Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 17

* Concepts of programming languages: an
introduction

Programming linguistics

Programming linguistics is the study of

programming languages (PLs).

This is by analogy with linguistics, the study of

natural languages (NLs):

— Both PLs and NLs have syntax (form) and semantics
(meaning).

However, NLs are far broader, more expressive,

and more subtle than PLs.

Also, linguists are limited to studying existing NLs.
Computing scientists can design, specify, and
implement new PLs.

Expected properties of PLs

A PL must be universal — capable of expressing any
computation.

— A language without iteration or recursion is not universal.

— A language of recursive functions (and nothing else) is
universal.

A PL should be reasonably natural for expressing
computations in its intended application area.

A PL must be implementable — it must be possible to
run every program on a computer.

A PL should be capable of acceptably efficient
implementation.

Concepts

* Concepts are building blocks of programs and
PL’s:
— Names, bindings and scope
— Values and data types
— Variables and storage management
— Control abstraction
— Data abstraction
— Generic abstraction
— Concurrency

Paradigms

A paradigm is a style of programming, characterized by
a particular selection of key concepts.

Imperative programming: variables, commands,
procedures.

Object-oriented (OO0) programming: objects, methods,
classes.

Concurrent programming: processes, communication.

Functional programming: values, expressions,
functions.

Logic programming: assertions, relations.

Syntax, semantics, and pragmatics

A PL’s syntax is concerned with the form of programs:
how expressions, commands, declarations, and other
constructs must be arranged to make a well-formed
program.

* A PL’s semantics is concerned with the meaning of
(well-formed) programs: how a program may be
expected to behave when executed on a computer.

A PL’s pragmatics is concerned with the way in which
the PL is intended to be used in practice. Pragmatics
include the paradigm(s) supported by the PL.

Objectives of this part of PLP

Improve the background for choosing appropriate
programming languages

Enhance the ability to learn new programming languages

Increase the capacity to express general programming
concepts

Increase ability to choose among alternative ways to
express things in a particular programming language

Simulate useful features in languages that lack them

Be able, in principle, to design a new programming
language

Why study programming languages?

* Help you choose a language.
— Cvs. Modula-3 vs. C++ for systems programming

— Fortran vs. APL vs. Ada for numerical
computations

— Ada vs. Modula-2 for embedded systems

— Common Lisp vs. Scheme vs. ML for symbolic data
manipulation

— Java vs. C/CORBA for networked PC programs

Why study programming languages?

 Make it easier to learn new languages

— some languages are similar: easy to walk down
family tree

— concepts have even more similarity; if you think
in terms of iteration, recursion, abstraction (for
example), you will find it easier to assimilate the
syntax and semantic details of a new language
than if you try to pick it up in a vacuum.

— Think of an analogy to human languages: good
grasp of grammar makes it easier to pick up new
languages (at least Indo-European).

Why study programming languages?

* Help you make better use of whatever
language you use

— understand obscure features:

* In C, help you understand unions, arrays &
pointers, separate compilation, varargs, catch and

throw

* In Common Lisp, help you understand first-class
functions/closures, streams, catch and throw,
symbol internals

Why study programming languages?

* Help you make better use of whatever
language you use (2)
— understand implementation costs: choose

between alternative ways of doing things, based
on knowledge of what will be done underneath:

— use simple arithmetic equal (use x*x instead of x**2)

— use C pointers or Pascal "with" statement to factor address
calculations

— avoid call by value with large data items in Pascal
— avoid the use of call by name in Algol 60

— choose between computation and table lookup (e.g. for
cardinality operator in C or C++)

Why study programming languages?

* Help you make better use of whatever
language you use (3)
— figure out how to do things in languages that

don't support them explicitly:
e lack of suitable control structures in Fortran

— use comments and programmer discipline for control
structures
* lack of recursion in Fortran, CSP, etc

— write a recursive algorithm then use mechanical
recursion elimination (even for things that aren't quite
tail recursive)

Why study programming languages?

