Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 16

* Code generation (2)

Recap (last lecture)

Basics of Code Generation

Code generation tasks:

— Instruction selection

— Register allocation and assigment
— Instruction ordering

Fixing Target Machine and Target Language
Basic Blocks and Flow Graphs

Local optimization: replacing basic blocks with
equivalent ones

Summary

 Computing (local) “next use” and “live” info

e A Code Generator

— Register allocation and assignment
* Graph coloring

— Instruction selection
* Tree transducer
* An overview on Dataflow Analysis and some
Global Optimization techniques

Position of a Code Generator in the
Compiler Model

Intermediate Intermediate
code code

ource
program

Target
program

Lexical error
Syntax error
Semantic error

Transformations on Basic Blocks (recap)

A code-improving transformation is a code
optimization to improve speed or reduce code size

Global transformations are performed across basic
blocks

Local transformations are only performed on single
basic blocks

We have seen several local optimization techniques:
— Common subexpression elimination

— Dead code elimination

— Algebraic transformation, ...

To translate a simplified block we need additional info

(Local) Next-Use Information

* Next-use information is needed for dead-code
elimination and register assighment

* Next-use is computed by a backward scan of a basic
block and performing the following actions on
statement

I: X:=yopz
— Add liveness/next-use info on x, y, and z to statement /

* This info can be stored in the symbol table

— Before going up to the previous statement (scan up):
* Set xinfo to “not live” and “no next use”

e Set y and z info to “live” and the next usesof yand zto i

k:

Next-Use (Step 1)

b :=b +1
a :=b + ¢
t := a + b [live(a) =true, live(b) = true, live(t) = true,

nextuse(a) = none, nextuse(b) = none, nextuse(t) = none |

Attach current live/next-use information
Because info 1s empty, assume variables are live
(Data flow analysis can provide accurate information)

Next-Use (Step 2)

I
o)

Joa: + C | [ive(a) =true nextuse(a) = k

live(b) = true nextuse(b) =k
/ live(t) =false nextuse(t) =none
k: £t := a + b [live(a) =true, live(b) = true, live(t) = true,
nextuse(a) = none, nextuse(b) = none, nextuse(t) = none |

Compute live/next-use information at &

k:

Next-Use (Step 3)

b:=b+1
:a := b + c [live(a) =true, live(b) = true, live(c) = true,
nextuse(a) = k, nextuse(b) = k, nextuse(c) = none |
t := a + b [live(a) =true, live(b) = true, live(t) = true,

nextuse(a) = none, nextuse(b) = none, nextuse(t) = none |

Attach current live/next-use information to j

Next-Use (Step 4)

live(a) =false nextuse(a) = none
live(b) = true nextuse(b) =j

live(c) = true nextuse(c) =j
/ live(t) =false nextuse(t) = none
j: a := b + c [live(a) =true, live(b) = true, live(c) = false,
nextuse(a) = k, nextuse(b) = k, nextuse(c) = none |

k: £t := a + b [live(a) =true, live(b) = true, live(t) = true,
nextuse(a) = none, nextuse(b) = none, nextuse(t) = none |

Compute live/next-use information j

10

k:

Next-Use (Step 5)

b :=b + 1 [live(b)=true, nextuse(b) =j]
. a := b + ¢ [live(a)=true, live(b) = true, live(c) = false,
nextuse(a) = k, nextuse(b) = k, nextuse(c) = none |
t := a + b [live(a) =true, live(b) = true, live(t) = true,

nextuse(a) = none, nextuse(b) = none, nextuse(t) = none |

Attach current live/next-use information to i

11

A Simple Code Generator

* Algorithm for generating target code for a basic
block (sequence of three-address statements) using
next-use information

* Critical issue: how to use registers. Several
competing uses:
— To store operands of a target code operation
— Registers make good temporaries

— To hold (global) values computed in a block and used in
another

— To help runtime storage management (stack pointer, ...)

* The algorithm will check if operands of three-
address code are available in registers to avoid
unnecessary stores and loads.

12

A Simple Code Generator (2)

e We assume that

— A set of register can be used for values used within
the block

— The order of statements in the block is fixed

— Each three-address operator corresponds to a single
machine instruction

— Machine instructions take operands in registers and
leave the result in a register

* The algorithm makes use of address and register
descriptors, and of function getreg() such that
getreg(x =y OP z) returns the three registers to
be used for x, y and z.

