Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 18

Bootstrapping

Names in programming languages
Binding times

Object allocation: static

Compilers, graphically

Three languages involved in writing a compiler
— Source Language (S)

— Target Language (T)

— Implementation Language (l)

T-Diagram:
S T

If I =T we have a Host Compiler
If S, T, and | are all different, we have a Cross-Compiler

Composing compilers

 Compiling a compiler we get a new one: the
result is described by composing T-diagrams

S M S M

Example:

S Pascal
I C

M 68000

| ' M M

A compiler of S to M can be written in any
language having a host compiler for M

Composing compilers

 Compiling a compiler we get a new one: the
result is described by composing T-diagrams

S

T

S

T

M Example:

S Pascal

I C
M 68000

Bootstrapping

Bootstrapping: techniques which use partial/inefficient
compiler versions to generate complete/better ones
Often compiling a translator programmed in its own
language

Why writing a compiler in its own language?

— it is a non-trivial test of the language being compiled

— compiler development can be done in the higher level
language being compiled.

— improvements to the compiler’s back-end improve not
only general purpose programs but also the compiler itself

— it is a comprehensive consistency check as it should be
able to reproduce its own object code

Compilers: Portability Criteria

Portability

— Retargetability
— Rehostability

A retargetable compiler is one that can be modified
easily to generate code for a new target language

A rehostable compiler is one that can be moved easily
to run on a new machine

A portable compiler may not be as efficient as a
compiler designed for a specific machine, because we
cannot make any specific assumption about the target
machine

Using Bootstrapping to port a compiler

* We have a host compiler/interpreter of L for M
 Write a compiler of Lto N in language L itself

L N
L N
_ L L M
Example: M
L Pascal
M P-code M
L N L N
L L N N

Bootstrapping to optimize a compiler

* The efficiency of programs and compilers:
— Efficiency of programs:
* memory usage
* runtime

— Efficiency of compilers:
* Efficiency of the compiler itself
 Efficiency of the emitted code

e |dea: Start from a simple compiler (generating
inefficient code) and develop more sophisticated

version of it. We can use bootstrapping to
improve performance of the compiler.

Bootstrapping to optimize a compiler

e We have a host compiler of ADA to M
 Write an optimizing compiler of ADA to M in ADA

ADA M*
ADA M*
ADA ADA M
M
M
ADA M* ADA M*
ADA| ADA M* M*

Full Bootstrapping

A full bootstrap is necessary when building a new
compiler from scratch.

Example:

We want to implement an Ada compiler for machine
M. We don’t have access to any Ada compiler

Idea: Ada is very large, we will implement the
compiler in a subset of Ada (call it Ada,) and
bootstrap it from a subset of Ada compiler in
another language (e.g. C)

Full Bootstrapping (2)

* Step 1: build a compiler of Ada, to M in another language, say C

Ada, M

C

e Step 2: compile it using a host compiler of C for M

Ada, M Ada, vi ™M

C C M M

M

* Note: new versions would depend on the C compiled for M

Full Bootstrapping (3)

 Step 3: Build another compiler of Ada, in Ada,

Ada, M

Ada,

* Step 4: compile it using the Ada, compiler for M

Ada, M Ada, v2 ™M

Adao Adao vi M M

M

* Note: C compiler is no more necessary

Full Bootstrapping (4)

* Step 5: Build a full compiler of Ada in Ada,

Ada M

Ada,

* Step 4: compile it using the second Ada, compiler for M

Ada M Ada M

Ada, Ada, v2 ™M M

M

e Future versions of the compiler can be written directly in Ada

Names, Binding and Scope: Summary

* Abstractions and names

* Binding time

e Object lifetime

* Object storage management
— Static allocation

— Stack allocation
— Heap allocation

Name and abstraction

* Names used by programmers to refer to variables,
constants, operations, types, ...

e Names are fundamental for abstraction mechanisms

— Control abstraction:

e Subroutines (procedures and functions) allow programmers to focus
on manageable subset of program text, hiding implementation details

* Control flow constructs (if-then, while, for, return) hide low-level
machine ops

— Data abstraction:

* Object-oriented classes hide data representation details behind a set
of operations

* Abstraction in the context of high-level programming

languages refers to the degree or level of working with
code and data

— Enhances the level of machine-independence

Binding Time

* Abinding is an association between a name and an
entity

* An entity that can have an associated name is called
denotable

* Binding time is the time at which a decision is made to
create a name <= entity binding (the actual binding can
be created later):

— Language design time: the design of specific program
constructs (syntax), primitive types, and meaning (semantics)

— Language implementation time: fixation of implementation
constants such as numeric precision, run-time memory sizes,
max identifier name length, number and types of built-in
exceptions, etc. (if not fixed by the language specification)

Binding Time (2)

— Program writing time: the programmer’s choice of
algorithms and data structures

— Compile time: the time of translation of high-level
constructs to machine code and choice of memory
layout for data objects

— Link time: the time at which multiple object codes
(machine code files) and libraries are combined into
one executable (e.g. external names are bound)

— Load time: when the operating system loads the
executable in memory (e.g. physical addresses of
static data)

— Run time: when a program executes

Binding Time Examples

Language design:
— Syntax (hames <> grammar)
« if (a>0) b:=a; (Csyntaxstyle)
e if a>0 then b:=a end if (Adasyntax style)
— Keywords (names <= builtins)
* class (C++andJava), endif or end if (Fortran, space insignificant)
— Reserved words (names <= special constructs)
* main (C), writeln (Pascal)
— Meaning of operators (operator <= operation)
* + (add), $ (mod), ** (power)
— Built-in primitive types (type name < type)
* float, short, int, long, string