* Help you make better use of whatever
language you use (4)
— figure out how to do things in languages that
don't support them explicitly:

— lack of named constants and enumerations in Fortran

» use variables that are initialized once, then never
changed

— lack of modules in C and Pascal

» use comments and programmer discipline
— lack of iterators in just about everything

» fake them with (member?) functions

A brief Programming Language History

e 1940s: The first electronic
computers were monstrous
contraptions

— Programmed in binary machine
code by hand via switches and later
by card readers and paper tape
readers

— Code is not reusable or relocatable

— Computation and machine
maintenance were difficult:
machines had short mean-time to
failure (MTTF) because vacuum
tubes regularly burned out

ENIAC (1946) — The term “bug” originated from a
bug that reportedly roamed around
in @ machine causing short circuits

14

Assembly Languages

* Assembly languages were invented to allow
machine operations to be expressed in
mnemonic abbreviations

— Enables larger, reusable, and relocatable
programs

— Actual machine code is produced by an assembler

— Early assemblers had a one-to-one
correspondence between assembly and machine
instructions

Assembly Language Example

addiu sp,sp,-32

sw ra, 20 (sp) « Example MIPS assembly program

jal getint < to compute GCD
nop
jal getint
0,28 .
o 0 28 (o5) + Example MIPS R4000 machine
move v1,v0 code of the assembly program
beq a0,v0,D
slt at,vl, a0
: beq at,zero,B
nop
b c 27bdf£d0 afbf0014 0c1002a8 00000000
subu a0,a0,vl 0cl002a8 afa200l1lc 8fa4001lc
Pooub Vv a0 00401825 10820008 0064082a 10200003
PO ad,voA 00000000 10000002 00832023
slt at,vl,a0
: jal putint 00641823 1483fffa 0064082a 0cl002b2
nop 00000000 8£fbf0014 27bd0020
1w ra,20 (sp)

addiu sp, sp, 32 03e00008 00001025

jr ra
& rammpmnArn
move v0, zero ~\\\5‘

Actual MIPS R4400MC
16

The First High-Level
Programming Language

Mid 1950s: development of FORTRAN (FORmula
TRANSslator), the arguably first higher-level language

— Programs could be developed that were machine
independent

Main computing activity in the 50s: solve numerical
problems in science and engineering
Other high-level languages soon followed:

— Algol 58 was an improvement compared to Fortran

— COBOL for business computing

— Lisp for symbolic computing and artifical intelligence
— BASIC for "beginners"

— C for systems programming

Genealogy of Programming Languages

1960

1965

1970

1975

1980

1985

1990

1995

2000

Fortran 1
Fonwran 11

Fortran IV

Fort.

/

Fortran 90
HPI\:}'

Fon]mn 95

?

)

Visual Basic

Algol 58
Algol 60

Modula-3

A

Ad&‘“ﬁch/

Eiffel

—___'_‘——_

Sma

_———__——_—___%"im a
S \V]

BJIPL Sim

nla 67

lltalk 80

Common Lis
\1\—‘ p y
CLOS

ir

Has

nda

cell

18

100

110

PROGRAM AVEX

FORTRAN LILIV,77

FORTRAN is still widely used for
scientific, engineering, and
numerical problems, mainly

INTEGER INTLST (99)

ISUM = 0

read the length of the list

READ (*,

*) LSTLEN
IF ((LSTLEN .GT. 0) .AND. (LSTLEN .LT. 100)) THEN

read the input in an array
DO 100 ICTR = 1, LSTLEN

READ (*,

*) INTLST (ICTR)

ISUM = ISUM + INTLST (ICTR)

CONTINUE

compute the average

IAVE = ISUM / LSTLEN

write the input values > average
DO 110 ICTR = 1, LSTLEN

IF (INTLST(ICTR) .GT. IAVE) THEN
*) INTLST (ICTR)

WRITE (*,
END IF
CONTINUE
ELSE
WRITE (*,
END IF
END

*)

'ERROR IN LIST LENGTH'

because very good compilers
exist

In the early days skeptics
wrongly predicted that
compilers could not beat hand-
written machine code

FORTRAN 77 has

Subroutines, if-then-else, do-
loops

Types (primitive and arrays)

Variable names are upper case
and limited to 6 chars

No recursion
No structs/classes, unions
No dynamic allocation

No case-statements and no
while-loops

FORTRAN 90,95,HPF

PROGRAM AVEX
INTEGER INT LIST(1:99)

INTEGER LIST LEN, COUNTER, AVERAGE

read the length of the list
READ (*, *) LISTLEN

IF ((LIST_LEN > 0) .AND. (LIST LEN < 100)) THEN

read the input in an array
DO COUNTER = 1, LIST LEN
READ (*, *) INT LIST (COUNTER)
END DO

compute the average

AVERAGE = SUM(INT LIST(1:LIST LEN)) / LIST_LEN
write the input values > average

DO COUNTER = 1, LIST LEN

IF (INT LIST(COUNTER) > AVERAGE) THEN
WRITE (*, *) INT LIST (COUNTER)

END IF
END DO
ELSE

WRITE (*, *) 'ERROR IN LIST LENGTH'

END IF
END

Major revisions
— Recursion
— Pointers

— Records

New control constructs
— while-loop
Extensive set of array

operations

HPF (High-
Performance Fortran)

includes constructs for
parallel computation

Lisp

(DEFINE (avex lis) .
(filtergreater lis (/ (sum lis) (length 1lis))) °

)
(DEFINE (sum lis)

(COND
((NULL? lis) 0)
(ELSE (+ (CAR lis) (sum (CDR 1lis)))) .