13

Register and Address Descriptors

* Avregister descriptor RD keeps track of what is currently
stored in a register at a particular point in the code, e.g. a
local variable, argument, global variable, etc.

* An address descriptor AD keeps track of the location
where the current value of the name can be found at run
time, e.g. a register, stack location, memory address, etc.

* Eg:
LD RO, a RD(RO) = {a}, AD(a) = AD(a) U {RO}
ST a,RO RD(RO) = RD(RO) U {a}, AD(a) = {RO}

14

The Code Generation Algorithm

For each statement x :=y op z

1. Use getreg(x :=y OP z) to get registers Rx, Ry and Rz

2. If Ry & AD(y) then emit LD Ry, y’
where y’ € AD(y), preferably a register

3. If Rz & AD(z) then emit LD Rz, 7’
where 77 € AD(z), preferably a register

Emit OP Rx, Ry, Rz
5. Update the descriptors for the LD statements
6. RD(Rx)={x}, AD(x) = {Rx}, remove Rx from other AD’s

B

15

The Code Generation Algorithm

For each copy statement x .=y
1. Use getreg(x :=y) to get register Ry (= Rx)

2. If Ry & AD(y) then emit LD Ry, y’
where y’ € AD(y), preferably a register

3. Update the descriptors for operation LD
4. RD(Ry) = RD(Ry) U{x}, AD(x) = {Ry}

At the end of the basic block

1. For each live variable x, if x & AD(X)
emit ST x,R, where R € AD(X)

16

Code Generation Example

Regist Add
Statements Code Generated egzs. r r.e >
Descriptor Descriptor
Registers empty
t :=a ->b ID Rl,a RO contains t t in RO
LD R2,b
SUB R2,R1,R2 , ,
RO contains t t in RO
u:=a-g¢c LD R3,c R1 contains u |u in R1
SUB R1,R1,R3
v :=t + u ADD R3,R2,R1 RO contains v |u in Rl
a d LD R2,d R1 contains u |v in RO
d :=v +u |ADD R1,R3,R1 , ,
RO contamms 4 |d in RO
live(d)=true ST d,R1 d in RO and
all other dead memory

Example of
code generation

t=a-b>
LD R1, a
LD R2, b
SUB R2, R1, R2

u=a-2=¢
LD R3, c
SUB R1, R1, R3

t + 1
ADD R3, R2, R1

<
[}

a=d

LD R2, d
d=v +1u

ADD R1, R3, R1
exit

ST a, R2

ST d, R1

R1 R2 R3 a b c d t u v
a b C d

a | t a,Rl| b [c | d [R2

u t Cc a b |[c,R3{ 4 | R2 | Rl

u |t | v a | b | c | d |R2[|R1L [R3
u |a,d]| v R2 | b c !d,R2 R1 | R3
d a v R2 | b c | Rl R3
d | a v a,R2| b c |d,R1 R3

18

The getreg algorithm

To compute getreg(x :=y OP z)
1. If yis stored in a register R, return it as Ry
2. If yis not in a register, but exists R empty, return it as Ry

3. Ifyisnotin a.re%ister and no register 1s empty, consider R and
check any variable v € RD(R)

a. If AD(v)does not contain only R, OK.
b. If v = x and x 1s not an operand in this instruction, OK.
c. If v 1s not used later, then OK.
d. Otherwise emit ST wv,R thisis a spill
Choose R that minimizes the number of spills and return it as Ry
4. Same algorithm for determining Rz
5. For Rx, similar algorithm, but
a. Any register containing x only is OK
b. Itis possible to return Ry for Rx if y is no more used and if Ry
={y }p Similarly for Rz.
To compute getreg(x :=y)

I. Choose Ry as above

2. Choose Rx = Ry
19

Register Allocation and Assighment

* The code generation algorithm based on getreg() is
not optimal

— All live variables in registers are stored (flushed) at the end
of a block: this could be not necessary
* Global register allocation assigns variables to limited
number of available registers and attempts to keep
these registers consistent across basic block
boundaries

— Keeping variables in registers in looping code can result in
big savings

20

Allocating Registers in Loops:
Usage Counts

* Suppose
— not storing a variable x has a benefit of 2

— accessing a variable in register instead of in memory has
benefit 1

e Let

— use(x, B) = number of uses of x in B before assignment
— live(x, B) = 1 if x is assigned in B and live on exit from B

