Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 20

* More about bindings and scopes
* Implementation of scopes
* Closures

We have seen...

Binding: association name <-> object
Binding times
Object allocation policies (static, stack, heap)

Scope of a binding: textual region of the
program in which the binding is active

Static versus dynamic scoping

More about scopes, and passing
subroutines as parameters

Nested blocks and declaration order
Modules and scopes

Implementing Scopes

Aliases and overloading

Subroutines as parameter or result
Reference (non-local) environment
Shallow vs. deep binding

Closures

Returning subroutines: unlimited extent
Object closures

Ada

C++

Java
C#

Nested Blocks

{ int = a;

t
b;
t;

a
b
}

declare t:integer
begin

V]
Monon
o

In several languages local
variables are declared in a
block or compound statement

— At the beginning of the block
(Pascal, ADA, ...)

— Anywhere (C/C++, Java, ...)

Local variables declared in
nested blocks in a single
function are all stored in the
subroutine frame for that
function (most programming
languages, e.g. C/C++, Ada,
Java)

Declaration order and use of bindings

Scope of a binding
1) In the whole block where it is defined
2) From the declaration to the end of the block
Use of binding
a) Only after declaration
b) Inthe scope of declaration
 Many languages use 2)-a).
 Some combinations produce strange effects: Pascal uses 1) — a).

const N = 10;
procedure foo;
const
M = N; (* static semantic error! *)
var
A : array [1..M] of integer;
N : real; (* hiding declaration *)
Reported errors: “N used before declaration”

“N is not a constant”

Declarations and definitions

“Use after declaration” would forbid mutually
recursive definitions (procedures, data types)

The problem is solved distinguishing declaration
and definition of a name, asin C

Declaration: introduces a name
Definition: defines the binding

struct manager; // Declaration only
struct employee {

struct manager *boss;

struct employee *next employee;

}i
struct manager ({ // Definition
struct employee *first employee;

.}

Modules

* Modules are the main feature of a programming
language that supports the construction of large
applications

— Support information hiding through encapsulation: explicit
import and export lists

— Reduce risks of name conflicts; support integrity of data
abstraction

e Teams of programmers can work on separate
modules in a project

* No language support for modules in C and Pascal
— Modula-2 modules, Ada packages, C++ namespaces
— Java packages

Module Scope

* Scoping: modules encapsulate variables, data types,
and subroutines in a package
— Objects inside are visible to each other
— Objects inside are not visible outside unless exported
— Objects outside are not visible inside unless imported
[closed vs. open modules]
A module interface specifies exported variables, data
types and subroutines

 The module implementation is compiled separately
and implementation details are hidden from the user
of the module

Module Types, towards Classes

Modules as abstraction mechanism: collection of
data with operations defined on them (sort of
abstract data type)

Various mechanism to get module instances:

— Modules as manager: instance as additional
arguments to subroutines (Modula-2)

— Modules as types (Simula, ML)
Object-Oriented: Modules (classes) + inheritance

Many OO languages support a notion of Module
(packages) independent from classes

Implementing Scopes

 The language implementation must keep trace of current
bindings with suitable data structures:

— Static scoping: symbol table at compile time

— Dynamic scoping: association lists or central reference table at
runtime

 Symbol table main operations: insert, lookup

— because of nested scopes, must handle several bindings for the
same name

— new scopes (not LIFO) are created for records and classes

— the symbol table might be needed at runtime for symbolic
debugging

— bindings are never deleted
— Other operations: enter_scope, leave _scope

LeBlanc & Cook Symbol Table

Each scope has a serial number
— Predefined names: O (pervasive)
— Global names: 1, and so on

Names are inserted in a hash table, indexed by the name
— Entries contain symbol name, category, scope number, (pointer to)
type, ...
Scope Stack: contains numbers of the currently visible scopes

— Entries contain scope number and additional info (closed?, ...). They
are pushed and popped by the semantic analyzer when entering/
leaving a scope

Look-up of a name: scan the entries for name in the hash table, and
look at the scope number n

— If n <> 0 (not pervasive), scan the Scope Stack to check if scope n is
visible

— Stops at first closed scope. Imported/Export entries are pointer.

LeBlanc & Cook lookup function

procedure lookup (name)
pervasive := best := null
apply hash function to name to find appropriate chain
foreach entry e on chain

if e.name = name —- not something else with same hash value
if e.scope = 0
pervasive := e
else

foreach scope s on scope stack, top first
if s.scope = e.scope

best := e —— closer instance
exit inner loop
elsif best !'= null and then s.scope = best.scope
exit inner loop —— won’t find better
if s.closed
exit inner loop —— can’t see farther

if best != null
while best is an import or export entry
best := best.real entry
return best

elsif pervasive !'= null
return pervasive
else

return null -- name not found

Association Lists (A-lists)

List of bindings maintained at runtime with dynamic
scoping

Bindings are pushed on enter _scope and popped on
exit_scope

Look up: walks down the stack till the first entry for the
given name

Entries in the list include information about types

Used in many implementations of LISP: sometimes the
A-list is accessible from the program