)
(DEFINE (filtergreater 1lis num)
(COND
((NULL? lis) "())
((> (CAR 1lis) num) (CONS (CAR lis)
(filtergreater (CDR lis) num)))
(ELSE (filtergreater (CDR lis) num)

Lisp (LIst Processing)

The original functional
language developed by
McCarthy as a realization
of Church's lambda
calculus

Many dialects exist,
including Common Lisp
and Scheme

Very powerful for symbolic
computation with lists

Implicit memory
management with garbage
collection

Influenced functional
programming languages
(ML, Miranda, Haskell)

Algol 60

comment avex program

begin
integer array intlist [1:99];
integer listlen, counter, sum, average;
sum := 0;
comment read the length of the input list
readint (listlen);
if (listlen > 0) L (listlen < 100) then

begin
comment read the input into an array
for counter := 1 step 1 until listlen do
begin
readint (intlist[counter]);
sum := sum + intlist[counter]
end;

comment compute the average
average := sum / listlen;
comment write the input values > average
for counter := 1 step 1 until listlen do
if intlist[counter] > average then
printint (intlist[counter])
end
else
printstring ("Error in input list length")
end

The original block-structured
language
— Local variables in a statement
block

First use of Backus-Naur Form
(BNF) to formally define language
grammar

All subsequent imperative
programming languages are
based on it

No I/O and no character set
Not widely used in the US

Unsuccessful successor Algol 68 is
large and relatively complex

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 FAHR PICTURE 999.

77 CENT PICTURE 999.

PROCEDURE DIVISION.

DISPLAY 'Enter Fahrenheit '
CONSOLE.

ACCEPT FAHR FROM CONSOLE.

COBOL

Originally developed by the Department
of Defense

Intended for business data processing

Extensive numerical formatting features
and decimal number storage

Introduced the concept of records and
nested selection statement

Programs organized in divisions:
IDENTIFICATION: Program identification
ENVIRONMENT: Types of computers used
DATA: Buffers, constants, work areas
PROCEDURE: The processing parts
(program logic).

COMPUTE CENT = (FAHR- 32) * 5 / 9.
DISPLAY 'Celsius is ' CENT UPON CONSOLE.
GOBACK.

BASIC

REM avex program
DIM intlist(99)
sum = 0
REM read the length of the input list
INPUT listlen
IF listlen > 0 AND listlen < 100 THEN
REM read the input into an array
FOR counter = 1 TO listlen
INPUT intlist (counter)
sum = sum + intlist(counter)
NEXT counter
REM compute the average
average = sum / listlen
REM write the input values > average
FOR counter = 1 TO listlen
IF intlist(counter) > average THEN
PRINT intlist(counter);
NEXT counter
ELSE
PRINT "Error in input list length"
END IF
END

BASIC (Beginner’s All-Purpose
Symbolic Instruction Code)

Intended for interactive use
(intepreted) and easy for
"beginners"

Goals: easy to learn and use
for non-science students

Structure of early basic
dialects were similar to
Fortran

Classic Basic
QuickBasic (see example)

MS Visual Basic is a popular
dialect

AVEX: PROCEDURE OPTIONS (MAIN) ;

DECLARE INTLIST (1:99) FIXED;

DECLARE (LISTLEN, COUNTER, SUM, AVERAGE)
FIXED;

SUM = 0;
/* read the input list length */
GET LIST (LISTLEN);
IF (LISTLEN > 0) & (LISTLEN < 100) THEN
DO;
/* read the input into an array */
DO COUNTER = 1 TO LISTLEN;
GET LIST (INTLIST (COUNTER)) ;
SUM = SUM + INTLIST (COUNTER) ;
END;
/* compute the average */
AVERAGE = SUM / LISTLEN;
/* write the input values > average */
DO COUNTER = 1 TO LISTLEN;
IF INTLIST (COUNTER) > AVERAGE THEN
PUT LIST (INTLIST (COUNTER)) ;
END;
ELSE

