Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 19

* Names in programming languages
* Binding times
* Scopes

Names, Binding and Scope: Summary

Abstractions and names
Binding time
Object lifetime

Object storage management

— Static allocation
— Stack allocation
— Heap allocation

Scope rules

Static versus dynamic scoping
Reference environments
Overloading and polymorphism

Binding Time

* Abinding is an association between a name and an
entity

 An entity that can have an associated name is called
denotable

* Binding time is the time at which a decision is made to
create a name <= entity binding (the actual binding can
be created later):

— Language design time

— Language implementation time
— Program writing time

— Compile time

— Link time

— Load time

— Run time

Binding Lifetime versus
Object Lifetime (cont’ d)

creation of binding to destruction of
binding to object binding to
object tetnporarily

i i invisible l) Tt
T !

object object
création in destruction
memory fime — >

Bindings are temporarily invisible when code is executed where the
binding (name <> object) is out of scope

Memory leak: object never destroyed (binding to object may have
been destroyed, rendering access impossible)

Dangling reference: object destroyed before binding is destroyed

Garbage collection: prevents these allocation/deallocation
problems

Object Storage

Objects (program data and code) have to be stored in memory during
their lifetime

Static objects have an absolute storage address that is retained
throughout the execution of the program

— Global variables and data

— Subroutine code and class method code
Stack objects are allocated in last-in first-out order, usually in conjunction
with subroutine calls and returns

— Actual arguments passed by value to a subroutine

— Local variables of a subroutine
Heap objects may be allocated and deallocated at arbitrary times, but
require an expensive storage management algorithm

— Example: Lisp lists

— Example: Java class instances are always stored on the heap

Typical Program and Data Layout

Upper addr

Virtual memory address space

0000

In Memory
 Program code is at the bottom
stack _
of the memory region (code
section)

— . .

A — The code section is protected
from run-time modification by
the OS

heap » Static data objects are stored
In the static region
« Stack grows downward
static data
 Heap grows upward
code

Static Allocation

Program code is statically allocated in most
implementations of imperative languages

Statically allocated variables are history sensitive
— Global variables keep state during entire program lifetime

— Static local variables in C functions keep state across function
invocations

— Static data members are “shared” by objects and keep state
during program lifetime
Advantage of statically allocated object is the fast access
due to absolute addressing of the object
— So why not allocate local variables statically?

— Problem: static allocation of local variables cannot be used for
recursive subroutines: each new function instantiation needs
fresh locals

Static Allocation in Fortran 77

Temporary storage
(e.g. for expression
evaluation)

Local variables

Bookkeeping
(e.g. saved CPU

registers)

Return address

Subroutine
arguments and
returns

Typical static subroutine
frame layout

Fortran 77 has no recursion

Global and local variables are
statically allocated as decided by
the compiler

Global and local variables are
referenced at absolute addresses

Avoids overhead of creation and
destruction of local objects for
every subroutine call

Each subroutine in the program
has a subroutine frame that is
statically allocated

This subroutine frame stores all
subroutine-relevant data that is
needed to execute

Stack Allocation

e Each instance of a subroutine that is active has an
activation record (or subroutine frame) on the
run-time stack

— Compiler generates subroutine calling sequence to
setup frame, call the routine, and to destroy the
frame afterwards

— Method invocation works the same way, but in
addition methods are typically dynamically bound

e Activation record layouts vary between
languages, implementations, and machine
platforms

Lower addr

Typical Stack-Allocated
Activation Record

Temporary storage
(e.g. for expression
evaluation)

Local variables

Bookkeeping
(e.g. saved CPU
registers)

Return address

fp .
Subroutine
arguments and
Higher addr returns

Typical subroutine
frame layout

A frame pointer (fp) points to
the frame of the currently
active subroutine at run time

Subroutine arguments, local
variables, and return values
are accessed by constant
address offsets from the fp

