

When Recursion is Bad

« The Fibonacci function implemented as a recursive function is very
inefficient as it takes exponential time to compute:

(define fib (lambda (n)
(cond ((=n 0) 1)
((=n 1) 1)
(else (+ (fib (- n 1)) (fib (- n 2)))))))

with a tail-recursive helper function, we can run it in O(n) time:

(define fib (lambda (n)
(letrec ((fib-helper (lambda (f1 £2 i)
(if (= i n)
£2

(fib-helper £f2 (+ £f1 £2) (+ i 1))))))
(fib-helper 0 1 0))))

Continuation-passing Style

Makes control explicit in functional programming
(including evaluation order of operands/arguments,
returning from a function, etc.)

A continuation is a function representing “the rest of the
program” taking as argument the current result

Functions have an additional (last) argument, which is a
continuation

Primitive functions have to be encapsulated in CPS ones

Encapsulation of primitive operators

(define (*& x y k)
(k (* x y)))

Making evaluation order explicit

* Function call arguments must be either variables or lambda
expressions (not more complex expressions)

Direct style: evaluation order is implicit

(define (diag x y)

(sgqrt (+ (* x x) (*y y))))
(diag 3 4)

Continuation-passing style: evaluation order is explicit

(define (diagé& x y k)
(*& x x (lambda (x2)
(*& v vy (lambda (y2)
(+& x2 y2 (lambda (x2py2)
(sqrt& x2py2 k))))))))
(diag& 3 4 (lamba (v) v)))

Non-tail-recursive functions cause
continuation in recursive call to grow

Direct style: non-tail-recursive factorial

(define (factorial n)
(if (= n 0)
1
(* n (factorial (- n 1)))))

Continuation-passing style: non-tail-recursive factorial

(define (factorialé& n k)
(=& n 0 (lambda (b)
(if b
(k 1)
(-& n 1 (lambda (nml)
(factorial& nml (lambda (f)

(*& n £ k)))))))))

Tail-recursive functions: continuation
in recursive call is identical

Direct style: tail-recursive factorial
(define (factorial n) (f-aux n 1))
(define (f-aux n a)
(if (= n 0)
a ; tail-recursive
(f-aux (- n 1) (* n a))))

Continuation-passing style: tail-recursive factorial
(define (factorial& n k) (f-aux& n 1 k))
(define (f-aux& n a k)
(=& n 0 (lambda (b)
(if b
(k a)
(-& n 1 (lambda (nml)
(*¢ n a (lambda (nta)
(f-aux& nml nta k)))))))))

On continuation-passing style

e |f all functions are in CPS, no runtime stack is necessary: all
invocations are tail-calls

* The continuation can be replaced or modified by a
function, implementing almost arbitrary control structures

(exceptions, goto’s, ...)
* Continuations used in denotational semantics for goto’s

and other control structure (eg: bind a label with a
continuation in the environment)

Continuation-passing style: returning error to the top-level

(define (sgrt n k)
(if (< n 0)
'error
(k (safe-sqgrt n))))

Direct style: the callers should propagate the error along the stack