PUT SKIP LIST ('ERROR IN INPUT LIST
LENGTH') ;

END AVEX;

Developed by IBM

— Intended to replace
FORTRAN, COBOL, and

Algol
Introduced exception handling

First language with pointer
data type

Poorly designed, too large,
too complex

C (ANSI C, K&R C)

Dennis Ritchie, ACM Turing Award for Unix

Statically typed, general purpose systems
programming language

Computational model reflects underlying machine
Relationship between arrays and pointers
— An array is treated as a pointer to first element

— E1[E2] is equivalent to ptr dereference: *((E1)+(E2))
— Pointer arithmetic is not common in other languages

Not statically type safe

— If variable has type float, no guarantee value is floating pt
Ritchie quote

— “Cis quirky, flawed, and a tremendous success”

main ()

{

int
sum
/* ¢
scan
if
{

}

else

C (ANSI C, K&R C)

intlist[99], listlen, counter, sum, average;
=0;
ead the length of the list */
£f("%d", &listlen);
listlen > 0 && listlen < 100)
/* read the input into an array */
for (counter = 0; counter < listlen; counter++)
{ scanf ("%d", &intlist[counter]);
sum += intlist[counter];
}
/* compute the average */
average = sum / listlen;
/* write the input values > average */
for (counter = 0; counter < listlen; counter++)
if (intlist[counter] > average)
printf ("$d\n", intlist[counter])

printf ("Error in input list length\n");

One of the most
successful programming
languages

Primarily designed for
systems programming
but more broadly used

Powerful set of
operators, but weak type
checking and no dynamic
semantic checks

Prolog

avex (IntList, GreaterThanAvelist) :-
sum(IntList, Sum),
length (IntList, ListLen),

Average is Sum / ListLen,

filtergreater (IntList, Average, GreaterThanAvelist).

% sum(+IntList, -Sum)
% recursively sums integers of IntList
sum([Int | IntList], Sum) :-
sum(IntList, ListSum),
Sum is Int + ListSum.
sum([], O0).
% filtergreater (+IntList, +Int, -GreaterThanIntList)
% recursively remove all integers <= Int from IntList

filtergreater ([AnInt | IntList], Int, [AnInt |
GreaterThanIntList]) :-

AnInt > Int, !,
filtergreater (IntList, Int, GreaterThanIntList).

filtergreater ([AnInt | IntList], Int,
GreaterThanIntList) :-
filtergreater (IntList, Int, GreaterThanIntList).

filtergreater([], Int, []).

* The most widely used
logic programming
language

* Declarative: states
what you want, not
how to get it

e Based on Resolution:

(AVB) A CAVC)>BVC

Pascal

program avex (input, output);
type
intlisttype = array [1l..99] of integer;
var
intlist : intlisttype;
listlen, counter, sum, average : integer;
begin
sum := 0;
(* read the length of the input list *)
readln(listlen);
if ((listlen > 0) and (listlen < 100)) then
begin
(* read the input into an array *)
for counter := 1 to listlen do
begin
readln(intlist[counter]) ;
sum := sum + intlist[counter]
end;
(* compute the average *)
average := sum / listlen;
(* write the input values > average ¥*)
for counter := 1 to listlen do
if (intlist[counter] > average) then
writeln(intlist[counter])
end
else
writeln('Error in input list length')
end.

Designed by Swiss professor
Niklaus Wirth

Designed for teaching
"structured programming"

Small and simple

Had a strong influence on

subsequent high-level
languages Ada, ML, Modula

ML

Statically typed, general-purpose programming language
— “Meta-Language” of the LCF theorem proving system

* Type safe, with formal semantics

Compiled language, but intended for interactive use

Combination of Lisp and Algol-like features
— Expression-oriented

— Higher-order functions

— Garbage collection

— Abstract data types

— Module system

— Exceptions
* Used in printed textbook as example language

Robin Milner, ACM Turing-Award for ML, LCF Theorem Prover, ...