Activation Records on the Stack

] [Stack growth

Sp—

lemporaries

Local variables

Bookkeeping
Return address

Higher addr

Arguments

lemporaries
Local variables

Bookkeeping
Return address

Arguments

lemporaries
Local variables

Bookkeeping

Return address
Arguments

lemporaries
Local variables

Bookkeeping
Return address

Arguments

Activation records are pushed and
popped onto/from the runtime stack

The stack pointer (sp) points to the
next available free space on the stack
to push a new activation record onto
when a subroutine is called

The frame pointer (fp) points to the
activation record of the currently
active subroutine, which is always the
topmost frame on the stack

The fp of the previous active frame is
saved in the current frame and

restored after the call

In this example:
M called A
A called B
B called A

Lower addr

Example Activation Record

Temporaries

fp-32

-36: foo (4 bytes)
-32. bar (8 byvtes)

| -24: p (4 bytes)

Bookkeeping
(16 bytes)

Return address
to the caller of P

fo , (4 bytes)
0; a (4 bvtes)
fp+4 4:b (4 bvtes)

Higher addr

The size of the types of local
variables and arguments
determines the fp offset in a frame

Example Pascal procedure:

procedure P (a:integer,
var b:real)
(* a is passed by value
b is passed by reference,
= pointer to b's wvalue

*)

var
foo:integer, (* 4 bytes *)
bar:real; (* 8 bytes *)

p:“*integer; (* 4 bytes *)
begin

end

Heap Allocation

* Implicit heap allocation:
— Done automatically
— Java class instances are placed on the heap

— Scripting languages and functional languages make
extensive use of the heap for storing objects

— Some procedural languages allow array declarations with
run-time dependent array size

— Resizable character strings

* Explicit heap allocation:

— Statements and/or functions for allocation and
deallocation

— Malloc/free, new/delete

Heap Allocation Algorithms

Heap allocation is performed by searching the heap for
available free space

For example, suppose we want to allocate a new object E
of 20 bytes, where would it fit?

Object A

Free

Object B

Object C

Free

Object D

Free

30 bytes

8 bytes

10 bytes

24 bytes

24 bytes

8 bytes

20 bytes

Deletion of objects leaves free blocks in the heap that
can be reused

Internal heap fragmentation: if allocated object is smaller

than the free block the extra space is wasted

External heap fragmentation: smaller free blocks cannot

always be reused resulting in wasted space

Heap Allocation Algorithms (cont’d)

Maintain a linked list of free heap blocks

First-fit: select the first block in the list that is large enough

Best-fit. search the entire list for the smallest free block that is large
enough to hold the object

If an object is smaller than the block, the extra space can be added
to the list of free blocks

When a block is freed, adjacent free blocks are merged

Buddy system: use heap pools of standard sized blocks of size 2k

— If no free block is available for object of size between 2x1+1 and 2% then
find block of size 2k*1 and split it in half, adding the halves to the pool of

free 2% blocks, etc.
Fibonacci heap: use heap pools of standard size blocks according
to Fibonacci numbers
— More complex but leads to slower internal fragmantation

Unlimited Extent

An object declared in a local scope has unlimited
extent if its lifetime continues indefinitely

A local stack-allocated variable has a lifetime limited to
the lifetime of the subroutine

— In C/C++ functions should never return pointers to local
variables

Unlimited extent requires static or heap allocation

— Issues with static: limited, no mechanism to allocate more
variables

— Issues with heap: should probably deallocate when no
longer referenced (no longer bound)

Garbage collection
— Remove object when no longer bound (by any references)

Garbage Collection

» EXxplicit manual deallocation errors are among the
most expensive and hard to detect problems in real-
world applications

— If an object is deallocated too soon, a reference to the
object becomes a dangling reference

— If an object is never deallocated, the program leaks
memory
« Automatic garbage collection removes all objects from
the heap that are not accessible, i.e. are not
referenced
— Used in Lisp, Scheme, Prolog, Ada, Java, Haskell

— Disadvantage is GC overhead, but GC algorithm efficiency
has been improved

— Not always suitable for real-time processing

Comparison of Storage Allocation

Static

Stack

Heap

N/A

local variables and
subroutine arguments

implicit. local variables of variable
size;

Ada of fixed size explicit: new (destruction with
garbage collection or explicit with
unchecked deallocation)