Look up is inefficient

A-lists: an example

Referencing environment A-list

l (newest declarations are at this end of the list)

| | param \

other info

J | local var]

other info

(\J

global proc

other info

P | global proc | other info
4

J | global var | other info
\4

| | global var | other info

l

(predefined names)

[, J :integer

procedure P (I : integer)

procedure Q
J 1 integer

P)
—— main program

Q

A-list after entering P in the exection of Q

-

Referencing environment A-list

l

J | local var] other info
Y (\J
| Q | global proc | other info

P | global proc | other info
4

J | global var | other info
4

| | global var | other info

l

(predefined names)

A-list after exiting P

Central reference tables

Similar to LeBlanc&Cook hash table, but stack
of scopes not needed

Each name has a slot with a stack of entries:
the current one on the top

On enter_scope the new bindings are pushed
On exit_scope the scope bindings are popped

More housekeeping work necessary, but
faster access

Central reference table

(each table entry points to the newest declaration of the given name)

P > global proc | other info
A
| > param other info global var | other info
Q > global proc | other info
A
J »| local var other info global var | other info
(other names)
Central reference table
P > global proc | other info
| > global var | other info
Q > global proc | other info
A
J > local var other info global var | other info

(other names)

|, J : integer
procedure P (I : integer)
procedure Q
J rinteger
P)
—— main program

Q

16

Not 1-to-1 bindings: Aliases

Aliases: two or more names denote the same object

Arise in several situations:

e Pointer-based data structures

Java:

Node nl = n;

Node n = new Node("hello", null);

 common blocks (Fortran), variant records/unions

(Pacal, C)

e Passing (by name or
by reference) variables
accessed non-locally

double sum, sum of squares;

void accumulate (doubleé& x)

{

sum += X;
sum of squares += x * x;

}

accumulate (sum) ;

Problems with aliases

 Make programs more confusing
 May disallow some compiler’s optimizations

int a, b, *P/ *q;
a = *p; /* read from the variable referred to by p*/

q = 3; / assign to the variable referred to by q */

b = *p; /* read from the variable referred to by p */

Not 1-to-1 bindings: Overloading

A name that can refer to more than one object is said to be overloaded
— Example: + (addition) is used for integer and floating-point addition in most
programming languages
Overloading is typically resolved at compile time
Semantic rules of a programming language require that the context of

an overloaded name should contain sufficient information to deduce the
intended binding

Semantic analyzer of compiler uses type checking to resolve bindings

Ada, C++ Java, ... function overloading enables programmer to define
alternative implementations depending on argument types (signature)

Ada, C++, and Fortran 90 allow built-in operators to be overloaded with
user-defined functions

— enhances expressiveness

— may mislead programmers that are unfamiliar with the code

First, Second, and Third-Class
Subroutines

First-class object. an object entity that can be passed as a
parameter, returned from a subroutine, and assigned to a variable

— Primitive types such as integers in most programming languages
Second-class object. an object that can be passed as a parameter,
but not returned from a subroutine or assigned to a variable

— Fixed-size arrays in C/C++

Third-class object. an object that cannot be passed as a parameter,
cannot be returned from a subroutine, and cannot be assigned to a
variable

— Labels of goto-statements and subroutines in Ada 83

Functions in Lisp, ML, and Haskell are unrestricted first-class
objects

With certain restrictions, subroutines are first-class objects in
Modula-2 and 3, Ada 95, (C and C++ use function pointers)

Scoping issues for first/second
class subroutines

* Critical aspects of scoping when
— Subroutines are passed as parameters
— Subroutines are returned as result of a function

* Resolving names declared locally or globally is
obvious
— Global objects are allocated statically (or on the stack,
in a fixed position)
* Their addresses are known at compile time

— Local objects are allocated in the activation record of
the subroutine

* Their addresses are computed as base of activation record +
statically known offset

III

Non-loca

7 (ll

“Referencing) Environments

If a subroutine is passed as an argument to another
subroutine, when are the static/dynamic scoping rules
applied?
1) When the reference to the subroutine is first created (i.e. when it is
passed as an argument)

2) Or when the argument subroutine is finally called
That is, what is the referencing environment of a subroutine
passed as an argument?

— Eventually the subroutine passed as an argument is called and may
access non-local variables which by definition are in the referencing
environment of usable bindings

The choice is fundamental in languages with dynamic scope:
deep binding (1) vs shallow binding (2)

The choice is limited in languages with static scope

Effect of Deep Binding in
Dynamically-Scoped Languages

Program execution:

main (p)
bound:integer Deep
bound := 35 binding
show (p,older)

bound:integer
bound := 20
older (p)
return p.age>bound
if return value is true
write (p)

Program prints persons
older than 35

The following program
demonstrates the difference
between deep and shallow binding:

function older (p:person) :boolean
return p.age > bound
procedure show (p:person,c:function)
bound:integer
bound := 20
if c(p)
write (p)
procedure main (p)
bound:integer
bound := 35
show (p,older)