Towards OO programming

e 1980s: Object-oriented programming

— Important innovation for software development
* Encapsulation and inheritance
* Dynamic binding
— The concept of a “class” is based on the notion of
an “abstract data type” (ADT) in Simula 67, a

language for discrete event simulation that has
class-like types but no inheritance

class name

superclass

instance variable names

"Class methods"

"Create an instance"
new

A super new

"Instance methods"

"Initialize"
initialize

intlist <- Array new: 0

"Add int to list"
add: n | oldintlist |

oldintlist <- intlist.
intlist <- Array new:

A intlist at:
"Calculate average"

Smalltalk-80

Avex
Object
intlist

intlist size + 1.
intlist <- replaceFrom: 1 to:

intlist size with: oldintlist. °

intlist size put: n

average | sum | av
sum <- 0. av
1 to: intlist size do: av
[:index | sum <- sum + intlist at: index].
A~ sum // intlist size 1
"Filter greater than average" av
filtergreater: n | oldintlist i | 2
oldintlist <- intlist. av
i<-1. 3
1 to: oldintlist size do:
[:index | (oldintlist at: index) > n av
ifTrue: [oldintlist at: i put: (oldintlist at: index)]] av
intlist <- Array new: oldintlist size. 3

intlist replaceFrom: 1 to: oldintlist size with: oldintlist

Developed by XEROX
PARC: first IDE with
windows-based graphical
user interfaces (GUIs)
The first full
implementation of an
object-oriented language

Example run:

<- Avex new
initialize
add: 1

add: 2

add: 3

filtergreater: av average
at: 1

Ada and Ada95

with TEXT IO;

use TEXT_IO;

procedure AVEX is
package INT IO is new INTEGER_ IO (INTEGER) ;
use INT_IO;

type INT_ LIST TYPE is array (1..99) of INTEGER;

INT_LIST : INT_LIST TYPE;
LIST LEN, SUM, AVERAGE : INTEGER;
begin
SUM := 0;
-- read the length of the input list
GET (LIST_LEN) ;

if (LIST_LEN > 0) and (LIST LEN < 100) then

-- read the input into an array
for COUNTER := 1 .. LIST LEN loop
GET (INT LIST (COUNTER)) ;
SUM := SUM + INT_ LIST (COUNTER) ;
end loop;

-- compute the average

AVERAGE := SUM / LIST LEN;

-- write the input values > average
for counter :=1 .. LIST LEN loop

if (INT_LIST(COUNTER) > AVERAGE) then
PUT (INT_LIST (COUNTER)) ;
NEW LINE;
end if
end loop;
else
PUT_LINE ("Error in input list length");
end if;
end AVEX;

Originally intended to be the
standard language for all
software commissioned by
the US Department of
Defense

Very large

Elaborate support for
packages, exception
handling, generic program
units, concurrency

Ada 95 is a revision
developed under government
contract by a team at
Intermetrics, Inc.

— Adds objects, shared-memory

synchronization, and several
other features

Haskell

* The leading purely functional language, based on Miranda
* Similar to ML: general-purpose, strongly typed, higher-order,
functional, curried functions, supports type inference, static

polymorphic typing, pattern matching, interactive and
compiled use, modules

* Different from ML: lazy evaluation, purely functional core,

rapidly evolving type system, list comprehensions, , monadic
/0, and layout (indentation)-based syntactic grouping

0
a + sum x

sum []
sum (a:x)

avex []

[]

[n | n <- a:x, n > sum (a:x) / length (a:x)]

avex (a:x)

C++

main ()

{

std: :vector<int> intlist;
int listlen;
/* read the length of the list */
std::cin >> listlen;
if (listlen > 0 && listlen < 100)
{ int sum = 0;
/* read the input into an STL vector */
for (int counter = 0; counter < listlen; counter++)
{ int wvalue;
std::cin >> value;
intlist.push back (value) ;
sum += value;
}
/* compute the average */
int average = sum / listlen;
/* write the input values > average */
for (std::vector<int>::const_ iterator it =
intlist.begin(); it !'= intlist.end(); ++it)
if ((*it) > average)
std: :cout << (*it) << std::endl;
}
else

std::cerr << "Error in input list length" <<
std::endl;

The most successful of
several object-oriented
successors of C

Evolved from C and
Simula 67

Large and complex,
partly because it
supports both
procedural and object-
oriented programming

Java

import java.io;
class Avex

{

public static void main(String args[]) throws IOException
{ DataInputStream in = new DataInputStream(System.in) ;

int
int

listlen, counter, sum = 0, average;
[l intlist = int[100];

// read the length of the list
listlen = Integer.parselInt(in.readLine())

if (
{

listlen > 0 && listlen < 100)
// read the input into an array

for (counter = 0; counter < listlen;

{ intlist[counter] =

Integer.valueOf (in.readline()) .intValue() ;

}

else

sum += intlist[counter];
}
// compute the average
average = sum / listlen;
// write the input values > average

for (counter = 0; counter < listlen;

