Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 21

e Control Flow
— Expression evaluation
— Structured and unstructured flow

— Sequencing and selection

Overview

* Expressions evaluation
— Evaluation order
— Assignments

e Structured and unstructured flow
— Goto's
— Sequencing
— Selection

Control Flow: Ordering the

Execution of a Program
* Constructs for specifying the execution order:

1.Sequencing: the execution of statements and
evaluation of expressions is usually in the order in
which they appear in a program text

2.Selection (or alternation): a run-time condition
determines the ch0|ce_among two or more
statements or expressions

3.Iteration: a statement is repeated a number of times
or until a run-time condition is met

4.Procedural abstraction: subroutines encapsulate
collections of statements and subroutine calls can be
treated as single statements

Control Flow: Ordering the
Execution of a Program (cont’d)

5. Recursion: subroutines which call themselves directly or
indirectly to solve a problem, where the problem is
typically defined in terms of simpler versions of itself

6. Concurrency: two or more program fragments executed in

parallel, either on separate processors or interleaved on a
single processor

7. Exception handling: when abnormal situations arise in a
protected fragment of code, execution branches to a
handler that executes in place of the fragment

8. Nondeterminacy: the execution order among alternative
constructs is deliberately left unspecified, indicating that
any alternative will lead to a correct result

Expression Syntax and
Effect on Evaluation Order

* An expression consists of
— An atomic object, e.g. number or variable

— An operator applied to a collection of operands (or arguments)
that are expressions

e Common syntactic forms for operators:
— Function call notation, e.g. somefunc(A, B, C)
— Infix notation for binary operators, e.g. A+ B
— Prefix notation for unary operators, e.g. -A
— Postfix notation for unary operators, e.g. i++
— Cambridge Polish notation, e.g. (* (+1 3) 2) in Lisp
— "Multi-word" infix ("mixfix"), e.g.
e a>b?a:binC

* myBox displayOn: myScreen at: 100@50 in Smalltalk,
where displayOn: and at: are written infix with arguments mybox,

myScreen, and 100@50

Operator Precedence and Associativity

 The use of infix, prefix, and postfix notation sometimes lead
to ambiguity as to what is an operand of what

— Fortran example: a + b * c**d**e/f a+ ((b * (c**(d**e)))/f)

* Operator precedence: higher operator precedence means that
a (collection of) operator(s) group more tightly in an
expression than operators of lower precedence

* Operator associativity: determines grouping of operators of
the same precedence
— Left associative: operators are grouped left-to-right (most common)

— Right associative: operators are grouped right-to-left (Fortran power
operator **, C assignment operator = and unary minus)

— Non-associative: requires parenthesis when composed (Ada power
operator **)

Fortran Pascal

C

++, -— (post-inc., dec.)

Ada

*k not ++, -— (pre-inc., dec.), abs (absolute value),
+, - (unary), not, **

&, * (address, contents of),

I, ~ (logical, bit-wise not)

*, / *, /, * (binary), /, *, /,mod, rem
div, mod, and % (modulo division)

+, - (unary +, - (unary and +, - (binary) +, = (unary)

and binary) binary), or

<<, >> +, = (binary),

(left and right bit shift) & (concatenation)
°eq-) -ne°)°1t-) <)<=>>>>=) <)<=)>)>= =>/=><><=)>)>=
.le., .gt., .ge. =, <>, IN (inequality tests)

(comparisons)
.not. ==, I= (equality tests)

& (bit-wise and)

~ (bit-wise exclusive or)

| (bit-wise inclusive or)

.and && (logical and) and, or, xor
(logical operators)
.or. || (logical or)

.eqv., .neqv.
(logical comparisons)

?: (if...then...else)

=, +=, ==, x=, /=) %=)
>>=) <<=) &=) A=) |=
(assignment)

, (sequencing)