* Then the (approximate) benefit of allocating a register
to a variable x withinaloop L is

Y (use(x, B) + 2 live(x, B))

21

Global Register Allocation with
Graph Coloring

When a register is needed but all available registers
are in use, the content of one of the used registers
must be stored (spilled) to free a register

Graph coloring allocates registers and attempts to
minimize the cost of spills

Build a conflict graph (interference graph): two
variables have an edge if one is live where the other
is defined

Find a k-coloring for the graph, with k the number of
registers

22

Register Allocation with Graph
Coloring: Example

read () ;
read() ;
read() ;
:=a + b + ¢c;
if (a < 10) {
d :=c¢c + 8;
write(c) ;
} else if (a < 20) {
e := 10;
d :=e + a;
write (e) ;
} else {
f :=12;
d :=f + a;
write (f) ;

P QO O

}
write(d) ;

Register Allocation with Graph
Coloring: Live Ranges

a = read(); a
Live FANGE wwrerererssasanananes > b b = read();
of b c := read(); |c
~~~~~~ N a = a+b+c;
a < 10 /
dd:=c+8;r a < 20
write (c) ;
ele := 10; £
d := eta; |Vg ‘
write (e) ;

d™ e c
\/
Interference graph:
connected vars have

overlapping ranges

f :=12;
d := f+a; d

write(f)i‘/)

write(d) ;

24



Register Allocation with Graph
Coloring: Solution

Interference graph

Solve

1

Three registers:

L T T o P o B o A

2

3

N

21

r2
r3
rl
r2
rl
rl

1

r2 := read();
r3 := read();
rl := read():;
r2 :=r2 + r3 + rl;

if (r2 < 10) {
r2 :=rl + 8;
write(rl) ;

} else if (r2 < 20) {

rl := 10;
r2 :=rl + r2;
write(rl) ;
} else {
rl := 12;
r2 :=rl + r2;

write(rl) ;

}
write(r2) ; 25




Peephole Optimization

Examines a short sequence of target instructions in a
window (peephole) and replaces the instructions by a
faster and/or shorter sequence when possible

Applied to intermediate code or target code
Typical optimizations:

— Redundant instruction elimination

— Flow-of-control optimizations

— Algebraic simplifications
— Use of machine idioms

26



Peephole Opt: Eliminating Redundant
Loads and Stores

e Consider
MOV RO, a
MOV a,R0

* The second instruction can be deleted, but only if it 1s
not labeled with a target label

— Peephole represents sequence of instructions with at most
one entry point

 The first instruction can also be deleted if
live(a)=false

27



Peephole Optimization: Deleting

Unreachable Code

e Unlabeled blocks can be removed

if 0==0 goto L2

g

goto L2

28



Peephole Optimization: Branch

Chaining

* Shorten chain of branches by modifying target

labels

if a==0 goto L2

v

b :=x+y

L2: goto L3

if a==0 goto L3

v

b :(=x+y

L2: goto L3

29



Peephole Optimization: Other Flow-ot-

* Remove redundant jumps

Control Optimizations

goto L1

<

B

L1:

30



Other Peephole Optimizations

* Reduction in strength: replace expensive arithmetic
operations with cheaper ones

x N 2 >
y / 8

e Utilize machine idioms

a :=a+1 > inc a

e Algebraic simplifications

a+ 0 >
b 1

X * x
y >> 3

oo :

a
b :

a
b :




On Instruction Selection

Our simple algorithm uses a trivial Instruction Selection

In practice it is a difficult problem, mainly for CISC machines
with rich addressing mode

Tree-rewriting rules can be used effectively for specifying
the translation from IR to target code

Tree-translation schemes can be handled with techniques
similar to syntax-directed definitions: can be the basis of
code generator generators

Algorithms for pattern matching and general tree matching

We can associate costs with the tree-rewriting rules and
apply dynamic programming to obtain an optimal
instruction selection



1) R; Ca { LD Ri, #a }
2) R; M, {LD Ri, z}
3) M = {ST =z, Ri }
N
M, R;
4) M = { ST #Ri, Rj }
7\
ind Rj
,I
R;
5) Ri ind { LD Ri, a(Rj) }
|
+
RN