C global variables; static local | local variables and explicit with malloc and free

variables subroutine arguments

C++ Same as C, and static Same as C explicit with new and delete

class members

J N/A only local variables of | implicit. all class instances

ava primitive types (destruction with garbage collection)

global variables (in local variables and N/A
common blocks), local subroutine arguments
variables, and subroutine (implementation

Fortran77 arguments (implementation | dependent)
dependent); SAVE forces
static allocation
global variables (compiler global variables Explicit: new and dispose
dependent compiler dependent),

Pascal pendent) (compller dependent)

local variables, and
subroutine arguments

Scope

* The scope of a binding is the textual region of a
program in which a name-to-object binding is
active

« Statically scoped language: the scope of
bindings is determined at compile time
— Used by almost all but a few programming languages
— More intuitive to user compared to dynamic scoping

 Dynamically scoped language: the scope of
bindings is determined at run time

— Used in Lisp (early versions), APL, Snobol, and Perl
(selectively)

Effect of Static Scoping

* The following pseudo-code
program demonstrates the

Program execution: . .
effect of scoping on variable

a:integer inding bindings:
main () * a:integer
a:=2 procedure first
second () a:=1
a:integer procedure second
first () a:integer
a:=1 first()
write integer (a) procedure main
B a:=2
second ()

. 11 ””
Program prints " 1 write integer (a)

Effect of Dynamic Scoping

Program execution:

a:integer

main ()
a:=2
sec01:1d () binding
a:1nteger‘i:::;
first()
a:=1

write integer (a)

Program prints “2”

The following pseudo-code
program demonstrates the
effect of scoping on variable
bindings:
a:integer
procedure first
Binding depends on execution
procedure second
a:integer
first ()
procedure main
a:.:=2
second ()
write integer (a)

21

Static Scoping

* The bindings between names and objects can be
determined by examination of the program text

e Scope rules of a program language define the scope of
variables and subroutines, which is the region of
program text in which a name-to-object binding is usable

— Early Basic: all variables are global and visible everywhere

— Fortran 77: the scope of a local variable is limited to a
subroutine; the scope of a global variable is the whole program
text unless it is hidden by a local variable declaration with the

same variable name
— Algol 60, Pascal, and Ada: these languages allow nested

subroutines definitions and adopt the closest nested scope rule
with slight variations in implementation

Closest Nested Scope Rule

procedure P1(Al1l:T1)

var X:real;

procedure P2 (A2:T2);

« To find the object

..érocedure P3(A3:T3); .
referenced by a given

lzt*eg::;dy of P3: P3,A3,P2,A2,X of P1,Pl,Al are visible *) name.

end; — Look for a
begin declaration in the
e(:dl;aody of P2: P3,P2,A2,X of P1,Pl1,Al are visible *) Current innermOSt
procedure P4 (A4:T4); SCope

.éunction F1 (A5:T5) :T6; - If there iS none, IOOk

var X:integer; for a declaration in
begin the immediately
(* body of Fl1l: X of F1,F1,A5,P4,A4,P2,P1,A1l are visible ¥*) Surrounding Scope,
end;

etc.

begin

(* body of P4: F1,P4,A4,P2,X of P1,P1,Al are visible *)

end;

begin

(* body of P1: X of P1,P1,Al1,P2,P4 are visible ¥*)
end

Static Scope Implementation
with Static Links

* Scope rules are designed so that we can only refer to
variables that are alive: the variable must have been
stored in the activation record of a subroutine

e |f avariable is not in the local scope, we are sure there
is an activation record for the surrounding scope
somewhere below on the stack:

— The current subroutine can only be called when it was
visible

— The current subroutine is visible only when the
surrounding scope is active

 Each frame on the stack contains a static link pointing
to the frame of the static parent

Nesting

Example Static Links

Cells
A celtsE
E cettsB
B cualls D

Steick freames

C
static link —

D
static link —

B

static link —

v

E
static link —

D callsC)

A

Subroutines C and D are
declared nested in B

— B is static parent of Cand D

B and E are nested in A
— A is static parent of Band E

The fp points to the frame
at the top of the stack to
access locals

The static link in the frame
points to the frame of the
static parent

Static Chains

How do we access non-local objects?