Operator precedence levels
and associativity in Java

Operatore | Descrizione Associa a
_ . _ | dotnotation sinistra
_ [_ 1 | accessoelemento array
_ (_) | invocazione di metodo
_ ++ | incremento postfisso
_ -- | decremento postfisso
++ _ | incremento prefisso
-- _ | decremento prefisso
! _ | negazione booleana
~ _ | negazione bit-a-bit
+ _ | segno positivo (nessun effetto)
- _ | inversione di segno
(Tipo) _ | castesplicito
new _ | creazione di oggetto
_ * _ | moltiplicazione sinistra
_ / _ | divisione o divisione tra interi sinistra
_ % _ | resto della divisione intera sinistra
_ + _ | somma o concatenazione sinistra
_ - _ | sottrazione sinistra
_ << _ | shift aritmetico a sinistra sinistra
_ >> _ | shift aritmetico a destra sinistra
_ >>> _ | shift logico a destra sinistra
_ < _ | minore di sinistra
_ <= _ | minore o uguale a sinistra
_ > _ | maggiore di sinistra
_ >= _ | maggiore o uguale a sinistra
_ == _ | ugualea sinistra
_ '= _ | diverso da sinistra
instanceof | appartenenza a un tipo sinistra
_ & _ | AND bit-a-bit sinistra
_ =~ _ | XOR bit-a-bit sinistra
_ | _ | OR bit-a-bit sinistra
_ && _ | congiunzione ‘lazy’ sinistra
_ |1 _ | disgiunzione inclusiva ‘lazy’ sinistra
_ 7 _ _ | espressione condizionale destra
_ = _ | assegnamento semplice destra
_ op= _ | assegnamento composto destra
(opunotra *, /, %, +, -, <<, >>,>>> &, ~, |) destra

Operator Precedence and Associativity

 (C’svery fine grained precedence levels are of doubtful
usefulness

* Pascal’s flat precedence levels is a design mistake
if A<B and C<D then
is grouped as follows

if A<(B and C)<D then

* Note: levels of operator precedence and associativity are
easily captured in a context-free grammar, or can be
imposed by instructing the parser on how to resolve shift-
reduce conflicts.

Evaluation Order of Expressions

Precedence and associativity state the rules for grouping operators in
expressions, but do not determine the operand evaluation order!
— Expression
a-f (b) -b*c
is structured as
(a-£ (b)) - (b*c)
but either (a-£ (b)) or (b*c) can be evaluated first
The evaluation order of arguments in function and subroutine calls may
differ, e.g. arguments evaluated from left to right or right to left

Knowing the operand evaluation order is important

— Side effects: suppose £ (b) above modifies the value of b (thatis, £ (b) has
a "side effect") then the value will depend on the operand evaluation order

— Code improvement: compilers rearrange expressions to maximize efficiency,
e.g. a compiler can improve memory load efficiency by moving loads up in the
instruction stream

Expression Operand Reordering Issues

« Rearranging expressions may lead to arithmetic overflow or different
floating point results

— Assume b, d, and c are very large positive integers, then if b-c+d is
rearranged into (b+d) -c arithmetic overflow occurs

— Floating point value of b-c+d may differ from b+d-c

— Most programming languages will not rearrange expressions when
parenthesis are used, e.g. write (b-c) +d to avoid problems

« Design choices:

— Java: expressions evaluation is always left to right in the order

operands are provided in the source text and overflow is always
detected

— Pascal: expression evaluation is unspecified and overflows are always
detected

— C and C++: expression evaluation is unspecified and overflow detection
Is implementation dependent

— Lisp: no limit on number representation

Short-Circuit Evaluation

Short-circuit evaluation of Boolean expressions: the result of an
operator can be determined from the evaluation of just one operand
Pascal does not use short-circuit evaluation

— The program fragment below has the problem that element a[11] is
read resulting in a dynamic semantic error:
var a:array [1l..10] of integer;

i:=1;
while i<=10 and a[i]<>0 do
i := i+l
C, C++, and Java use short-circuit conditional and/or operators
— If ain a&&b evaluates to false, b is not evaluated
— Ifain a| | b evaluates to true, b is not evaluated

— Avoids the Pascal problem, e.g.

while (i <= 10 && a[i] !'= 0)
— Ada uses and then and or else, e.g. cond1 and then cond?2
— Ada, C, C++ and Java also have regular bit-wise Boolean operators

Assignments and Expressions

Fundamental difference between imperative and functional

languages

Imperative languages: “computing by means of side effects”
— Computation is an ordered series of changes to values of

variables in memory (state) and statement ordering is
influenced by run-time testing values of variables

Expressions in (pure) functional language are referentially
transparent:

— All values used and produced depend on the local
referencing environment of the expression

— A function is idempotent in a functional language: it always
returns the same value given the same arguments because
of the absence of side-effects

L-Values vs. R-Values and
Value Model vs. Reference Model

Consider the assignment of the form: a:=b

— The left-hand side a of the assignment is an /-value which is an expression
that should denote a location, e.g. array element a[2] or a variable foo or
a dereferenced pointer *p