Ca Rj
6) R; + { ADD Ri, Ri, a(Rj) }
/N
R; ind
|
+
7\
Ca RJ
7) R; + { ADD Ri, Ri, Rj }
7N\
R; R;
8) R; + { INC Ri }
RN




Classic Examples of Local and Global
Code Optimizations

 Global — based on data flow

e Local

Constant folding
Constant combining
Strength reduction
Constant propagation

Common subexpression
elimination

Backward copy propagation

analysis

Dead code elimination
Constant propagation
Forward copy propagation

Common subexpression
elimination

Code motion
Loop strength reduction

Induction variable elimination

34



Local: Constant Folding

e @Goal: eliminate

unnecessary
operations
_— * Rules:
r7=4+1 1. X 1s an arithmetic
~ operation
‘SI‘CZ(X) =1
r5 = 2 * r4 " 2. If src1(X) and src2(X)

r6 = r5 * 2 SI'Cl(X)=4

are constant, then
~ change X by applying
the operation

35



Local: Constant Combining

* (Goal: eliminate
unnecessary operations
— First operation often

becomes dead after
constant combining
— T~ e Rules:
r7 =5 I. Operations X and Y in
\/ same basic block
2. X and Y have at least one
>z literal src
= \ 3. Y uses dest(X)
4. None of the srcs of X have
defs between X and Y
(excluding Y)

re =rd4d * 4



Local: Strength Reduction

r7 =5
f'E5 = 2 * r4
““““ ré6 = rd * 4

r5 = rd + r4.y”

rée = rd4 << 2

Goal: replace
expensive operations
with cheaper ones

Rules (common):

1. X 1s an multiplication
operation where
src1(X) or src2(X) 1s a
const 2* integer literal

2. Change X by using
shift operation

3. For k=1 can use add

37



Local: Constant Propagation

* Goal: replace register
uses with literals
rd + 5 (constants) 1n a single

= basic block

+ +
.
N
PN
H K
R
oo
(8]
+
X

- r2 r8 =5+ x+1- x * RuleS:

+ r5 4 r9 = 12 + r5 I. Operation X 1s a move to
+1 ¢ r3= x+1 register with src1(X) literal
S rlgmx? = x+1-5- _x-1 92 OperationY uses dest(X)

3. There is no def of dest(X)
between X and Y
(excluding defs at X and Y)

4. Replace dest(X) in Y with
src1(X)

38



Local: Common Subexpression
Elimination (CSE)

rl
rd
rl
r6
r2
r5
r7
r5

+ +

I+ 4+ 1+

Goal: eliminate re-computations
of an expression

More efficient code

Resulting moves can get copy
propagated (see later)

Rules:

I.

Operations X and Y have the
same opcode and Y follows X

src(X) = src(Y) for all srcs

. For all srcs, no def of a src

between X and Y (excluding Y)

No def of dest(X) between X
and Y (excluding X and Y)

. Replace Y with

dest(Y) = dest(X)

39



Dataflow Analysis

A data-flow analysis schema defines a value at each point
in the program.

Statements of the program have associated transfer

functions that relate the value before the statement to the
value after.

Statements with more than one predecessor must have
their value defined by combining the values at the
predecessors, using a meet (or confluence) operator.

Often basic blocks are annotated instead of individual
statements.

Useful for annotating the code with info needed for local or
global optimization.



Dataflow analysis for Reaching
Definitions and Live Variables

Reaching Definitions: Each statement is associated with
the set of of definitions that are active.

The transfer function for a block kills definitions of
variables that are redefined in the block and adds
definitions of variables that occur in the block.

The confluence operator is union.

Live Variables: computes the variables that are live (will be
used before redefinition) at each point.

Similar to reaching definitions, but the transfer function
runs backward. A variable is live at the beginning of a block
if it is either used before definition in the block or is live at
the end of the block and not redefined in the block.



Local: Backward Copy Propagation

r8
r9
r2

rl
reé
r7

r2

r6 not live