Effect of Shallow Binding in
Dynamically-Scoped Languages

Program execution:

main (p)
bound:integer
bound := 35
show (p,older) Shallow
bound:integer binding
bound := 20
older (p) >
return p.age>bound

if return value is true
write (p)

Program prints persons
older than 20

The following program
demonstrates the difference
between deep and shallow binding:

function older (p:person) :boolean
return p.age > bound
procedure show (p:person,c:function)
bound:integer
bound := 20
if c(p)
write (p)
procedure main (p)
bound:integer
bound := 35
show (p,older)

Implementing Deep Bindings with
Subroutine Closures

Implementation of shallow binding obvious: look for
the last activated binding for the name in the stack

For deep binding, the referencing environment is
bundled with the subroutine as a closure and passed as
an argument

A subroutine closure contains
— A pointer to the subroutine code
— The current set of name-to-object bindings

Possible implementations:

— With Central Reference Tables, the whole current set of
bindings may have to be copied

— With A-lists, the head of the list is copied

Clusures in Dynamic Scoping
implemented with A-lists

Central Stack Referencing environment A-list
procedure P(procedure C)
declare |, J I
call C y
F oo J
procedure F
declare | Q
J
procedure Q o v
declare J P |
C==Qe---_ -
call F ~~_
- . 4—/
QT TT T === F
—— main program | Main program |
call P(Q) AR v
Q
Each frame in the stack has a pointer to the current beginning of the A-lists. #L
When the main program passes Q to P with deep binding, it bundles its A-list
pointer in Q’s closure (dashed arrow). When P calls C (which is Q), it restores P
the bundled pointer. When Q elaborates its declaration of J (and F elaborates
its declaration of 1), the A-list is temporarily bifurcated. v
M

Deep/Shallow binding
with static scoping

Not obvious that it makes a difference. Recall:

Deep binding: the scoping rule is applied when the subroutine is passed as
an argument

Shallow binding: the scoping rule is applied when the argument
subroutine is called

In both cases non-local references are resolved looking at the static
structure of the program, so refer to the same binding declaration

But in a recursive function the same declaration can be executed several
times: the two binding policies may produce different results

No language uses shallow binding with static scope

Implementation of deep binding easy: just keep the static pointer of the
subroutine in the moment it is passed as parameter, and use it when it is
called

Deep binding with static scoping:
an example in Pascal

program binding_example (input, output);
procedure A(I : integer; procedure P);

procedure B;
begin

writeln(I);
end;

begin (*x A *)
if T > 1 then
P
else
A(2, B);

end;

procedure C; begin end;

begin (* main *)
A(1, C);
end.

When B is called via formal parameter P, two instances of | exist. Because the closure
for P was created in the initial invocation of A, B’s static link (solid arrow) points to the
frame of that earlier invocation. B uses that invocation’s instance of | in its writeln
statement, and the output is a 1. With shallow binding it would print 2.

Returning subroutines

* |n languages with first-class subroutines, a
function f may declare a subroutine g,
returning it as result

e Subroutine g may have non-local references
to local objects of f. Therefore:

— g has to be returned as a closure
— the activation record of f cannot be deallocated

(define plus-x (lambda (x) i 5 :“7\\\\
(lambda (y) (+ x y)))) L PRESE L < anon e-FE7T anon y =3
(let ((£ (plus-x 2))) 1 mainprogram || | mainprogram |

(£ 3)) . returns 5 1t-------m------moood S

First-Class Subroutine
Implementations

 |n functional languages, local objects have unlimited
extent. their lifetime continue indefinitely
— Local objects are allocated on the heap
— Garbage collection will eventually remove unused objects
* |n imperative languages, local objects have limited
extent with stack allocation
« To avoid the problem of dangling references,
alternative mechanisms are used:
— C, C++, and Java: no nested subroutine scopes
— Modula-2: only outermost routines are first-class

— Ada 95 "containment rule": can return an inner subroutine
under certain conditions

Object closures

Closures (i.e. subroutine + non-local enviroment) are
needed only when subroutines can be nested

Object-oriented languages without nested subroutines
can use objects to implement a form of closure

— a method plays the role of the subroutine

— instance variables provide the non-local environment
Objects playing the role of a function + non-local
enviroment are called object closures or function
objects

Ad-hoc syntax in some languages

— In C++ an object of a class that overrides operator() can be
called with functional syntax

Object closures in Java and C++

interface IntFunc ({ //Java
public int call(int i),
}
class PlusX implements IntFunc {
final int x;
PlusX(int n) { x = n; }
public int call(int i) { return i + x; }

}

IntFunc £ = new PlusX(2);

System.out.println(f.call(3)); // prints 5
class int func ({ // C++
public:
virtual int operator () (int i) = O0;

};
class plus _x : public int func ({
const int x;
public:
plus_x(int n) : x(n) { }
virtual int operator () (int i) { return i + x; }

};

plus_x £(2);
cout << £(3) << "\n"; // prints 5