— The right-hand side b of the assignment is an r-value which can be any

syntactically valid expression with a type that is compatible to the left-
hand side

Languages that adopt the value model of variables copy the value
of b into the location of a (e.g. Ada, Pascal, C)

Languages that adopt the reference model of variables copy
references, resulting in shared data values via multiple references

— Clu, Lisp/Scheme, ML, Haskell, Smalltalk adopt the reference model. They
copy the reference of b into a so that a and b refer to the same object

— Most imperative programming languages use the value model

— Java is a mix: it uses the value model for built-in types and the reference
model for class instances

Special Cases of Assignments

« Assignment by variable initialization

— Use of uninitialized variable is source of many problems, sometimes
compilers are able to detect this but with programmer involvement e.g.
definite assignment requirement in Java

— Implicit initialization, e.g. 0 or NaN (not a number) is assigned by default
when variable is declared

« Combinations of assignment operators (+=, -=, *=, ++, --.)

— InC/C++ a+=b isequivalentto a=a+b (but a[i++]+=b is
different from a[i++]=a[i++]+Db,!)

— Compiler produces better code, because the address of a variable is
only calculated once

* Multiway assignments in Clu, ML, and Perl
— a,b := ¢,d // assigns c to a and d to b simultaneously,
* eg.a,b :=b,a swaps a with b
— a,b := £(c) // £ returns a pair of values

Structured and Unstructuted Flow

* Unstructured flow: the use of goto statements and statement
labels to implement control flow

— Close correspondence with conditional/unconditional branching in
assembly/machine code

— Merit or evil? Hot debate in 1960’s. Dijkstra “GOTO Considered
Harmful”

— B6hm-Jacopini theorem: goto’s are not necessary
— Generally considered bad: programs are hardly understandable

— Sometimes useful for jumping out of nested loops and for coding the
flow of exceptions (when a language does not support exception
handling)

— Java has no goto statement (supports labeled loops and breaks)

Structured and Unstructuted Flow

e Structured flow:
— Statement sequencing
— Selection with "if-then-else" statements and "switch" statements
— lteration with "for" and "while" loop statements
— Subroutine calls (including recursion)
— All of which promotes "structured programming”

e Structured alternatives to goto
— break to escape from the middle of a loop
— return to exit a procedure
— continue to skip the rest of the current iteration of a loop
— raise (throw) an exception to pass control to a suitable handler
— multilevel return with unwinding to repair the runtime stack (e.g.
return-from statement in Common Lisp)

* Cannot jump into middle of block or function body

Sequencing

A list of statements in a program text is executed in top-down
order
A compound statement is a delimited list of statements

— A compund statement is called a block when it includes variable
declarations

— C, C++, and Java use { and } to delimit a block
— Pascal and Modula use begin ... end
— Ada uses declare ... begin ... end

Special cases: in C, C++, and Java expressions can be
Inserted as statements

In pure functional languages sequencing is impossible (and
not desired!)

In some (non-pure) functional languages a sequence of
expression has as value the last expression’s value

Selection

If-then-else selection statements in C and C++:
— if (<expr>) <stmt> [else <stmt>]
— Condition is a bool, integer, or pointer

— Grouping with { and } is required for statement sequences in the then clause
and else clause
— Syntax ambiguity is resolved with "an else matches the closest if' rule

Conditional expressions, e.g. if and cond in Lisp and a?b:cin C
Java syntax is like C/C++, but condition must be Boolean

Ada syntax supports multiple elsif's to define nested conditions:
— if <cond> then
<statements>
elsif <cond> then
e-J...se
<statements>
end if

Selection (cont’d)

Case/switch statements are different from if-then-else
statements in that an expression can be tested against
multiple constants to select statement(s) in one of the
arms of the case statement:
— C, C++, and Java:

switch (<expr>)

{ case <const>: <statements> break;

case <const>: <statements> break;

default: <statements>

}

— Abreak is necessary to transfer control at the end of an arm to
the end of the switch statement

— Most programming languages support a switch-like statement,
but do not require the use of a break in each arm

Selection (cont’d)

The allowed types of <exp> depends on the language:
e.g. int, char, enum, strings (in C# and Java)

Some languages admit label ranges

A switch statement is much more efficient compared to
nested if-then-else statements

Several possible implementation techniques with
complementary advantages/disadvantages:

— Jump tables

— Sequential testing (like if ... then ... elseif ...)

— Hash tables

— Binary search