The static links form a static chain, which is a
linked list of static parent frames

When a subroutine at nesting level j has a
reference to an object declared in a static parent
at the surrounding scope nested at level k, then j-
k static links forms a static chain that is traversed
to get to the frame containing the object

The compiler generates code to make these
traversals over frames to reach non-local objects

Nesting

Example Static Chains

v

Steick freames
C
fp—™ static link —
D
static link —
B
static link —
Culls
R
A cullsE E
static link —
E cultsB
B cullsD A

D callsC)

Subroutine A is at nesting level 1
and C at nesting level 3

When C accesses an object of A, 2
static links are traversed to get to
A's frame that contains that
object

27

A Typical Calling Sequence

e The caller

Saves any registers whose values will be needed after the call

Computes values of arguments and moves them into the stack or
registers

Computes the static link and passes it as an extra, hidden argument

Uses a special subroutine call instruction to jump to the subroutine,
simulta- neously passing the return address on the stack orin a
register

* Inits prologue, the callee

allocates a frame by subtracting an appropriate constant from the sp
saves the old fp into the stack, and assigns it an appropriate new value

saves any registers that may be overwritten by the current routine
(including the static link and return address, if they were passed in
registers)

A Typical Calling Sequence (cont’d)

e After the subroutine has completed, the epilogue

— Moves the return value (if any) into a register or a
reserved location in the stack

— Restores registers if needed
— Restores the fp and the sp
— Jumps back to the return address

* Finally, the caller

— Moves the return value to wherever it is needed
— Restores registers if needed

Displays

Access to an object in a scope k levels out
requires that the static chain be dereferenced k
times.

An object k levels out will require kK + 1 memory
accesses to be loaded in a register.

This number can be reduced to a constant by use
of a display, a vector where the k-th element
contains the pointer to the activation record at
nesting level k that is currently active.

Faster access to non-local objects, but
bookeeping cost larger than that of static chain

Out of Scope

* Non-local objects can be hidden by local name-
to-object bindings and the scope is said to have a
hole in which the non-local binding is temporarily
inactive but not destroyed

 Some languages, like Ada, C++ and Java, use
qualifiers or scope resolution operators to access
non-local objects that are hidden

— P1.Xin Ada to access variable X of P1
— :X to access global variable X in C++
— this.x or super.x in Java

Out of Scope Example

procedure P1l;

var X:real;
procedure P2;
var X:integer

begin

end;
begin

end

(* X of P1 is hidden *)

P2 is nested in P1
P1 has a local variable X

P2 has a local variable X that
hides X in P1

When P2 is called, no extra
code is executed to inactivate
the binding of X to P1

Dynamic Scope

Scope rule: the “current” binding for a given name is the one
encountered most recently during execution

Typically adopted in (early) functional languages that are interpreted

Perl v5 allows you to choose scope method for each variable
separately
With dynamic scope:

— Name-to-object bindings cannot be determined by a compiler in general

— Easy for interpreter to look up name-to-object binding in a stack of
declarations

Generally considered to be “a bad programming language feature”
— Hard to keep track of active bindings when reading a program text
— Most languages are now compiled, or a compiler/interpreter mix
Sometimes useful:
— Unix environment variables have dynamic scope

Dynamic Scoping Problems

In this example, function scaled score probably does not do what
the programmer intended: with dynamic scoping, max score in
scaled score is bound to foo's local variable max score after
foo calls scaled score, which was the most recent binding

during execution:

max score:integer
function scaled score(raw_score:integer) :real
return raw_score/max score*100

procedure foo
max score:real

0

foreach student in class
student.percent := scaled score(student.points)
if student.percent > max;gcore
max score := student.percent

Dynamic Scope Implementation with
Bindings Stacks

Each time a subroutine is called, its local variables
are pushed on a stack with their name-to-object

binding

When a reference to a variable is made, the stack
is searched top-down for the variable's name-to-
object binding

After the subroutine returns, the bindings of the
local variables are popped

Different implementations of a binding stack are
used in programming languages with dynamic
scope, each with advantages and disadvantages