{ if (intlist[counter] > average)

System.out.println(intlist[counter] + "\n");

}

counter++)

counter++)

System.out.println("Error in input length\n");

Developed by Sun
Microsystems

Based on C++, but

significantly simplified
Supports only object-
oriented programming

Safe language (e.g. no
pointers but references,
strongly typed, and
implicit garbage
collection)

Portable and machine-
iIndependent with Java
virtual machine (JVM)

Other Notable Languages

C#
— Similar to Java, but platform dependent (MS .NET)

— Common Language Runtime (CLR) manages objects that can be
shared among the different languages in .NET

Simula 67
— Based on Algol 60

— Primarily designed for discrete-event simulation

— Introduced concept of coroutines and the class concept for data
abstraction

APL
— Intended for interactive use ("throw-away" programming)

— Highlydexpressive functional language makes programs short, but hard
to rea

Scripting languages
— Perl, Python, Ruby, ...

Why are There so Many
Programming Languages?

« Evolution
— Design considerations: What is a good or bad programming construct?
— Early 70s: structured programming in which goto-based control flow was
replaced by high-level constructs (e.g. while loops and case statements)
— Late 80s: nested block structure gave way to object-oriented structures

« Special Purposes
— Many languages were designed for a specific problem domain, e.g:
 Scientific applications
* Business applications
 Artificial intelligence
* Systems programming
* Internet programming

 Personal Preference

— The strength and variety of personal preference makes it unlikely that
anyone will ever develop a universally accepted programming language

Practitioners

Geeks

Most Research Languages

1,000,000

10,000

100

B

The quick death

lyr dyr 10yr 15yr

Practitioners

Geeks

Successful Research Languages

1,000,000

10,000

100

The slow death
1 /\

lyr dyr 10yr 15yr

Practitioners

Geeks

1,000,000

10,000

100

C++, Java, Perl, Ruby

The complete
absence of death

lyr dyr 10yr

15yr

Practitioners

Geeks

1,000,000

10,000

100

Committee languages

The slow death

lyr dyr 10yr

15yr

What Makes a Programming Language
Successful?

* Expressive Power
— Theoretically, all languages are equally powerful (Turing complete)

— Language features have a huge impact on the programmer's ability to read, write,
maintain, and analyze programs

— Abstraction facilities enhance expressive power
* Ease of Use for Novice

— Low learning curve and often interpreted, e.g. Basic and Logo
* Ease of Implementation

— Runs on virtually everything, e.g. Basic, Pascal, and Java
* Open Source

Freely available, e.g. Java

* Excellent Compilers and Tools

— Fortran has extremely good compilers

— Supporting tools to help the programmer manage very large projects
 Economics, Patronage, and Inertia

— Powerful sponsor: Cobol, PL/I, Ada

— Some languages remain widely used long after "better" alternatives

1960

1965

1970

1975

19380

1985

1990

1995

2000

Classification of Programming
Languages

Eoman %1 Cobol Algol 58 s : Li
ortran () . v Li
i Algol 60 N
Fortran IV — Y
Basic / Sim\;l]a ‘«I L
1
PLA™ Algol W BCPL Simpla67,'
§ TT=Algol 68
Pascal
- C
Fortran 77 L
Modula-2
Ad o
. g
a T e iranda
*) ~Modula-3 . i
Fortran 90 | S-= cell
HPF Yisual Basic
¥ | Ada 95 i
Fortran 95 : !
| |
']‘ : ;J i :
: | A | \ 7
: f‘ ! :
Imperative | Hybrid v Object-ariented ' Hybrid Functional

44

Classification of Programming

Languages
Declarative Functional
. _ (Lisp, Scheme, ML, Haskell)
Implicit solution i
Logical
"What the computer
should do” (Prolog)
Dataflow
Imperative Procedural
Explicit solution "von Neumann" (Fortran, C)
"How the computer Object-oriented

should do it” (Smalltalk, C++, Java)

Contrasting Examples

Procedural (C):
int gcd(int a, int b)
{ while (a '= b)
if (a > b) a = a-b; else b = b-a;

return a;
}
Functional (Haskell):
ged a b
| a == = a
| a > b = ged (a-b) b
| a < b = gcd a (b-a)
Logical (Prolog):
gcd(A, A, A).
gced(A, B, G) :- A > B, N is A-B, gcd(N, B, G).

gcd(A, B, G) :- A< B, N is B-A, gcd(A, N, G).