Binding Time Examples (cont’d)

* Language implementation
— Internal representation of types and literals
(type <= byte encoding, if not specified by language)
e 3.1 (IEEE 754) and "foo bar" (\O terminated or embedded
string length)

— Storage allocation method for variables (static/stack/
heap)

 Compile time

— The specific type of a variable in a declaration
(name<>type)

— Storage allocation mechanism for a global or local
variable (name<=allocation mechanism)

Binding Time Examples (cont’ d)

 Linker
— Linking calls to static library routines (function<=address)
 print£ (inlibc)
— Merging and linking multiple object codes into one executable
 Loader

— Loading executable in memory and adjusting absolute
addresses

* Mostly in older systems that do not have virtual memory

 Run time
— Dynamic linking of libraries (library function<=library code)
e DLL, dylib
— Nonstatic allocation of space for variable (variable<>address)
e Stack and heap

The Effect of Binding Time

* Early binding times (before run time) are associated with greater
efficiency and clarity of program code
— Compilers make implementation decisions at compile time
(avoiding to generate code that makes the decision at run time)

— Syntax and static semantics checking is performed only once at
compile time and does not impose any run-time overheads

* Late binding times (at run time) are associated with greater
flexibility (but may leave programmers sometimes guessing what’s
going on)

— Interpreters allow programs to be extended at run time

— Languages such as Smalltalk-80 with polymorphic types allow
variable names to refer to objects of multiple types at run time

— Method binding in object-oriented languages must be late to
support dynamic binding

e Usually “static” means “before runtime”, dynamic “at runtime”

Binding Lifetime versus Object Lifetime

* Key events in object lifetime:
— Object creation
— Creation of bindings
— The object is manipulated via its binding
— Deactivation and reactivation of (temporarily invisible) bindings
— Destruction of bindings
— Destruction of objects

* Binding lifetime: time between creation and destruction of
binding to object
— Example: a pointer variable is set to the address of an object
— Example: a formal argument is bound to an actual argument

* Object lifetime: time between creation and destruction of
an object

Binding Lifetime versus
Object Lifetime (cont’ d)

creation of binding to destruction of
binding to object binding to
object tetnporarily

i i invisible l) Tt
T !

object object
création in destruction
memory fime — >

Bindings are temporarily invisible when code is executed where the
binding (name <> object) is out of scope

Memory leak: object never destroyed (binding to object may have
been destroyed, rendering access impossible)

Dangling reference: object destroyed before binding is destroyed

Garbage collection: prevents these allocation/deallocation
problems

{

C++ Example

SomeClass* myobject = new SomeClass;

{
OtherClass myobject;

// the myobject name is bound to other object
// myobiject binding is visible again
myobject->action() // myobject in action():

// the name is not in scope
// but object is bound to ‘this’
delete myobject;

// myobject is a dangling reference

24

Object Storage

Objects (program data and code) have to be stored in memory during
their lifetime

Static objects have an absolute storage address that is retained
throughout the execution of the program

— Global variables and data

— Subroutine code and class method code
Stack objects are allocated in last-in first-out order, usually in conjunction
with subroutine calls and returns

— Actual arguments passed by value to a subroutine

— Local variables of a subroutine
Heap objects may be allocated and deallocated at arbitrary times, but
require an expensive storage management algorithm

— Example: Lisp lists

— Example: Java class instances are always stored on the heap

Typical Program and Data Layout

Upper addr

Virtual memory address space

0000

In Memory
 Program code is at the bottom
stack _
of the memory region (code
section)

— . .

A — The code section is protected
from run-time modification by
the OS

heap » Static data objects are stored
In the static region
« Stack grows downward
static data
 Heap grows upward
code

Static Allocation

Program code is statically allocated in most
implementations of imperative languages

Statically allocated variables are history sensitive
— Global variables keep state during entire program lifetime

— Static local variables in C functions keep state across function
invocations

— Static data members are “shared” by objects and keep state
during program lifetime
Advantage of statically allocated object is the fast access
due to absolute addressing of the object
— So why not allocate local variables statically?

— Problem: static allocation of local variables cannot be used for
recursive subroutines: each new function instantiation needs
fresh locals

Static Allocation in Fortran 77

Temporary storage
(e.g. for expression
evaluation)

Local variables

Bookkeeping
(e.g. saved CPU

registers)

Return address

Subroutine
arguments and
returns

Typical static subroutine
frame layout

Fortran 77 has no recursion

Global and local variables are
statically allocated as decided by
the compiler

Global and local variables are
referenced at absolute addresses

Avoids overhead of creation and
destruction of local objects for
every subroutine call

Each subroutine in the program
has a subroutine frame that is
statically allocated

This subroutine frame stores all
subroutine-relevant data that is
needed to execute

Stack Allocation

* Each instance of a subroutine that is active has a
subroutine frame (sometimes called activation
record) on the run-time stack

— Compiler generates subroutine calling sequence to

setup frame, call the routine, and to destroy the
frame afterwards

— Method invocation works the same way, but in
addition methods are typically dynamically bound

e Subroutine frame layouts vary between

languages, implementations, and machine
platforms