Goal: propagate LHS of
moves backward

Eliminates useless moves

Rules (dataflow required)

I.

X and Y 1n same block

Y is a move to register

dest(X) is a register that is not live
out of the block

Y uses dest(X)

dest(Y) not used or defined

between X and Y (excluding X
and Y)

No uses of dest(X) after the first
redef of dest(Y)

Replace src(Y) on path from X to
Y with dest(X) and remove Y

42



Global: Dead Code Elimination

rl = 3 *  Goal: eliminate any operation
x2 = 10 who’s result is never used
— * Rules (dataflow required)
rd =rd4d + 1 . . .
1. X is an operation with dest(X
r7 = rl * r4 ¢ r7 not live not live p (X)

/ \ 2. Delete X if removable (not a

=r3 +1 r2 = 0 store or branch)
\/ *  Rules too simple!
— Misses deletion of r4, even
r3 = r2 + rl after deleting r7, since r4 is

\ live in loop




Global: Constant Propagation

rl = 4 ° .
Ty 10 GO?.]. globally .repl.ace
register uses with literals
| es =2 * Rules (dataflow required)
il R 1. Xis aload to a register

with src1(X) literal
2. Y uses dest(X)

3. dest(X) has only one def at
X for use-def (UD) chains
toY

4. Replace dest(X) in Y with
src1(X)

r2 + 4
8 * r4

M[rl] = r3 <1 M[4] = r3

44



Global: Forward Copy Propagation

* Goal: globally propagate
RHS of moves forward
— Reduces dependence chain

— May be possible to eliminate
moves

K K

w R

nn

K K

=N
[

Rules (dataflow required)

1. Xis a move with src1(X)
register

2. Y uses dest(X)

3. dest(X) has only one def at X

= r2 + r4 for UD chainsto Y

4. srcl(X) has no def on any path
from XtoY

5. Replace dest(X) in Y with
src1(X)

45



Global: Common Subexpression
Elimination (CSE)

rl = r2 * ré *  @Goal: eliminate
recomputations of an
_ expression
r3 =rd4d / rl ° Rules
“pr £l0 = £3 1. X and Y have the same opcode
/ \ and X dominates Y
= rg + i el = £3 * 7 2. src(X) = src(Y) for all srcs
=r3 + 3. For all srcs, no def of a src on
\/ any path between X and Y
5 = 22 % 26 (excluding Y)
r8 = rd4 / r7 4-f r8 = r10 4. Insert rx = dest(X)
immediately after X for new
\ register rx

5. Replace Y with move dest(Y)
=rX

46



Global: Code Motion

0 preheader *  Goal: move loop-invariant
G r4 = M[r5] computations to preheader
R/
= . Rules:

M[z5]" header 1. Operation X in block that
rd * 3 dominates all exit blocks

—~

/ \ 2. X is the only operation to

modify dest(X) in loop body
r3 =r2 +1 3. All srcs of X have no defs in

any of the basic blocks in the
\_/ loop body

e

Move X to end of preheader

5. Note 1: if one src of X 1s a
\ memory load, need to check
for stores in loop body
M[rl] = r3 6. Note 2: X must be movable

and not cause exceptions

47



Global: Loop Strength Reduction

Bl1:

1 t2 =

i =

A[t2] :

4%3i

i+l

Y

‘'if i < tl goto B2

v

B1:

B3:

i:=0

tl := n-2
t2 = 4%*ji
A[t2] := 0
i = i+l
t2 = t2+4

Y

if i < tl1 goto B2

v

Replace expensive computations with induction variables




Global: Induction Variable Elimination

Bl1:

B3:

i:=0

tl := n-2

t2 = 4%*ji
JA[t2] = O

i := i+l

t2 = t2+4

B1:

Y

if i<tl goto B2

v

B3:

tl := 4*n
tl := t1-8
t2 := 4*i
A[t2] := 0
t2 = t2+4

if t2<tl goto B2

v

Replace induction variable in expressions with another

49



Generating Code for Stack Allocation

of Activation Records

tl :=a + b 100:
param tl 108:
param c 116:
t2 := call foo0,2 124:
132:
140:
148:
func foo 156:
.. le64:
return tl 172:
500:
564:
572:

ADD #16,SP
MOV a,RO

ADD b,RO

MOV RO, 4 (SP)
MOV c, 8 (SP)
MOV #156,*SP
GOTO 500

MOV 12 (SP) ,RO
SUB #16,SP

MOV RO,12 (SP)
GOTO *SP

Note: Language and machine dependent
Here we assume C-like implementation with SP and no FP 50

Push frame

Store a+b
Store ¢

Store return address
Jump to foo

Get return value
Remove frame

Store return value
Return to caller



